Skip to main content
Log in

Latitudinal, habitat and substrate distribution patterns of freshwater ascomycetes in the Florida Peninsula

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Freshwater ascomycetes are important decomposers of dead woody and herbaceous debris in aquatic habitats. Despite evidence of their ecological importance, latitudinal, habitat and substrate distributional patterns of freshwater ascomycetes are poorly understood. In this study, we examined the latitudinal and habitat distributional patterns, and substrate recurrences of freshwater ascomycetes by collecting dead submerged woody and herbaceous debris in lentic and lotic habitats at five selected sites along a north-central-south, temperate–subtropical latitudinal ecotone in Florida. One hundred and thirty-two fungal taxa were collected during the study. Seventy-four were meiosporic and 56 were mitosporic ascomycetes, while two species were basidiomycetes. Canonical analyses of principal coordinates (CAP) and Sørenson’s similarity index of species based on presence/absence data revealed a high turnover in species composition between the northern and southern sites, indicating a change in species composition along the temperate–subtropical latitudinal ecotone of the Florida Peninsula. Results from the ordination analysis indicated that freshwater ascomycete community composition is not significantly different between lentic and lotic habitats in Florida. The geographically broadly distributed species and species commonly found in Florida occurred in both habitats, whereas a number of new or rare species occurred in either lentic or lotic habitats, but not both. The same freshwater ascomycete species did not necessarily occur on both woody and herbaceous debris; of the 132 taxa collected, 100 were reported only on woody debris; 14 species occurred exclusively on herbaceous debris; and 18 species were found on both woody and herbaceous debris in lentic or lotic habitats. Implications of data from this study to the conservation and knowledge of biodiversity for freshwater ascomycetes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson JL, Shearer CA (2002) Halosarpheia heteroguttulata: anamorph and report from the northern hemisphere. Mycotaxon 82:115–120

    Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525. doi:10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2

    Google Scholar 

  • Arnolds EJM (2007) Biogeography and conservation. In: Kubicek CP, Druzhinina IS (eds) The mycota. Environmental and microbial relationships, vol IV, 2nd edn. Springer, Berlin, pp 105–124

    Google Scholar 

  • Bärlocher F (1982) Conidium production from leaves and needles in four streams. Can J Bot 60:1487–1494

    Google Scholar 

  • Bärlocher F (1987) Aquatic hyphomycete spora in 10 streams of New Brunswick and Nova Scotia. Can J Bot 60:76–79

    Google Scholar 

  • Bärlocher F (1992) The ecology of aquatic hyphomycetes. Ecological studies, vol 94. Springer, Berlin, pp 225

  • Bärlocher F (2005) Freshwater fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. Taylor and Francis Group, London, pp 39–59

    Google Scholar 

  • Bärlocher F, Graça MAS (2002) Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Freshw Biol 47:1123–1135. doi:10.1046/j.1365-2427.2002.00836.x

    Google Scholar 

  • Bärlocher F, Rosset J (1981) Aquatic hyphomycetes of two Black Forest and two Swiss Jura streams. Trans Br Mycol Soc 76:479–483

    Google Scholar 

  • Beaver JR, Crisman TL, Bays JS (1981) Thermal regimes of Florida lakes. Hydrobiologia 83:267–273. doi:10.1007/BF00008277

    Google Scholar 

  • Blackburn TM, Gaston KJ (1996) Spatial patterns in the species richness of birds in the new world. Ecography 19:269–376. doi:10.1111/j.1600-0587.1996.tb00247.x

    Google Scholar 

  • Booth T, Kenkel N (1986) Ecological studies of lignicolous marine fungi: a distribution and classification. In: Moss S (ed) Biology of marine fungi. Cambridge University Press, Cambridge, pp 297–310

    Google Scholar 

  • Brenner M, Binford MW, Deevey ES (1990) Lakes. In: Meyers RL, Ewel JJ (eds) Ecosytems of Florida. The University Press of Florida, FL, pp 364–391

    Google Scholar 

  • Brown NC (1909) Preliminary examination of the forest conditions of Florida. Report to the State of Florida, U.S. Forest Service

  • Brown JH, Lomolino MV (1998) Biogeography, 2nd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Cai L, Tsui CKM, Zhang K, Hyde KD (2002) Aquatic fungi from Lake Fuxian, Yunnan, China. Fungal Divers 9:57–70

    Google Scholar 

  • Cai L, Zhang K, McKenzie EHC, Hyde KD (2003) Freshwater fungi from bamboo and wood submerged in the Liput river in the Philippines. Fungal Divers 13:1–12

    Google Scholar 

  • Cai L, Hyde KD, Tsui CKM (2006a) Genera of freshwater fungi. Fungal diversity research series 18. Fungal Diversity Press, Hong Kong, p 261

    Google Scholar 

  • Cai L, Ji KF, Hyde KD (2006b) Variation between freshwater and terrestrial fungal communities on decaying bamboo culms. Antonie Van Leeuwenhoek 89:293–301. doi:10.1007/s10482-005-9030-1

    PubMed  Google Scholar 

  • Campbell J, Shearer CA, Crane JL, Fallah PM (2003) A reassessment of two freshwater ascomycetes, Ceriospora caudae-suis and Submersisphaeria aquatica. Mycologia 95:41–53. doi:10.2307/3761960

    Google Scholar 

  • Chamier A-C (1992) Water chemistry. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Heidelberg, pp 152–172

    Google Scholar 

  • Christman SP (1975) Patterns of geographic variation in Florida snakes. Dissertation, University of Florida

  • Conway KE, Barr ME (1977) Classification of Ophioceras dolichostomum. Mycotaxon 5:376–380

    Google Scholar 

  • Douglas MS (1947) The everglades: river of grass. Rinehart and Company, New York

    Google Scholar 

  • Dudka IO (1963) Data on the flora of aquatic fungi of the Ukrainian SSR. II. Aquatic hyphomycetes of Kiev Polessye. Ukr Bot Z 20:86–93

    Google Scholar 

  • Dudka IO (1985) Ascomycetes, components of freshwater biocoenosis. Ukr Bot Z 42:86–95

    Google Scholar 

  • Fallah PM (1999) Ascomycetes from North temperate lakes in Wisconsin. Dissertation, University of Illinois, Urbana-Champaign

  • Fallah PM, Shearer CA (2001) Freshwater ascomycetes: new or noteworthy species from north temperate lakes in Wisconsin. Mycologia 93:566–602. doi:10.2307/3761741

    Google Scholar 

  • Ferreira V, Gulis V, Graça MAS (2006) Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149:718–729. doi:10.1007/s00442-006-0478-0

    PubMed  Google Scholar 

  • France R (1992) The North American latitudinal gradient in species richness and geographical range of freshwater crayfish and amphipods. Am Nat 139:342–354. doi:10.1086/285330

    Google Scholar 

  • Fröhlich J, Hyde KD (2000) Palm microfungi. Fungal Divers Res Ser 3:1–393

    Google Scholar 

  • Fryar SC, Hyde KD (2004) New species and genera of ascomycetes from fresh and brackish water in Brunei: Ayria appendiculata and Sungaiicola bactrodesmiella gen. et sp. nov., Fluviatispora boothi, Torrentispora crassiparietis and T. fusiformis spp. nov. Cryptogam Mycol 25:245–260

    Google Scholar 

  • Fryar SC, Booth W, Davies J, Hodgkiss IJ, Hyde KD (2004) Distribution of fungi on wood in the Tutong River Brunei. Fungal Divers 17:17–38

    Google Scholar 

  • Gaston KJ, Blackburn TM (2000) Patterns and process in macroecology. Blackwell Science, Oxford

    Google Scholar 

  • Goh TK, Hyde KD (1996) Biodiversity of freshwater fungi. J Ind Microbiol 17:328–345. doi:10.1007/BF01574764

    CAS  Google Scholar 

  • Goh TK, Hyde KD (1999) Fungi on submerged wood and bamboo in the Plover Cove Reservoir, Hong Kong. Fungal Divers 3:57–85

    Google Scholar 

  • Gonźalez MC, Chavarŕia A (2005) Some freshwater ascomycetes from Mexico. Mycotaxon 91:315–322

    Google Scholar 

  • Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–874. doi:10.2307/2528823

    Google Scholar 

  • Gray JS (2001) Marine diversity: the paradigms in patterns of species richness examined. Sci Mar 65:41–56

    Google Scholar 

  • Gulis V (2001) Are there any substrate preferences in aquatic hyphomycetes? Mycol Res 105:1088–1093. doi:10.1016/S0953-7562(08)61971-1

    Google Scholar 

  • Henry JA, Porteir KM, Coyne J (1948) The climate and weather of Florida. Pineapple Press, Inc., Sarasota, FL

    Google Scholar 

  • Ho WH, Hyde KD, Hodgkiss IJ, Yanna (2001) Fungal communities on submerged wood from streams in Brunei, Hong Kong, and Malaysia. Mycol Res 105:1492–1501. doi:10.1017/S095375620100507X

    Google Scholar 

  • Ho WH, Yanna , Hyde KD, Hodgkiss IJ (2002) Seasonality and sequential occurrence of fungi on wood submerged in Tai Po Kau Forest Stream, Hong Kong. Fungal Divers 10:21–43

    Google Scholar 

  • Hughes GC (1974) Geographical distribution of the higher marine fungi. Veroffentlichungen Instituts Meeresforschung Bremerhaven Suppl 5:419–441

    Google Scholar 

  • Humphrey SR (1975) Nursery roosts and community diversity of nearctic bats. J Mammol 56:321–346. doi:10.2307/1379364

    Google Scholar 

  • Hyde KD (1993) Tropical Australian freshwater fungi. V. Bombardia sp., Jahnula australiensis sp. nov., Savoryella aquatica sp. nov. and S. lignicola sp. nov. Aust Syst Bot 6:161–167. doi:10.1071/SB9930161

  • Hyde KD (1994) Aquatic fungi on rachids of Livistona in the Western Province of Papua New Guinea. Mycol Res 98:719–725

    Google Scholar 

  • Hyde KD (1995) Tropical Australian freshwater fungi. VII. Some genera and species of Ascomycetes. Nova Hedwigia 64:491–504

    Google Scholar 

  • Hyde KD, Goh TK (1997) Fungi on submerged wood in a small stream on Mt. Lewis, North Queensland, Australia. Muelleria 10:45–157

    Google Scholar 

  • Hyde KD, Goh TK (1998a) Fungi on submerged wood in Lake Barrine, North Queensland, Australia. Mycol Res 102:739–749. doi:10.1017/S0953756297005868

    Google Scholar 

  • Hyde KD, Goh TK (1998b) Fungi on submerged wood in the Riviere St. Marie-Louis, The Seychelles. S Afr J Bot 64:330–336

    Google Scholar 

  • Hyde KD, Goh TK (1999) Fungi on submerged wood from the River Coln, England. Mycol Res 103:1561–1574. doi:10.1017/S0953756299008989

    Google Scholar 

  • Hyde KD, Lee SY (1995) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295:107–118. doi:10.1007/BF00029117

    Google Scholar 

  • Hyde KD, Wong SW, Jones EBG (1997) Freshwater ascomycetes. In: Hyde KD (ed) Biodiversity of tropical microfungi. Hong Kong University Press, Hong Kong

    Google Scholar 

  • Hyde KD, Goh TK, Steinke TD (1998) Fungi on submerged wood in the Palmiet River, Durban, South Africa. S Afr J Bot 64:151–162

    Google Scholar 

  • Hyde KD, Ho W-H, Tsui CKM (1999) The genera Aniptodera, Halosarpheia, Nais and Phaeonectriella from freshwater habitats. Mycoscience 40:165–183. doi:10.1007/BF02464295

    Google Scholar 

  • Hyde KD, Ho WH, Jones EBG, Tsui CKM, Wong WSW (2000) Torrentispora fibrosa gen et sp. nov. (Annulatascaceae) from freshwater habitats. Mycol Res 104:1399–1403. doi:10.1017/S0953756200002781

    Google Scholar 

  • Hynes HBN (1970) The ecology of running waters. University of Toronto Press, Toronto

    Google Scholar 

  • Inderbitzin P, Landvik S, Abdel-Wahab A, Berbee ML (2001) Aliquandostipitaceae, a new family for two new tropical ascomycetes with unusually wide hyphae and dimorphic ascomata. Am J Bot 88:52–61. doi:10.2307/2657126

    PubMed  Google Scholar 

  • Ingold CT (1951) Aquatic ascomycetes: Ceriospora caudae-suis n. sp. and Ophiobolus typhae. Trans Br Mycol Soc 34:210–215

    Google Scholar 

  • Ingold CT (1953) Dispersal in fungi. Oxford University Press, Oxford, pp 213

  • Ingold CT (1954) Aquatic ascomycetes: Discomycetes from lakes. Trans Br Mycol Soc 37:1–18

    Article  Google Scholar 

  • Ingold CT (1955) Aquatic ascomycetes: further species from the English Lake District. Trans Br Mycol Soc 38:157–168

    Google Scholar 

  • Ingold CT (1959) Aquatic spora of Omo Forest, Nigeria. Trans Br Mycol Soc 42:479–485

    Google Scholar 

  • Ingold CT (1961) Another aquatic spore-type with clamp connexions. Trans Br Mycol Soc 44:27–30

    Google Scholar 

  • Ingold CT (1966) The tertaradiate aquatic fungal spore. Mycologia 58:43–56. doi:10.2307/3756987

    Google Scholar 

  • Ingold CT (1968) Spore liberation in Loramyces. Trans Br Mycol Soc 51:323–325

    Google Scholar 

  • Ingold CT (1975) An illustrated guide to aquatic and water-borne hyphomycetes (Fungi imperfecti) with notes on their biology. Freshwater Biological Association Scientific Publication, England, pp 96

  • Ingold CT, Chapman B (1952) Aquatic ascomycetes. Loramyces juncicola Weston and L. macrospora n. sp. Trans Br Mycol Soc 35:268–272

    Google Scholar 

  • Kane DF, Tam WY, Jones EBG (2002) Fungi colonizing and sporulating on submerged wood in the River Severn, UK. In: Hyde KD, Jones EBG (eds) Fungal succession. Fungal Diversity 10:45–55

  • Kis-Papo T (2005) Marine fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization an role in the ecosystem, 3rd edn. Taylor and Francis Group, New York, pp 61–92

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York

    Google Scholar 

  • Kushlan JA (1990) The everglades. In: Livingston RJ (ed) The rivers of Florida. Springer, Berlin, pp 121–142

    Google Scholar 

  • Lagendre P, Legendre L (1998) Numerical ecology. Elsevier, New York, p 853

    Google Scholar 

  • Lamore BJ, Goos RD (1978) Wood-inhabiting fungi of a freshwater stream in Rhode Island. Mycologia 70:1025–1034. doi:10.2307/3759135

    Google Scholar 

  • Luo J, Yin J, Cai L, Zhang K, Hyde KD (2004) Freshwater fungi in Lake Dianchi, a heavily polluted lake in Yunnan, China. Fungal Divers 16:93–112

    Google Scholar 

  • Magnes M, Hafellner J (1991) Ascomyceten auf Gefässpfalnzen an Ufern von Gebirgssen in den Ostalpen. Bibl Mycol 139:1–185

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Englewood Cliffs, NJ

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Science, Oxford

    Google Scholar 

  • Means BD, Simberloff D (1987) The peninsula effect: habitat-correlated species decline in Florida’s herpetofauna. J Biogeogr 14:551–568. doi:10.2307/2844880

    Google Scholar 

  • Minoura K, Muroi T (1978) Some freshwater ascomycetes from Japan. Trans Mycol Soc Jap 19:129–134

    Google Scholar 

  • Miura K (1974) Stream spora of Japan. Trans Mycol Soc Jap 15:289–308

    Google Scholar 

  • Morin PJ (1999) Community ecology. Blackwell Publishing Company, Oxford

    Google Scholar 

  • Nikolcheva LG, Bärlocher F (2005) Seasonal and substrate preferences of fungi colonizing leaves in streams: traditional versus molecular evidence. Environ Microbiol 7:270–280. doi:10.1111/j.1462-2920.2004.00709.x

    PubMed  CAS  Google Scholar 

  • Platt WJ, Schwartz MW (1990) Temperate hardwood forests. In: Myers RL, Ewel JJ (eds) Ecosystems of Florida. University of Central Florida Press, Orlando, FL, pp 194–229

    Google Scholar 

  • Raja HA, Shearer CA (2006a) Arnium gigantosporum, a new ascomycete from fresh water in Florida. Fungal Divers 22:219–225

    Google Scholar 

  • Raja HA, Shearer CA (2006b) Jahnula species from North and Central America, including three new species. Mycologia 98:312–332. doi:10.3852/mycologia.98.2.319

    Google Scholar 

  • Raja HA, Shearer CA (2007) Freshwater ascomycetes: Aliquandostipite minuta (Jahnulales, Dothideomycetes), a new species from Florida. Mycoscience 48:395–398. doi:10.1007/s10267-007-0375-3

    Google Scholar 

  • Raja HA, Shearer CA (2008) Freshwater ascomycetes: new and noteworthy species from aquatic habitats in Florida. Mycologia 100:467–489. doi:10.3852/mycologia.100.1.141

    PubMed  Google Scholar 

  • Raja HA, Campbell J, Shearer CA (2003) Freshwater ascomycetes: Cyanoannulus petersenii, a new genus and species from submerged wood. Mycotaxon 88:1–17

    Google Scholar 

  • Raja HA, Ferrer A, Shearer CA (2005) Aliquandostipite crystallinus, a new ascomycete species from submerged wood in freshwater habitats. Mycotaxon 91:207–215

    Google Scholar 

  • Raja HA, Miller AN, Shearer CA (2008) Freshwater ascomycetes: Aquapoterium pinicola, a new genus and species of Helotiales (Leotiomycetes) from Florida. Mycologia 100:141–148. doi:10.3852/mycologia.100.1.141

    PubMed  CAS  Google Scholar 

  • Raja HA, Ferrer A, Shearer CA (in press) Freshwater ascomycetes: A new genus, Ocala scalariformis gen. et sp. nov, and two new species, Ayria nubispora sp. nov., and Rivulicola cygnea sp. nov. Fungal Divers

  • Ranghoo VM, Hyde KD, Wong S-W, Tsui CKM, Jones EBG (2000) Vertexicola caudatus gen. et sp. nov., and a new species of Rivulicola from submerged wood in freshwater habitats. Mycologia 92:1019–1026. doi:10.2307/3761596

    Google Scholar 

  • Read SJ (1990) Spore attachment in fungi with special reference to freshwater hyphomycetes. Dissertation, Portsmouth Plytechnic, UK

  • Révay A, Gönczöl J (1990) Longitudinal distribution and colonization patterns of wood-inhabiting fungi in a mountain stream in Hungary. Nova Hedwigia 51:505–520

    Google Scholar 

  • Robertson WB Jr (1955) An analysis of breeding bird populations of tropical Florida in relation to the vegetation. Dissertation, University of Illinois, Urbana-Champaign

  • Robertson WB Jr, Kushlan JA (1974) The southern Florida avifauna. Miami Geol Soc Mem 2:414–452

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University press, Cambridge, p 458

    Google Scholar 

  • Ruggiero A (1999) Spatial patterns in the diversity of mammal species: a test of geographic-area hypothesis in South America. Ecoscience 6:338–354

    Google Scholar 

  • Sanders PF, Anderson JM (1979) Colonization of wood blocks by aquatic hyphomycetes. Trans Br Mycol Soc 73:103–107

    Google Scholar 

  • Schmit JP, Shearer CA (2004) Geographic and host distribution of lignicolous mangrove fungi. Bot Mar 47:496–500. doi:10.1515/BOT.2004.065

    Google Scholar 

  • Shaw DE (1972) Ingoldiella hamata gen. et sp. nov., a fungus with clamp connexions from a stream in North Queensland. Trans Br Mycol Soc 59:255–259

    Article  Google Scholar 

  • Shearer CA (1972) Fungi of the Chesapeake Bay and its tributaries. III. The distribution of wood-inhabiting ascomycetes and fungi imperfecti in the Patuxent River. Am J Bot 59:961–969. doi:10.2307/2441123

    Google Scholar 

  • Shearer CA (1992) The role of woody debris. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin, pp 77–98

    Google Scholar 

  • Shearer CA (1993) The freshwater ascomycetes. Nova Hedwigia 56:1–33

    Google Scholar 

  • Shearer CA (2001) The distribution of freshwater filamentous Ascomycetes. In: Misra JK, Horn BW (eds) Robert W. Lichtwardt commemoration. Trichomycetes and other fungal groups. Science Publishers, Plymouth, pp 225–292

    Google Scholar 

  • Shearer CA, Burgos J (1987) Lignicolous marine fungi from Chile. Bot Mar 30:455–458

    Article  Google Scholar 

  • Shearer CA, Crane JL (1986) Illinois fungi XI. Fungi and Myxomycetes from wood and leaves submerged in southern Illinois swamps. Mycotaxon 25:527–538

    Google Scholar 

  • Shearer CA, Crane JL (1995) Boerlagiomyces websteri, a new ascomycete from fresh water. Mycologia 87:876–879. doi:10.2307/3760863

    Google Scholar 

  • Shearer CA, Von Bodman SB (1983) Patterns of occurrence of ascomycetes associated with decomposing twigs in a midwestern stream. Mycologia 75:518–530. doi:10.2307/3792693

    Google Scholar 

  • Shearer CA, Webster J (1985) Aquatic hyphomycete communities in the river Teign. I. Longitudinal distribution patterns. Trans Br Mycol Soc 84:489–501

    Google Scholar 

  • Shearer CA, Webster J (1991) Aquatic hyphomycete communities in the river Teign IV. Twig colonization. Mycol Res 95:413–420

    Google Scholar 

  • Shearer CA, Langsam DM, Longcore JE (2004) Fungi in freshwater habitats. In: Mueller GM, Bills GF, Foster MS (eds) Measuring and monitoring biological diversity: standard methods for fungi. Smithsonian Institution Press, Washington, DC, pp 513–531

    Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton H, Voglmayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67. doi:10.1007/s10531-006-9120-z

    Google Scholar 

  • Simonis JL, Raja HA, Shearer CA (2008) Extracellular enzymes and soft-rot decay: are ascomycetes important degraders in fresh water? Fungal Divers 31:135–146

    Google Scholar 

  • Simpson GG (1964) Species density of North American recent mammals. Syst Zool 12:57–73. doi:10.2307/2411825

    Google Scholar 

  • Sivichai S (1999) Tropical freshwater fungi: their taxonomy and ecology. Dissertation, University of Portsmouth

  • Sivichai S, Jones EBG (2003) Teleomorphic–anamorphic connections of freshwater fungi. Fungal Divers Res Ser 10:259–274

    Google Scholar 

  • Sivichai S, Jones EBG, Hywel-Jones N (2000) Fungal colonization of wood in a freshwater stream at Khao Yai National Park, Thailand. In: Hyde KD, Ho WH, Pointing SB (eds) Aquatic mycology across the millennium. Fungal Diversity 5:71–88

  • Sivichai S, Jones EBG, Hywel-Jones N (2002) Fungal colonization of wood in a freshwater stream at Tad Ta Phu, Khao National Park, Thailand. In: Hyde K D, Jones EBG (eds) Fungal succession. Fungal Diversity 10:113–129

  • Sørenson T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter Kongelige Danske Videnskaberenes Selskab 5:1–34

    Google Scholar 

  • Sprunt A Jr (1954) Florida bird life. Coward-McCann, Inc., New York

    Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256. doi:10.1086/284913

    Google Scholar 

  • Suberkropp K (1992) Aquatic hyphomycete communities. In: Carroll GC, Wicklow DT (eds) The fungal community: its organization and role in the ecosystem. Marcel Dekker, New York, pp 729–747

    Google Scholar 

  • Taylor JE, Hyde KD, Jones EBG (2000) The biogeographical distribution of microfungi associated with three palm species from tropical and temperate habitats. J Biogeogr 27:297–310. doi:10.1046/j.1365-2699.2000.00385.x

    Google Scholar 

  • Tsui CKM, Hyde KD (2003) Freshwater mycology. Fungal Diversity Press, Hong Kong, pp 350

  • Tsui CKM, Hyde KD (2004) Biodiversity of fungi on submerged wood in a stream and estuary in the Tai Ho Bay Hong Kong. Fungal Divers 15:205–220

    Google Scholar 

  • Tsui CKM, Hyde KD, Hodgkiss IJ (1997) A new species of Aniptodera (Ascomycetes) from Hong Kong and the Philippines. Sydowia 49:187–192

    Google Scholar 

  • Tsui CKM, Hyde KD, Hodgkiss IJ (2000) Biodiversity of fungi on submerged wood in Hong Kong streams. Aquat Microb Ecol 21:289–298. doi:10.3354/ame021289

    Google Scholar 

  • Tsui CKM, Hyde KD, Hodgkiss IJ (2001) Longitudinal and temporal distribution of freshwater ascomycetes and dematiaceous hyphomycetes on submerged wood in the Lam Tsuen River, Hong Kong. J N Am Benthol Soc 20:533–549. doi:10.2307/1468086

    Google Scholar 

  • Tsui CKM, Hyde KD, Fukushima K (2003) Fungi on submerged wood in the Koito River, Japan. Mycoscience 44:55–59. doi:10.1007/s10267-002-0083-y

    Google Scholar 

  • Van Ryckegem G, Verbeken A (2005) Fungal diversity and community structure on Phragmitis australis (Poaceae) along a salinity gradient in the Scheldt estuary (Belgium). Nova Hedwigia 80:173–197. doi:10.1127/0029-5035/2005/0080-0173

    Google Scholar 

  • Vijaykrishna D, Hyde KD (2006) Inter and intra stream variation of lignicolous freshwater fungi in tropical Australia. Fungal Divers 21:203–224

    Google Scholar 

  • Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers 23:367–406

    Google Scholar 

  • Volkmann-Kohlmeyer B, Kohlmeyer J (1996) How to prepare truly permanent microscopic slides. Mycologist 10:107–108

    Google Scholar 

  • Webster J, Descals E (1981) Morphology, distribution and ecology of conidial fungi in freshwater habitats. In: Dekker M (ed) Biology of conidial fungi, vol I. Academic Press, New York, pp 459–681

    Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, New York

    Google Scholar 

  • Whitaker JO (1968) Keys to the vertebrates of the Eastern United States, excluding birds. Burgess, Minneapolis

    Google Scholar 

  • Whitney E, Means DB, Rudloe A (2004) Priceless Florida: natural ecosystems and native species. Illustrations by Jadaszewsky E. Pineapple press, Inc., Sarasota, FL, p 423

    Google Scholar 

  • Willoughby LG, Archer JF (1973) The fungal spora of a freshwater stream and its colonization pattern on wood. Freshw Biol 3:219–239. doi:10.1111/j.1365-2427.1973.tb00918.x

    Google Scholar 

  • Wong MKM, Goh TK, Hodgkiss IJ, Hyde KD, Ranghoo VM, Tsui CKM, Ho WH, Wong SWS, Yuen TK (1998) Role of fungi in freshwater ecosystems. Biodivers Conserv 7:1187–1206. doi:10.1023/A:1008883716975

    Google Scholar 

  • Wood-Eggenschwiler S, Bärlocher F (1983) Aquatic hyphomycetes in sixteen streams in France, Germany and Switzerland. Trans Br Mycol Soc 81:371–379

    Google Scholar 

  • Wood-Eggenschwiler S, Bärlocher F (1985) Geographical distribution of Ingoldian fungi. Verhandlungen der internationalen Vereinigung für Limnologie 22:2780–2785

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Andrew N. Miller, Christopher Brown, and Dr. J.L. Crane for their assistance with collecting. Appreciation is expressed to the rangers at Blackwater River State Forest, Apalachicola National Forest and Ocala National Forest, for permission to collect within the forests. We are grateful to the Superintendent of Big Cypress National Preserve and Everglades National Park for providing permits to collect aquatic fungi. Financial support of this study by the National Science Foundation (NSF Grant No. DEB 03-16496) and the National Institutes of Health (NIH Grant No. R01GM-60600), Clark Research Grant from Integrative Biology, UIUC, and The Mycological Society of America Graduate Fellowship Award are gratefully acknowledged. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation and National Institutes of Health. This work represents a portion of a thesis in partial fulfillment of the requirements for the doctoral degree at the Graduate College of the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huzefa A. Raja.

Appendices

Appendices

Appendix 1 List of habitats sampled with their water temperature and pH ranges as measured at the time of sample collection at five sites within the Florida Peninsula
Appendix 2 Ranges in water temperature and pH of all the freshwater habitats sampled during different seasons at the five collection sites
Appendix 3 Fungal species found on submerged woody or herbaceous debris in lentic or lotic habitats at each of the five sites along the Florida Peninsula

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raja, H.A., Schmit, J.P. & Shearer, C.A. Latitudinal, habitat and substrate distribution patterns of freshwater ascomycetes in the Florida Peninsula. Biodivers Conserv 18, 419–455 (2009). https://doi.org/10.1007/s10531-008-9500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9500-7

Keywords

Navigation