Skip to main content

Advertisement

Log in

Actinorhizal trees and shrubs from Africa: distribution, conservation and uses

  • Review
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Actinorhizal plants are a group of perennial dicotyledonous angiosperms, comprised of more than 200 species, most of which can establish root-nodule symbiosis with the nitrogen fixing actinobacteria of the genus Frankia. They are key providers of fundamental goods and services and can give a major contribution to mitigate the combined effects of climate changes, human population growth and loss of biodiversity. This aspect is particularly relevant for the developing economies of many African countries, which are highly exposed to climate and anthropogenic disturbances. In this work we have analyzed the distribution, conservation and uses of actinorhizal species native to or introduced in Africa. A total of 42 taxa distributed over six botanical families (Betulaceae, Casuarinaceae, Myricaceae, Elaeagnaceae, Rhamnaceae and Coriariaceae) were identified. The vast majority is able to thrive under a range of diverse environments and has multiple ecological and economic potential. More than half of the identified species belong to the genus Morella (Myricaceae), most of them native to Middle, Eastern and Southern Africa. Although the information about the conservation status and uses of Morella spp. is largely incomplete, the available data is indicative of their potential in e.g. forestry and agroforestry, food and medicine. Therefore, efforts should be made to upgrade actinorhizal research in Africa towards the sustainable use of biodiversity at the service of local (bio)economies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aher AN, Pal SC, Patil UK, Yadav SK (2006) Evaluation of anthelmintic activity of Casuarina equisetifolia Frost (Casuarinaceae). Planta Indica 2:35–37

    Google Scholar 

  • Ahmad A, Khan A, Kumar P, Bhatt RP, Manzoor N (2011) Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast 28:611–617

    Article  CAS  PubMed  Google Scholar 

  • Alapetite GP (1979) Flore de la Tunisie. Edition du Ministère de l’enseignement supérieur et de la recherche scientifique et le Ministère de l’agriculture. République Tunisienne

  • Al-Snafi A (2015) The pharmacological importance of Casuarina equisetifolia-an overview. Int J Pharmacol Screen Methods 5:4–9

    Google Scholar 

  • Ashafa T (2013) Medicinal potential of Morella serata (Lam.) Killick (Myricaceae) root extracts: biological and pharmacological activities. BMC Complement Altern Med 13:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista-Santos P, Duro N, Rodrigues AP, Semedo JN, Alves P, da Costa M, Graça I, Pais IP, Scotti-Campos P, Lidon FC, Leitão AE, Pawlowski K, Ribeiro-Barros AI, Ramalho JC (2015) Is salt stress tolerance in Casuarina glauca Sieb. exSpreng. associated with its nitrogen-fixing root-nodule symbiosis? An analysis at the photosynthetic level. Plant Physiol Biochem 96:97–109

    Article  CAS  PubMed  Google Scholar 

  • Bello MO, Yekee TA, Aneke EO (2015) Nutraceutical constituents of Casuarina equisetifolia leaves and fruits. IJCEBS 3:140–144

    Google Scholar 

  • Benson DR, Dawson JO (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330

    Article  CAS  Google Scholar 

  • Bosch CH (2009) Alnus acuminata Kunth. In: Lemmens RHMJ, Louppe D, Oteng-Amoako AA (eds). PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afriquetropicale), Wageningen. https://uses.plantnet-project.org/en/Alnus_acuminata_(PROTA. Accessed 2 June 2018

  • Cardon D, Pinto A (2007) Le redoul, herbe des tanneur set des teinturiers. Collecte, commercialization et utilisations d’une plante sauvage dans l’espace méridional (xiiie-xve siècles). Médiévales 53:51–64

    Article  Google Scholar 

  • Chauhan VS, Misra AK (2002) Development of molecular markers for screening of Alnus nepalensis (D. Don) genotypes for the nitrogenase activity of actinorhizal root nodules. Mol Genet Genomics 267:303–312

    Article  CAS  PubMed  Google Scholar 

  • Cheek M (2004) Morella arborea. The IUCN red list of threatened species 2004: e.T45897A11018861. http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T45897A11018861.en. Accessed 3 June 2018

  • Chen L, Feng P, Li Y, Zhou D (2013) Influences of “spasmolytic powder” on pgp expression of Coriaria Lactone-kindling drug-resistant epileptic rat model. J Mol Neurosci 51:1–8

    Article  CAS  PubMed  Google Scholar 

  • Cheng MA, Freitas FJ (2011) Therapeutic possibilities of Coriaria myrtifolia L. in high dilutions. Int J High Dilution Res 10:211–214

    Google Scholar 

  • Christaki E (2012) Hippophae rhamnoides L. (Sea Buckthorn): a potential source of nutraceuticals. Food Public Health 2:69–72

    Article  Google Scholar 

  • Constanza R, Groot R, Braat K, Kubiszewskia I, Fioramonti L, Sutton P, Farber S, Grasso M (2017) Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst Serv 28:1–16

    Article  Google Scholar 

  • CSSA (2011) Position statement on crop adaptation to climate change. Crop Science Society of America. https://www.crops.org/files/science-policy/cssa-crop-adaptation-position-statement.pdf. Accessed 2 June 2018

  • Dahija S, Čakar J, Vidic D, Maksimović M, Parić A (2014) Total phenolic and flavonoid contents, antioxidant and antimicrobial activities of Alnus glutinosa (L.) Gaertn., Alnus incana (L.) Moench and Alnus viridis (Chaix) DC.extracts. Nat Prod Res 28:2317–2320

    Article  CAS  PubMed  Google Scholar 

  • De Haro L, Pommier P, Tichadou L, Hayek-Lanthois M, Arditti J (2005) Poisoning by Coriaria myrtifolia Linnaeus: a new case report and review of the literature. Toxicon 46:600–603

    Article  CAS  PubMed  Google Scholar 

  • Diagne N, Diouf D, Svistoonoff S, Kane A, Noba K, Franche C, Bogusz D, Duponnois R (2013) Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development. J Environ Manag 128:204–209

    Article  CAS  Google Scholar 

  • Diem HG, Dommergues YR (1990) Current and potential uses and mangement of Casuarinaceae in the tropics and subtropics. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorrhizal plants. Academic Press, San Diego, pp 316–342

    Google Scholar 

  • Duro N, Batista-Santos P, da Costa M, Maia R, Castro IV, Ramos M, Ramalho JC, Pawlowski K, Máguas C, Ribeiro-Barros AI (2016) The impact of salinity on the symbiosis between Casuarina glauca Sieb. exSpreng. and N2-fixing Frankia bacteria based on the analysis of Nitrogen and Carbon metabolism. Plant Soil 398:327–337

    Article  CAS  Google Scholar 

  • El-Lakany MH (1983) A review of breeding drought resistant Casuarina for shelterbelt establishment in arid regions with special reference to Egypt. For Ecol Manag 6:129–137

    Article  Google Scholar 

  • FAO (2011)Save and grow. A policymaker’s guide to the sustainable intensification of smallholder crop production. http://www.fao.org/ag/save-and-grow/en/index.html. Accessed 3 June 2018

  • FAO (2015) FAO and the 17 sustainable development goals. http://www.fao.org/3/a-i4997e.pdf. Accessed 3 June 2018

  • FAO (2017) Strategic work of FAO to increase the resilience of livelihoods. http://www.fao.org/3/a-i6463e.pdf. Accessed 3 June 2018

  • Goyal AK, Mishra T, Bhattacharya M, Kar P, Sen A (2013) Evaluation of phytochemical constituents and antioxidant activity of selected actinorhizal fruits growing in the forests of Northeast India. J Biosci 38:797–803

    Article  CAS  PubMed  Google Scholar 

  • Gtari M, Dawson JO (2011) An overview of actinorhizal plants in Africa. Funct Plant Biol 38:653–661

    Article  Google Scholar 

  • Hafsé M, Farah A, Mouktadir JE, Fikri-Benbrahim K (2017) Antioxidant and anti-inflammatory activities evaluation of Coriaria myrtifolia from the North of Morocco. Int Food Res J 24:498–502

    Google Scholar 

  • Hamidpour R, Hamidpour S, Hamidpour M, Shahlari M, Sohraby M, Shahlari N, Hamidpour R (2017) Russian olive (Elaeagnus angustifolia L.): from a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. J Tradit Complement Med 7:24–29

    Article  PubMed  Google Scholar 

  • IUCN (2018) The IUCN red list of threatened species. Version 2017-3. http://www.iucnredlist.org Accessed 3 June 2018

  • Jøker D (2000) Alnus nepalensis D. Don. Danida Forest Seed Centre—Seed Leaflet 8. https://sl.ku.dk/rapporter/seed-leaflets/filer/alnus-nepalensis-8.pdf. Accessed 10 Oct 2018

  • Joyce DC (2007) Evaluation of fresh red bayberry (Myrica rubra) fruit acceptance. New Zeal J Crop HortSci 35:125–128

    Article  Google Scholar 

  • Kanayama K, Kato K, Stobdan T, Galitsyn GG, Kochetov AV, Kanahama K (2012) Research progress on the medicinal and nutritional properties of sea buckthorn (Hippophae rhamnoides)—a review. J Hortic Sci Biotechnol 87:203–210

    Article  CAS  Google Scholar 

  • Kar P, Dey P, Misra AK, Chaudhuri TK, Sen A (2016) Phytometabolomic fingerprinting of selected actinorhizal fruits popularly consumed in North-East India. Symbiosis 70:159–168

    Article  CAS  Google Scholar 

  • Killick DJB (1969) The South African species of Myrica. Bothalia 10(1):5–17

    Google Scholar 

  • Kohls SJ, Baker DD, van Kessel C, Dawson JO (2003) An assessment of soil enrichment by actinorhizal N2 fixation using δ15N values in a chronosequence of deglaciation at Glacier Bay, Alaska. Plant Soil 254:11–17

    Article  CAS  Google Scholar 

  • Kose LS, Moteetee A, VanVuuren S (2015) Ethnobotanical survey of medicinal plants used in the Maseru district of Lesotho. J Ethnopharmacol 170:184–200

    Article  Google Scholar 

  • Larsen L, Joyce NI, Sansom CE, Cooney JM, Jensen DJ, Perry NB (2015) Sweet poisons: honeys contaminated with glycosides of the neurotoxin tutin. J Nat Prod 78:1363–1369

    Article  CAS  PubMed  Google Scholar 

  • Larson EC, Pond CD, Rai PP, Matainaho TK, Piskaut P, Franklin MR, Barrows LR (2016) Traditional preparations and methanol extracts of medicinal plants from Papua New Guinea exhibit similar cytochrome P450 inhibition. Evid-Based Compl Alt Med 7869710

  • Long C (2005) Swaziland’s flora—siSwati names and uses. http://www.sntc.org.sz/backup/flora/chrislong.asp. Accessed 9 June 2018

  • Lötter M, Burrows JE, Victor JE (2009) Morella microbracteata (Weim.) Verdc. & Polhill. National Assessment: Red List of South African Plants version 2017.1. http://redlist.sanbi.org/. Accessed 3 June 2018

  • Mahajan S, Tuteja N (2012) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  Google Scholar 

  • Middha SK, Goyal AK, Faizan SA, Sanghamitra N, Basistha BC, Usha T (2013) In silico—based combinatorial pharmacophore modelling and docking studies of GSK-3β and GK inhibitors of Hippophae. J Biosci 38:805–814

    Article  CAS  PubMed  Google Scholar 

  • Middha SK, Usha T, Babu D, Mishra AK, Lokesh P, Goyal AK (2016) Evaluation of antioxidative, analgesic and anti-inflammatory activities of methanolic extract of Myricanagi leaves—an animal model approach. Symbiosis 70:179–184

    Article  CAS  Google Scholar 

  • Misra AK (2013) Editorial. J Biosci 38:6675–6676

    Article  Google Scholar 

  • Mølgaard P, Holler JG, Asar B, Liberna I, Rosenbæk LB, Jebjerg CP, Jørgensen L, Lauritzen J, Guzman A, Adsersen A, Simonsen HT (2011) Antimicrobial evaluation of Huilliche plant medicine used to treat wounds. J Ethnopharmacol 138:219–227

    Article  PubMed  Google Scholar 

  • Monash University (2010) Aboriginal plants in the grounds of Monash University—a guide. 2010. https://www.monash.edu/__data/assets/pdf_file/0004/542119/Guide-to-the-Aboriginal-Garden-Clayton-Campus.pdf. Accessed 28 June 2018

  • Narayanaswamy R, Ismail IS (2015) Cosmetic potential of Southeast Asian herbs: an overview. Phytochem Rev 14:419–428

    Article  CAS  Google Scholar 

  • Neamsuvana O, Sengnona N, Seemaphrika N, Chouychooa M, Rungrata R, Bunrasria S (2015) Survey of medicinal plants around upper Songkhla lake, Thailand. Afr J Tradit Complement Altern Med 12:133–143

    Article  CAS  Google Scholar 

  • Notten A (2005) South African National Biodiversity Institute. http://pza.sanbi.org/morella-cordifolia. Accessed 9 June 2018

  • Okuda T, Yoshida T, Ashida M, Yazaki K (1983) Tannins of Casuarina and Stachyurus species. Structures of pendunculagin, casuarictin, strictinin, casuarinin, casuariin, and stachyurin. J Chem Soc Perkin Trans 1:765–1772

    Google Scholar 

  • Paul A, Das J, Da S, Samadder A, Khuda-Bukhsh A (2013) Anticancer potential of myricanone, a major bioactive component of Myrica cerifera: novel signaling cascade for accomplishing apoptosis. J Acupunct Meridian Stud 6:188–198

    Article  PubMed  Google Scholar 

  • PFAF (2018) Plants for a future. https://www.pfaf.org/user/Default.aspx. Accessed 28 June 2018

  • Rao OU, Eswaraiah MC, Prabhakar MC (2018) Evaluation of anthelmintic activity of aqueous extract of Casuarina equisetifolia inflorescence (IA) and pollen grains (Seeds: SA) in Indian adult earthworm. Asian J Res Chem 11:287–292

    Article  Google Scholar 

  • Ren X, He T, Chang Y, Zhao Y, Chen X, Bai S, Wang L, Shen M, She G (2017) The genus Alnus, a comprehensive outline of its chemical constituents and biological activities. Molecules 22:1383

    Article  CAS  PubMed Central  Google Scholar 

  • Ribeiro A, Berry AM, Pawlowski K (2011) Actinorhizal plants. Funct Plant Biol 38:3–5

    Article  Google Scholar 

  • Ribeiro-Barros AI, da Costa M, Duro N, Graça I, Batista-Santos P, Jorge TF, Lidon FC, Pawlowski K, António C, Ramalho JC (2016) An integrated approach to understand the mechanisms underlying salt stress tolerance in Casuarina glauca and its relation with nitrogen-fixing FrankiaThr. Symbiosis 70:111–116

    Article  CAS  Google Scholar 

  • Sabiu A, Ashafab AOT (2017) Morellaserrata (Lam.) Killick stabilizes biomembrane and rejuvenates sexual competence in male Wistar rats. J Ethnopharmacol 205:8–15

    Article  CAS  PubMed  Google Scholar 

  • Saboonchian F, Jamei R, Sarghein SH (2014) Phenolic and flavonoid content of Elaeagnusangustifolia L. (leaf and flower). Avicenna J Phytomed 4:231–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahan Y, Dundar AN, Aydin E, Kilci A, Dulger D, KaplanFB Gocmen D, Celik G (2013) Characteristics of cookies supplemented with oleaster (Elaeagnus angustifolia L.) flour: physicochemical, sensorial and textural properties. J Agr Sci 5:160–168

    Google Scholar 

  • Sati SC, Sati N, Sati OP (2011) Bioactive constituents and medicinal importance of genus Alnus. Pharmacog Rev 5:174–183

    Article  CAS  Google Scholar 

  • Schlage C, Heinrich M, Mabula C, Mahunnah R (2000) Medicinal plants of the Washambaa (Tanzania): documentation and ethnopharmacological evaluation. Plant Biol 2:83–92

    Article  Google Scholar 

  • Silva J, Seca AML, Barreto MC, Pinto DCGA (2015) Recent breakthroughs in the antioxidant and anti-inflammatory effects of Morella and Myrica species. Int J Mol Sci 16:17160–17180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Siddiqui MK, Aminuddin (2007) Folk medicinal plants used for the treatment of bronchial asthma in India. Acta Hortic 756:63–72

    Article  Google Scholar 

  • Spínola V, Llorent-Martínez EJ, Gouveia S, Castilho PC (2014) Myrica faya: a new source of antioxidant phytochemicals. J Agric Food Chem 62:9722–9735

    Article  CAS  PubMed  Google Scholar 

  • Surminski J (1980) Technical properties of alderwood and possibilities of its utilization. In: Bialobok S (ed) Olsze (Alnus Mill) Monogr, vol 8. Popularn., Warsaw, pp 325–341

    Google Scholar 

  • Swamy V, Ninge KN, Sudhakar R (2013) Antimicrobial activity of Casuarina equisetifolia. Int J Innov Pharm Dev 1:49–57

    Article  Google Scholar 

  • Uy M, Garcia K (2015) Evaluation of the antioxidant properties of the leaf extracts of Philippine medicinal plants Casuarina equisetifolia Linn, Cyperus brevifolius (Rottb) Hassk, Drymoglossum piloselloides Linn, Ixora chinensis Lam, and Piper abbreviatum Opiz. Adv Agric Bot 7:71–79

    Google Scholar 

  • Uzun A, Celik B, Karadeniz T, Yilmaz KU, Altintaş C (2015) Assessment of fruit characteristics and genetic variation among naturally growing wild fruit Elaeagnus angustifolia accessions. Turk J Agric For 39:286–294

    Article  CAS  Google Scholar 

  • Wang JS, Stewart JR, Khan SA, Dawson JO (2010) Elevated amino sugar nitrogen concentrations in soils: a potential method for assessing N fertility enhancement by actinorhizal plants. Symbiosis 50:71–76

    Article  CAS  Google Scholar 

  • Watkins OC, Joyce NI, Gould N, Perry NB (2018) Glycosides of the neurotoxin tutin in toxic honeys are from Coriaria arborea phloem sap, not insect metabolism. J Nat Prod 81:1116–1120

    Article  CAS  PubMed  Google Scholar 

  • Yanthan M, Misra AK (2013) Molecular approach to the classification of medicinally important actinorhizal genus Myrica. Indian J Biotech 12:133–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana I. Ribeiro-Barros.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Authors contribution

AIR-B and MMR conceived the idea. SC and IM performed data retrieval and prepared the database. AIR-B, JCR, MMR, and FG-G analyzed data. AIR-B wrote the paper and all the other authors revised the MS thoroughly.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This work was supported by national funds from Fundação para a Ciência e a Tecnologia through the research units UID/AGR/04129/2013 (LEAF) and UID/GEO/04035/2013 (GeoBioTec).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro-Barros, A.I., Catarino, S., Moura, I. et al. Actinorhizal trees and shrubs from Africa: distribution, conservation and uses. Antonie van Leeuwenhoek 112, 31–46 (2019). https://doi.org/10.1007/s10482-018-1174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1174-x

Keywords

Navigation