Skip to main content
Log in

Genetic homogeneity of a recently introduced pathogen of chickpea, Ascochyta rabiei, to Australia

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The study examined the genetic structure and potential for adaption to host genotype of Ascochyta rabiei, a major necrotrophic fungal pathogen of chickpea. For this, A. rabiei populations derived from six major chickpea growing regions in Australia were characterized using 20 polymorphic microsatellite markers. The overall gene (H = 0.094) and genotypic (D = 0.80) diversities among the entire population were low, indicating the establishment of a recent founder population. Since, no significant genetic differentiation was detected among growing regions, subsequent anthropogenic dispersal was proposed, mainly through seed movement. The highest genotypic diversity and allelic richness was detected at Kingsford, South Australia, thought to be one of the sites of industry establishment in the 1970s and hence the centre of introduction. Despite assessing 206 isolates collected in 2010 from host genotypes with differential disease responses, no significant co-occurrence of fungal haplotype with host genotype was detected. Rather a single haplotype that accounted for 70 % of the total isolates assessed was detected on all host genotypes assessed and from all regions. Therefore, we propose that up until 2010, host reaction was not a major influence on the Australian A. rabiei population structure. Additionally, the detection of a single mating type only, MAT1-2 indicated asexual reproduction, further influencing low haplotype diversity and resulting in a population comprising of multiple clones with relatively few haplotypes compared to populations in other continents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ABARES (2012) The Australian Government Department of Agriculture, Fisheries and Forestry (DAFF). http://www.daff.gov.au/abares. Accessed 10 January 2014

  • AgVantage Commodities (2012) AgVantage Commodities Pty Ltd: Commodity info. http://agvantagecommodities.com.au/commodity-info/. Accessed 10 January 2014

  • Ahmed HU, Mundt C, Hoffer ME, Coakley SM (1996) Selective influence of wheat cultivars on pathogenicity of Mycosphaerella graminicola (anamorph Septoria tritici). Phytopathology 86:454–458

    Article  Google Scholar 

  • Ali S, Leconte M, Walker A-S, Enjalbert J, de Vallavieille-Pope C (2010) Reduction in the sex ability of worldwide clonal populations of Puccinia striiformis f. sp. tritici. Fungal Genet Biol 47:828–838

    Article  PubMed  Google Scholar 

  • Andrivon D, Pilet F, Montarry J, Hafidi M, Corbière R, Achbani EH, Pellé R, Ellissèche D (2007) Adaptation of Phytophthora infestans to partial resistance in potato: evidence from French and Moroccan populations. Phytopathology 97:338–343

    Article  PubMed  Google Scholar 

  • Armstrong C, Chongo G, Gossen B, Duczek L (2001) Mating type distribution and incidence of the teleomorph of Ascochyta rabiei (Didymella rabiei) in Canada. Can J Plant Pathol 23:110–113

    Article  Google Scholar 

  • Atik O, Baum M, El-Ahmed A, Ahmed S, Abang MM, Yabrak MM, Murad S, Kabbabeh S, Hamwieh A (2011) Chickpea ascochyta blight: disease status and pathogen mating type distribution in Syria. J Phytopathol 159:443–449

    CAS  Google Scholar 

  • Babujee L, Gnanamanickam S (2000) Molecular tools for characterization of rice blast pathogen (lllagnaporthe grisea) population and molecular marker-assisted breeding. Curr Sci 78:248–257

    CAS  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Barrett SC, Husband BC (1990) Variation in outcrossing rates in Eichhornia paniculata: the role of demographic and reproductive factors. Plant Species Biol 5:41–55

    Article  Google Scholar 

  • Barve M, Arie T, Salimath S, Muehlbauer F, Peever T (2003) Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. Fungal Genet Biol 39:151–167

    Article  CAS  PubMed  Google Scholar 

  • Barve MP, Santra DK, Ranjekar PK, Gupta VS (2004) Genetic diversity analysis of a world-wide collection of Asochcyta rabiei isolates using sequence tagged microsatellite markers. World J Microbiol Biotechnol 20:735–741

    Article  CAS  Google Scholar 

  • Bayraktar H, Dolar FS, Maden S (2007) Mating type groups of Ascochyta rabiei (Teleomorph: Didymella rabiei), the causal agent of chickpea blight in Central Anatolia. Turk J Agric For 31:41–46

    Google Scholar 

  • Blair AC, Wolfe LM (2004) The evolution of an invasive plant: an experimental study with Silene latifolia. Ecology 85:3035–3042

    Article  Google Scholar 

  • Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11

    Article  PubMed  Google Scholar 

  • Brinsmead B (1994) Chickpea (Cicer arietinum). The Australian New Crops Newsletter. I. Wood and R. Fletcher, ISSN 13282026

  • Brown J, Wolfe M (1990) Structure and evolution of a population of Erysiphe graminis f. sp. hordei. Plant Pathol 39:376–390

    Article  Google Scholar 

  • Browne RA, Hoopes CW (1990) Genotype diversity and selection in asexual brine shrimp (Artemia). Evolution 44:1035–1051

    Article  Google Scholar 

  • Department of Primary Industry (DPI) (2013) DPI: Chickpea varieties. http://www.dpi.vic.gov.au/agriculture/grain-crops/crop-production/growing-chickpea/chick-pea-varieties. Accessed 10 January 2014

  • Dlugosch K, Parker I (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Elliott VL, Taylor PW, Ford R (2011) Pathogenic variation within the 2009 Australian Ascochyta rabiei population and implications for future disease management strategy. Australas Plant Pathol 40:568–574

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97:7043–7050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • FAOSTAT (2013) Food and Agriculture Organization of the United Nations. http://faostat.fao.org/. Accessed 10 January 2014

  • Galloway J, MacLeod WJ (2003) Didymella rabiei, the teleomorph of Ascochyta rabiei, found on chickpea stubble in Western Australia. Australas Plant Pathol 95:1279–1286

    Google Scholar 

  • Gandon S (2002) Local adaptation and the geometry of host–parasite coevolution. Ecol Lett 5:246–256

    Article  Google Scholar 

  • Gandon S, Michalakis Y (2000) Evolution of parasite virulence against qualitative or quantitative host resistance. Proc R Soc London B Biol Sci 267:985–990

    Article  CAS  Google Scholar 

  • Gandon S, Capowiez Y, Dubois Y, Michalakis Y, Olivieri I (1996) Local adaptation and gene-for-gene coevolution in a metapopulation model. Proc R Soc London B Biol Sci 263:1003–1009

    Article  Google Scholar 

  • Gandon S, Ebert D, Olivieri I, Michalakis Y (1998) Differential adaptation in spatially heterogeneous environments and host-parasite coevolution Genetic structure and local adaptation in natural insect populations. Chapman & Hall, New York

    Google Scholar 

  • Geistlinger J, Weising K, Winter P, Kahl G (2000) Locus-specific microsatellite markers for the fungal chickpea pathogen Didymella rabiei (anamorph) Ascochyta rabiei. Mol Ecol 9:1939–1941

    Article  CAS  PubMed  Google Scholar 

  • Gordon D (1997) The genetic structure of Escherichia coli populations in feral house mice. Microbiology 143:2039–2046

  • Gould F, Kennedy G, Johnson M (1991) Effects of natural enemies on the rate of herbivore adaptation to resistant host plants. Entomol Exp Appl 58:1–14

    Article  Google Scholar 

  • Hallatschek O, Nelson DR (2008) Gene surfing in expanding populations. Theor Popul Biol 73:158–170

    Article  PubMed  Google Scholar 

  • Hayden M, Nguyen T, Waterman A, Chalmers K (2008) Multiplex-ready PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics 9:80–92

    Article  PubMed Central  PubMed  Google Scholar 

  • Huettel B, Santra D, Muehlbauer F, Kahl G (2002) Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet 105:479–490

    Article  CAS  PubMed  Google Scholar 

  • Iruela M, Rubio J, Barro F, Cubero J, Millán T, Gil J (2006) Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theor Appl Genet 112:278–287

    Article  CAS  PubMed  Google Scholar 

  • Johnson R (1984) A critical analysis of durable resistance. Annu Rev Phytopathol 22:309–330

    Article  Google Scholar 

  • Kaiser WJ (1997) Inter-and intranational spread of ascochyta pathogens of chickpea, faba bean, and lentil. Can J Plant Pathol 19:215–224

    Article  Google Scholar 

  • Kaiser WJ, Muehlbaur FJ (1988) An outbreak of Ascochyta blight of chickpea in the Pacific Northwest, USA, in 1987. Int Chickpea Newsl 18:16–17

    Google Scholar 

  • Kaiser WJ, Muehlbaur FJ, Hannan RM (1992) Experience with Ascohcyta blight of chickpea in the United States. In: Kaiser WJ, Muehlbaur FJ (eds) Expanding the production and use of cool season food legumes. Kluwer Academic Publishers, USA, pp 849–858

    Google Scholar 

  • Kalinowski ST (2005) HP-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kassen R, Bell G (1998) Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity 80:732–741

    Article  Google Scholar 

  • Khan M, Ramsey M, Corbiere R, Infantino A, Porta-Puglia A, Bouznad Z, Scott E (1999) Ascochyta blight of chickpea in Australia: identification, pathogenicity and mating type. Plant Pathol 48:230–234

    Article  Google Scholar 

  • Lebreton L, Laurent C, Andrivon D (1998) Evolution of Phytophthora infestans populations in the two most important potato production areas of France during 1992–96. Plant Pathol 47:427–439

    Article  Google Scholar 

  • Leo AE, Ford R, Linde CC, Shah RM, Oliver R, J TPW, Lichtenzveig J (2011) Characterization of sixteen newly developed microsatellite loci for the chickpea fungal pathogen Ascochyta rabiei. Permanent Genetic Resources added to Molecular Ecology Resources database 1(October), pp. 2010–30, November 2010. Mol Ecol 11:418–421. doi:10.1111/j.1755-0998.2010.02970.x

    Article  Google Scholar 

  • Leonard K (1977) Selection pressures and plant pathogens. Ann NY Acad Sci 287:207–222

    Article  Google Scholar 

  • Linde CC, Zala M, McDonald BA (2009) Molecular evidence for recent founder populations and human-mediated migration in the barley scald pathogen Rhynchosporium secalis. Mol Phylogenet Evol 51:454–464

    Article  CAS  PubMed  Google Scholar 

  • Manly BFJ (1985) The statistics of natural selection. Chapman & Hall, London

    Book  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Marshall D, Brown A (1981) The evolution of apomixis. Heredity 47:1–15

    Article  Google Scholar 

  • Maynard Smith J, Smith NH, O’Rourke M, Spratt BG (1993) How clonal are bacteria? Proc Natl Acad Sci 90:4384–4388

    Article  Google Scholar 

  • McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    Article  CAS  Google Scholar 

  • McDonald BA, Mundt CC, Chen R-S (1996) The role of selection on the genetic structure of pathogen populations: evidence from field experiments with Mycosphaerella graminicola on wheat. Euphytica 92:73–80

    Article  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Mettler LE, Gregg TG (1969) Population genetics and evolution. Englewood Cliffs

  • Milgroom M, Sotirovski K, Spica D, Davis J, Brewer M, Milev M, Cortesi P (2008) Clonal population structure of the chestnut blight fungus in expanding ranges in southeastern Europe. Mol Ecol 17:4446–4458

    Article  PubMed  Google Scholar 

  • Montarry J, Corbiere R, Lesueur S, Glais I, Andrivon D (2006) Does selection by resistant hosts trigger local adaptation in plant–pathogen systems? J Evol Biol 19:522–531

    Article  CAS  PubMed  Google Scholar 

  • Navas-Cortés JA, Pérez-Artés E, Jiménez-Diaz RM, Llobell A, Bainbridge BW, Heale JB (1998) Mating type, pathotype, and RAPDs analysis in Didymella rabiei, the agent of Ascochyta blight of chickpea. Phytoparasitica 26:199–212

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. Front Biol 40:1

    Google Scholar 

  • Nourollahi K, Javannikkhah M, Naghavi MR, Lichtenzveig J, Okhovat SM, Oliver RP, Ellwood SR (2010) Genetic diversity and population structure of Ascochyta rabiei from the western Iranian Ilam and Kermanshah provinces using MAT and SSR markers. Mycol Prog 10:1–7

    Article  Google Scholar 

  • Otto SP (2000) Detecting the form of selection from DNA sequence data. Trends Genet 16:526–529

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Phan HTT, Ford R, Taylor PWJ (2002) Population structure of Ascochyta rabiei in Australia based on STMS fingerprints. Fungal Divers 13:111–129

    Google Scholar 

  • Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe ivasions. Agric Ecosyst Environ 84:1–20

    Article  Google Scholar 

  • Poczai P, Varga I, Bell NE, Hyvönen J (2012) Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment. In: Caliskan M (ed) the molecular basis of plant genetic diversity. InTechopen

  • Podger FD, Doepel RF, Zentmyer GA (1965) Association of Phytophthora cinnamomi with a disease of Eucalyptus marginata forest in Western Australia. Plant Dis Rep 49:947–973

    Google Scholar 

  • Polzin T, Daneshmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 31:12–20

    Article  Google Scholar 

  • Pulse Australia (2012) Australian Pulse Market News: A background to global pulse market drivers. http://www.pulseaus.com.au/pdf/Australian%20Pulse%20Market%20News/Australian%20Pulse%20Market%20News%20Background%20Facts%202012.pdf. Accessed 10 January 2014

  • Pulse Australia (2013) Australian Pulse Market News. http://www.pulseaus.com.au/pdf/Australian%20Pulse%20Market%20News/2013/Pulse%20Australia%20Market%20News%20September%2020%202013.pdf. Accessed 10 January 2014

  • Pulse Breeding Australia (PBA) (2009) Pulse Australia: Chickpeas in South Australia and Victoria. http://www.pulseaus.com.au/pdf/Chickpeas%20for%20SA%20%26%20Vic.pdf. Accessed 10 January 2014

  • Reboud X, Bell G (1997) Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity 78:507–514

    Article  Google Scholar 

  • Rhaiem A, Cherif M, Dyer P, Peever T (2007) Distribution of mating types and genetic diversity of Ascochyta rabiei Populations in Tunisia revealed by mating-type-specific PCR and random amplified polymorphic DNA markers. J Phytopathol 155:596–605

    Article  CAS  Google Scholar 

  • Rhaiem A, Cherif M, Peever T, Dyer P (2008) Population structure and mating system of Ascochyta rabiei in Tunisia: evidence for the recent introduction of mating type 2. Plant Pathol 57:540–551

    Article  CAS  Google Scholar 

  • Rivas G-G, Zapater M-F, Abadie C, Carlier J (2004) Founder effects and stochastic dispersal at the continental scale of the fungal pathogen of bananas Mycosphaerella fijiensis. Mol Ecol 13:471–482

    Article  PubMed  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, UK

    Book  Google Scholar 

  • Rossman AY (2009) The impact of invasive fungi on agricultural ecosystems in the United States. Biol Invasions 11:97–107

    Article  Google Scholar 

  • Santra DK, Singh G, Kaiser WJ, Gupta VS, Ranjekar PK, Muehlbauer FJ (2001) Molecular analysis of Ascochyta rabiei (Pass.) Labr., the pathogen of ascochyta blight in chickpea. Theor Appl Genet 102:676–682

    Article  CAS  Google Scholar 

  • Shtienberg D, Vintal S, Brener S, Retig B (2000) Rational management of Didymella rabiei in chickpea by integration of genotype resistance and postinfection application of fungicides. Phytopathology 90:834–842

    Article  CAS  PubMed  Google Scholar 

  • Siddique KHM, Sykes J (1997) Pulse production in Australia past, present and future. Austral J Exp Agric 37:103–111

    Article  Google Scholar 

  • Siddique KHM, Regan KL, Baker MJ (2004) New ascochyta blight resistant, high quality kabuli chickpea varieties for Australia Paper presented at the New directions for a diverse planet Brisbane, Australia

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Stukenbrock EH, Banke S, McDonald BA (2006) Global migration patterns in the fungal wheat pathogen Phaeosphaeria nodorum. Mol Ecol 15:2895–2904

    Article  PubMed  Google Scholar 

  • Tar’an B, Warkentin T, Tullu A, Vandenberg A (2007) Genetic relationships among Chickpea (Cicer arietinum L.) genotypes based on the SSRs at the quantitative trait Loci for resistance to Ascochyta blight. In: Ascochyta blights of grain legumes. Springer, New York, pp 39–51

  • Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140:767–782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trapero-Casas A, Kaiser W (1992) Development of Didymella rabiei, the teleomoph of Ascochyta rabiei, on chickpea straw. Phytopathology 82:1261–1266

    Article  Google Scholar 

  • Wilson AD, Kaiser WJ (1995) Cytology and genetics of sexual incompatibility in Didymella rabiei. Mycologia 87:795–804

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by an Australian Research Council-Linkage grant (LP0990385). We thank Dr Judith Lichtenzveig and Ms Julie Lawrence (Australian Centre for Necrotrophic Fungal Pathogens, Curtin University) for their valuable support in the genotyping work. We also thank Drs Vicki Elliott, Jenny Davidson, Kurt Lindbeck, Kevin Moore, Gail Chiplin and Malcolm Ryley for their assistance with sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste C. Linde.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leo, A.E., Ford, R. & Linde, C.C. Genetic homogeneity of a recently introduced pathogen of chickpea, Ascochyta rabiei, to Australia. Biol Invasions 17, 609–623 (2015). https://doi.org/10.1007/s10530-014-0752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0752-8

Keywords

Navigation