Skip to main content
Log in

Cyanolichens

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Cyanolichens are obligate symbioses between fungi and cyanobacteria. In these associations the cyanobacterial symbiont can either be the sole photosynthetic partner or a secondary symbiont in addition to a primary green algal photobiont. Lichen-symbiotic cyanobacteria can provide both photosynthate and fixed nitrogen to their symbiotic partners and the relative importance of these functions varies in different types of cyanolichens. Cyanolichens occur in many types of terrestrial environments ranging from arctic tundra and semi-deserts to tropical montane rainforests. As symbiotic cyanobacteria are able to fix atmospheric nitrogen, cyanolichens contribute significant amounts of nitrogen to some ecosystems. Many of them have been adversely affected by habitat loss and other human induced environmental changes and some species are used as biological indicators of air quality and/or habitat continuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anstett DN, O’Brien H, Larsen EW, McMullin RT, Fortin MJ (2013) Dispersal analysis of three Peltigera species based on landscape genetics data. Mycology 4:187–195

    PubMed Central  PubMed  Google Scholar 

  • Aptroot A, Schumm F (2009) Chimeras occur on the pantropical Lichinomycete Phyllopeltula corticola. Lichenologist 42:307–310

    Google Scholar 

  • Aragón G, Martínez I, Izquierdo P, Belinchón R, Escudero A (2010) Effects of forest management on epiphytic lichen diversity in Mediterranean forests. Appl Veg Sci 13:183–194

    Google Scholar 

  • Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297

    PubMed  Google Scholar 

  • Asplund J (2011a) Chemical races of Lobaria pulmonaria differ in palatability to gastropods. Lichenologist 43:491–494

    Google Scholar 

  • Asplund J (2011b) Snails avoid the medulla of Lobaria pulmonaria and L. scrobiculata due to presence of secondary compounds. Fungal Ecol 4:356–358

    Google Scholar 

  • Asplund J, Gauslaa Y (2008) Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests. Oecologia 155:93–99

    PubMed  Google Scholar 

  • Asplund J, Larsson P, Vatne S, Gauslaa Y (2010a) Gastropod grazing shapes the vertical distribution of epiphytic lichens in forest canopies. J Ecol 98:218–225

    Google Scholar 

  • Asplund J, Solhaug KA, Gauslaa Y (2010b) Optimal defense: snails avoid reproductive parts of the lichen Lobaria scrobiculata due to internal defense allocation. Ecology 91:3100–3105

    PubMed  Google Scholar 

  • Barger NN, Herrick JE, Van Zee JW, Belnap J (2006) Impacts of biological soil crust disturbance and composition on C and N loss from water erosion. Biogeochem 77:247–263

    CAS  Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen

    Google Scholar 

  • Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dörfelt H, Gube M, Jackson DJ, Reitner J, Seyfullah LJ, Schmidt AR (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol Phylogenet Evol 78:386–398

    PubMed  Google Scholar 

  • Belinchón R, Martínez I, Otálora MAG, Aragón G, Dimas J, Escudero A (2009) Fragment quality and matrix affect epiphytic performance in Mediterranean forest landscape. Am J Bot 96:1974–1982

    PubMed  Google Scholar 

  • Belinchón R, Yahr R, Ellis CJ (2014) Interactions among species with contrasting dispersal modes explain distributions for epiphytic lichens. Ecography 37:001–007

    Google Scholar 

  • Benesperi R, Tretiach M (2004) Differential land snail damage to selected species of the lichen genus Peltigera. Biochem Syst Ecol 32:127–138

    CAS  Google Scholar 

  • Benner JW, Vitousek PM (2007) Development of a diverse epiphyte community in response to phosphorus fertilization. Ecol Lett 10:628–636

    PubMed  Google Scholar 

  • Bjerke JW, Gwynn- Jones D, Callaghan TV (2005) Effects of enhanced UV-B radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic-alpine lichens. Environ Exp Bot 53:139–149

    CAS  Google Scholar 

  • Boch S, Prati D, Werth S, Rüetschi J, Fischer M (2011) Lichen endozoochory by snails. PLoS One 6:1–5

    Google Scholar 

  • Büdel B, Colesie C, Green TGA, Grube M, Suau RL, Loewen-Schneider K, Maier S, Peer T, Pintado A, Raggio J, Ruprecht U, Sancho LG, Schroeter B, Türk R, Weber B, Wedin M, Westberg M, Williams L, Zheng L (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodivers Conserv 23:1639–1658

    PubMed Central  PubMed  Google Scholar 

  • Cameron RP (2002) Habitat associations of epiphytic lichens in managed and unmanaged forest stands in Nova Scotia. Northeast Nat 9:27–46

    Google Scholar 

  • Cameron RP, Neily T (2008) Heuristic model for identifying the habitats of Erioderma pedicellatum and other rare cyanolichens in Nova Scotia, Canada. Bryologist 111:650–658

    Google Scholar 

  • Cameron RP, Richardson DHS (2006) Occurrence and abundance of epiphytic cyanolichens in protected areas of Nova Scotia, Canada. Opusc Philolichenum 3:5–14

    Google Scholar 

  • Campbell J, Fredeen AL, Prescott CE (2010) Decomposition and nutrient release from four epiphytic lichen litters in sub-boreal spruce forests. Can J For Res 40:1473–1484

    CAS  Google Scholar 

  • Campbell J, Bengtson P, Fredeen AL, Coxson DS, Prescott CE (2013) Does exogenous carbon extend the realized niche of canopy lichens? Evidence from sub-boreal forests in British Columbia. Ecology 94:1186–1195

    PubMed  Google Scholar 

  • Carlsen T, Bendiksby M, Hofton TH, Reiso S, Bakkestuen V, Haugan R, Kauserud H, Timdal E (2012) Species delimitation, bioclimatic range, and conservation status of the threatened lichen Fuscopannaria confusa. Lichenologist 44:565–575

    Google Scholar 

  • Casano LM, del Campo EM, García-Breijo FJ, Reig-Armiñana J, Gasulla F, Del Hoyo A, Guéra A, Barreno E (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818

    CAS  PubMed  Google Scholar 

  • Chua JPS, Wallace EJS, Yardley JA, Duncan EJ, Dearden PK, Summerfield TC (2012) Gene expression indicates a zone of heterocyst differentiation within the thallus of the cyanolichen Pseudocyphellaria crocata. New Phytol 196:862–872

    CAS  PubMed  Google Scholar 

  • Colesie C, Scheu S, Green TG, Weber B, Wirth R, Büdel B (2012) The advantage of growing on moss: facilitative effects on photosynthetic performance and growth in the cyanobacterial lichen Peltigera rufescens. Oecologia 169:599–607

    PubMed  Google Scholar 

  • Cornejo C, Scheidegger C (2013a) New morphological aspects of cephalodium formation in the lichen Lobaria pulmonaria (Lecanorales, Ascomycota). Lichenologist 45:77–87

    Google Scholar 

  • Cornejo C, Scheidegger C (2013b) Morphological aspects associated with repair and regeneration in Lobaria pulmonaria and L. amplissima (Peltigerales, Ascomycota). Lichenologist 45:285–289

    Google Scholar 

  • Costa JL, Paulsrud P, Rikkinen J, Lindblad P (2001) Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Appl Environ Microbiol 67:4393–4396

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dahlman L, Palmqvist K (2003) Growth in two foliose tripartite lichens, Nephroma arcticum and Peltigera aphthosa: empirical modelling of external vs. internal factors. Funct Ecol 17:821–831

    Google Scholar 

  • Dal Grande F, Alors D, Divakar PK, Bálint M, Crespo A, Schmitt I (2014a) Insights into intrathalline genetic diversity of the cosmopolitan lichen symbiotic green alga Trebouxia decolorans Ahmadjian using microsatellite markers. Mol Phylogenet Evol 72:54–60

    PubMed  Google Scholar 

  • Dal Grande F, Beck A, Cornejo C, Sing G, Cheenacharoen S, Nelsen MP, Scheidegger C (2014b) Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol 202:455–470

    CAS  PubMed  Google Scholar 

  • Dal-Forno M, Lawrey JD, Sikaroodi M, Bhattarai S, Gillevet PM, Sulzbacher M, Lücking R (2013) Starting from scratch: evolution of the lichen thallus in the basidiolichen Dictyonema (Agaricales: Hygrophoraceae). Fungal Biol 117:584–598

    CAS  PubMed  Google Scholar 

  • Darnajoux R, Constantin J, Miadlikowksa J, Lutzoni F, Bellenger JP (2014) Is vanadium a biometal for boreal cyanolichens? New Phytol 202:765–771

    CAS  PubMed  Google Scholar 

  • de los Ríos A, Raggio J, Pérez-Ortega S, Vivas M, Pintado A, Green TGA, Ascaso C, Sancho LG (2011) Anatomical, morphological and ecophysiological strategies in Placopsis pycnotheca (lichenized fungi, Ascomycota) allowing rapid colonization of recently deglaciated soils. Flora 206:857–864

    Google Scholar 

  • Demmig-Adams B, Adams WW, Green TGA, Czygan FC, Lange OL (1990) Differences in the susceptibility to light stress in two lichens forming a phycosymbiodeme, one partner possessing and one lacking the xanthophyll cycle. Oecologia 84:451–456

    Google Scholar 

  • Dietz S, Büdel B, Lange OL, Bilger W (2000) Transmittance of light through the cortex of lichens from contrasting habitats. Bibl Lichenol 75:171–182

    Google Scholar 

  • Doering M, Coxson D (2010) Riparian alder ecosystems as epiphytic lichen refugia in sub-boreal spruce forests of British Columbia. Botany 88:144–157

    Google Scholar 

  • Ekman S, Wedin M, Lindblom L, Jørgensen PM (2014) Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota). Lichenologist 46:627–656

    Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    CAS  Google Scholar 

  • Ellis CJ (2012) Lichen epiphyte diversity: a species, community and trait-based review. Perspect Plant Ecol Evol Syst 14:131–152

    Google Scholar 

  • Ellis CJ, Coppins BJ (2007a) Changing climate and historic woodland structure interact to control species diversity of the ‘Lobarion’ epiphyte community in Scotland. J Veg Sci 18:725–734

    Google Scholar 

  • Ellis CJ, Coppins BJ (2007b) 19th century woodland structure controls stand-scale epiphyte diversity in present-day Scotland. Divers Distrib 13:84–91

    Google Scholar 

  • Ellis CJ, Coppins BJ (2010) Integrating multiple landscape-scale drivers in the lichen epiphyte response: climatic setting, pollution regime and woodland spatial-temporal structure. Divers Distrib 16:43–52

    Google Scholar 

  • Ellis CJ, Ellis SC (2013) Signatures of autogenic epiphyte succession for an aspen chronosequence. J Veg Sci 24:688–701

    Google Scholar 

  • Ellis CJ, Coppins BJ, Dawson TP, Seaward MRD (2007) Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv 140:217–235

    Google Scholar 

  • Ellis CJ, Yahr E, Coppins BJ (2009) Local extent of old-growth woodland modifies epiphyte response to climate change. J Biogeogr 36:302–313

    Google Scholar 

  • Environment Canada (2007) Recovery strategy for the boreal felt lichen (Erioderma pedicellatum), Atlantic population, in Canada. In: Species at risk act recovery strategy series, Environment Canada, Ottawa, p 31

  • Fedrowitz K, Kaasalainen U, Rikkinen J (2011) Genotype variability of Nostoc symbionts in three epiphytic Nephroma species in a boreal forest landscape. Bryologist 114:220–230

    Google Scholar 

  • Fedrowitz K, Kaasalainen U, Rikkinen J (2012a) Geographic mosaic of symbiont selectivity in a genus of epiphytic cyanolichens. Ecol Evol 2:2291–2303

    PubMed Central  PubMed  Google Scholar 

  • Fedrowitz K, Kuusinen M, Snäll T (2012b) Metapopulation dynamics and future persistence of epiphytic cyanolichens in a European boreal forest ecosystem. J Appl Ecol 49:493–502

    PubMed Central  PubMed  Google Scholar 

  • Fernández-Martínez MA, de Los RA, Sancho LG, Pérez-Ortega S (2013) Diversity of endosymbiotic Nostoc in Gunnera magellanica from Tierra del Fuego, Chile. Microb Ecol 66:335–350

    PubMed  Google Scholar 

  • Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a worldwide analysis of checklist data based on Takhtajan’s floristic regions. Biodivers Conserv 16:85–98

    Google Scholar 

  • Fritz O, Niklasson M, Churski M (2009) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl Veg Sci 12:93–106

    Google Scholar 

  • Fröberg L, Björn LO, Baur A, Baur B (2001) Viability of lichen photobionts after passing through the digestive tract of a land snail. Lichenologist 33:543–550

    Google Scholar 

  • Gauslaa Y (1995) The Lobarion, an epiphytic community of ancient forests threatened by acid rain. Lichenologist 27:59–76

    Google Scholar 

  • Gauslaa Y (2005) Lichen palatability depends on investment in herbivore defence. Oecologia 143:94–105

    PubMed  Google Scholar 

  • Gauslaa Y (2008) Mollusc grazing may constrain the ecological niche of the old forest lichen Pseudocyphellaria crocata. Plant Biol 10:711–717

    CAS  PubMed  Google Scholar 

  • Gauslaa Y (2014) Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens. Lichenologist 46:1–16

    Google Scholar 

  • Gauslaa Y, Goward T (2012) Relative growth rates of two epiphytic lichens, Lobaria pulmonaria and Hypogymnia occidentalis, transplanted within and outside of Populus dripzones. Botany 90:954–965

    CAS  Google Scholar 

  • Gauslaa Y, Holien H, Ohlson M, Solhøy T (2006a) Does snail grazing affect growth of the old forest lichen Lobaria pulmonaria? Lichenologist 38:587–593

    Google Scholar 

  • Gauslaa Y, Lie M, Solhaug KA, Ohlson M (2006b) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 147:406–416

    PubMed  Google Scholar 

  • Gauslaa Y, Coxson DS, Solhaug KA (2012) The paradox of higher light tolerance during desiccation in rare old forest cyanolichens than in more widespread co-occurring chloro- and cephalolichens. New Phytol 195:812–822

    PubMed Central  PubMed  Google Scholar 

  • Gauslaa Y, Bidussi M, Solhaug KA, Asplund J, Larsson P (2014) Seasonal and spatial variation in carbon based secondary compounds in green algal and cyanobacterial members of the epiphytic lichen genus Lobaria. Phytochemistry 94:91–98

    Google Scholar 

  • Gavazov KS, Soudzilovskaia NA, van Logtestijn RSP, Braster M, Cornelissen JHC (2010) Isotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte species. Plant Soil 333:507–517

    CAS  Google Scholar 

  • Geiser LH, Neitlich PN (2007) Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environ Pollut 145:203–218

    CAS  PubMed  Google Scholar 

  • Gerphagnon M, Latour D, Colombet J, Sime-Ngando T (2013) Fungal parasitism: life cycle, dynamics and impact on cyanobacterial blooms. PLoS One 8(4):e60894. doi:10.1371/journal.pone.0060894

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gjerde I, Blom HH, Lindblom L, Sætersdal M, Schei FH (2012) Community assembly in epiphytic lichens in early stages of colonization. Ecology 93:749–759

    PubMed  Google Scholar 

  • Goudie RI, Scheidegger C, Hanel C, Munier A, Conway E (2011) New population models help explain declines in the globally rare boreal felt lichen Erioderma pedicellatum in Newfoundland. Endanger Species Res 13:181–189

    Google Scholar 

  • Goward T, Arsenault A (2000) Cyanolichens and conifers: implications for global conservation. For Snow Landsc Res 75:303–318

    Google Scholar 

  • Green TGA, Büdel B, Heber U, Meyer A, Zellner H, Lange OL (1993) Differences in photosynthetic performance between cyanobacterial and green algal components of lichen photosymbiodemes measured in the field. New Phytol 125:723–731

    Google Scholar 

  • Green TGA, Nash TH III, Lange OL (2008) Physiological ecology of carbon dioxide exchange. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 152–181

    Google Scholar 

  • Grube M, Cardinale M, de Castro JV, Jr MH, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:1105–1115

    PubMed  Google Scholar 

  • Hauck M, de Bruyn U, Leuschner (2013) Dramatic diversity losses in epiphytic lichens in temperate broad-leaved forests during the last 150 years. Biol Conserv 157:136–145

    Google Scholar 

  • Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227:145–148

    CAS  PubMed  Google Scholar 

  • Hedenås H, Blomberg P, Ericson L (2007) Significance of old aspen (Populus tremula) trees for the occurrence of lichen photobionts. Biol Conserv 135:380–387

    Google Scholar 

  • Henskens FL, Green TGA, Wilkins A (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Ann Bot 110:555–563

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hodkinson BP, Lutzoni F (2009) A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49:163–180

    CAS  Google Scholar 

  • Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F (2012) Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol 14:147–161

    CAS  PubMed  Google Scholar 

  • Hodkinson BP, Allen JL, Forrest L, Goffinet B, Sérusiaux E, Andrésson ÓS, Miao V, Bellenger JP, Lutzoni F (2014) Lichen-symbiotic cyanobacteria associated with Peltigera have an alternative vanadium-dependent nitrogen fixation system. Eur J Phycol 49:11–19

    CAS  Google Scholar 

  • Holien H, Gaarder G, Hapnes A (1995) Erioderma pedicellatum still present, but highly endangered in Europe. Graph Scr 7:79–84

    Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578

    CAS  Google Scholar 

  • Honegger R, Edwards D, Axe L (2013) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol 196:264–275

    Google Scholar 

  • Johansson P (2008) Consequences of disturbance on epiphytic lichens in boreal and near boreal forests. Biol Conserv 141:1933–1944

    Google Scholar 

  • Johansson O, Olofsson J, Giesler R, Palmqvist K (2011) Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses. New Phytol 191:795–805

    CAS  PubMed  Google Scholar 

  • Jovan S (2008) Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California. In: Gen Tech Rep PNW-GTR-737. Portland, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, p 115

  • Jovan S, Riddell J, Padgett PE, Nash TN (2012) Eutrophic lichens respond to multiple forms of N: implications for critical levels and critical loads research. Ecol Appl 22:1910–1922

    PubMed  Google Scholar 

  • Junttila S, Laiho A, Gyenesei A, Rudd S (2013) Whole transcriptome characterization of the effects of dehydration and rehydration on Cladonia rangiferina, the grey reindeer lichen. BMC Genom 14:870

    Google Scholar 

  • Jüriado I, Liira J, Paal J (2009) Diversity of epiphytic lichens in boreo-nemoral forests on the North-Estonian limestone escarpment: the effect of tree level factors and local environmental conditions. Lichenologist 41:81–96

    Google Scholar 

  • Jüriado I, Liira J, Csencsics D et al (2011) Dispersal ecology of the endangered woodland lichen Lobaria pulmonaria in managed hemiboreal forest landscape. Biodivers Conserv 20:1803–1819

    Google Scholar 

  • Kaasalainen U, Jokela J, Fewer DP, Sivonen K, Rikkinen J (2009) Microcystin production in the tripartite cyanolichen Peltigera leucophlebia. Mol Plant Microb Interact 22:695–702

    CAS  Google Scholar 

  • Kaasalainen U, Fewer DP, Jokela J, Wahlsten M, Sivonen K, Rikkinen J (2012) Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc Natl Acad Sci USA 109:5886–5891

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaasalainen U, Fewer DP, Jokela J, Wahlsten M, Sivonen K, Rikkinen J (2013) Lichen species identity and diversity of cyanobacterial toxins in symbiosis. New Phytol 198:647–651

    PubMed  Google Scholar 

  • Kalwij JM, Wagner HH, Scheidegger C (2005) Effects of stand-level disturbances on the spatial distribution of a lichen indicator. Ecol Appl 15:2015–2024

    Google Scholar 

  • Kampa A, Gagunashvili AN, Gulder TA, Morinaka BI, Daolio C, Godejohann M, Miao VP, Piel J, Andrésson Ó (2013) Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc Natl Acad Sci USA 110:3129–3137

    Google Scholar 

  • Király I, Nascimbene J, Tinya F, Ódor P (2013) Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests. Biodivers Conserv 22:209–223

    Google Scholar 

  • Kluge M, Mollenhauer D, Wolf E, Schüßler A (2002) The Nostoc-Geosiphon endocytobiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Netherlands, pp 19–30

    Google Scholar 

  • Kobylinski A, Fredeen AL (2014) Vertical distribution and nitrogen content of epiphytic macrolichen functional groups in sub-boreal forests of central British Columbia. For Ecol Manag 329:118–128

    Google Scholar 

  • Komárek J (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639:245–259

    Google Scholar 

  • Kuusinen M (1996a) Cyanobacterial macrolichens on Populus tremula as indicators of forest continuity in Finland. Biol Conserv 75:43–49

    Google Scholar 

  • Kuusinen M (1996b) Epiphyte flora and diversity on basal trunks of six old-growth forest tree species in southern and middle boreal Finland. Lichenologist 28:443–463

    Google Scholar 

  • Lange OL, Büdel B, Meyer A, Kilian E (1993) Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist 25:175–189

    Google Scholar 

  • Lange OL, Büdel B, Meyer A, Zellner H, Zotz G (2000) Lichen carbon gain under tropical conditions: water relations and CO2 exchange of three Leptogium species of a lower montane rainforest in Panama. Flora 195:172–190

    Google Scholar 

  • Lange OL, Büdel B, Meyer A, Zellner H, Zotz G (2004) Lichen carbon gain under tropical conditions: water relations and CO2 exchange of Lobariaceae species of a lower montane rainforest in Panama. Lichenologist 36:329–342

    Google Scholar 

  • Larsson P, Solhaug KA, Gauslaa Y (2012) Seasonal partitioning of growth into biomass and area expansion in a cephalolichen and a cyanolichen of the old forest genus Lobaria. New Phytol 194:991–1000

    PubMed  Google Scholar 

  • Lawrey JD, Diederich P (2011) Lichenicolous fungi–worldwide checklist, including isolated cultures and sequences available. http://www.lichenicolous.net[1/27/2012]. Accessed 29 July 2014

  • Leppik E, Jüriado I, Suija A, Liira J (2013) The conservation of ground layer lichen communities in alvar grasslands and the relevance of substitution habitats. Biodivers Conserv 22:591–614

    Google Scholar 

  • Lücking R, Lawrey JD, Sikaroodi M, Gillevet PM, Chaves JL, Sipman HJM, Bungartz F (2009) Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am J Bot 96:1409–1418

    PubMed  Google Scholar 

  • Lücking R, Barrie FR, Genney D (2013) Dictyonema coppinsii, a new name for the European species known as Dictyonema interruptum (Basidiomycota: Agaricales: Hygrophoraceae), with a validation of its photobiont Rhizonema (Cyanoprokaryota: Nostocales: Rhizonemataceae). Lichenologist 46:261–267

    Google Scholar 

  • Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada D, Yánez-Ayabaca A, Chaves JL, Coca LF, Lawrey JD (2014) A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci USA 111:11091–11096

    PubMed Central  PubMed  Google Scholar 

  • Lumbsch HT, Ahti T, Altermann S, Paz ADG, Aptroot A, Arup U et al (2011) One hundred new species of lichenized fungi: a signature of undiscovered global diversity. Phytotaxa 18:1–127

    Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    CAS  PubMed  Google Scholar 

  • Magain N, Sérusiaux E (2014) Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales). PLoS One 24:9

    Google Scholar 

  • Magain N, Forrest LL, Sérusiaux E, Goffinet B (2010) Microsatellite primers in the Peltigera dolichorhiza complex (lichenized ascomycete, Peltigerales). Am J Bot 97:102–104

    Google Scholar 

  • Magain N, Goffinet B, Sérusiaux E (2012) Further photomorphs in the lichen family Lobariaceae from Reunion (Mascarene archipelago) with notes on the phylogeny of Dendriscocaulon cyanomorphs. Bryologist 115:243–254

    Google Scholar 

  • Maier S, Schmidt TSB, Zheng L, Peer T, Wagner V, Grube M (2014) Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodivers Conserv 23:1735–1755

    Google Scholar 

  • Marini L, Nascimbene J, Nimis PL (2011) Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure. Sci Total Environ 409:4381–4386

    CAS  PubMed  Google Scholar 

  • McCune B (1993) Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. Bryologist 96:405–411

    Google Scholar 

  • McCune B, Amsberry KA, Camacho FJ, Clery S, Cole C, Emerson C, Felder G, French P, Greene D, Harris R, Hutten M, Larson B, Lesko M, Majors S, Markwell T, Parker GG, Pendergrass K, Peterson EB, Peterson ET, Platt J, Proctor J, Rambo T, Rosso A, Shaw D, Turner R, Widmer M (1997) Vertical profile of epiphytes in a Pacific Northwest old-growth forest. Northwest Sci 71:145–152

    Google Scholar 

  • Meier FA, Scherrer S, Honegger R (2002) Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biol J Linn Soc 76:259–268

    Google Scholar 

  • Merinero S, Hilmo O, Gauslaa Y (2014a) Size is a main driver for hydration traits in cyano- and cephalolichens of boreal rainforest canopies. Fungal Ecol 7:59–66

    Google Scholar 

  • Merinero S, Rubio-Salcedo M, Aragón G, Martínez I (2014b) Environmental factors that drive the distribution and abundance of a threatened cyanolichen in Southern Europe: a multi-scale approach. Am J Bot 101:1876–1885

    PubMed  Google Scholar 

  • Miadlikowska J, Kauff F, Högnabba F, Oliver JC, Molnár K, Fraker E, Gaya E, Hafellner J, Hofstetter V, Gueidan C, Otálora MAG, Hodkinson B, Kukwa M, Lücking R, Björk C, Sipman HJM, Burgaz AR, Thell A, Passo A, Myllys L, Goward T, Fernández-Brime S, Hestmark G, Lendemer J, Lumbsch HT, Schmull M, Schoch CL, Sérusiaux E, Maddison DR, Arnold AE, Stenroos S, Lutzoni F (2014a) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 312 genera and 66 families. Mol Phylogenet Evol 79:132–168

    PubMed  Google Scholar 

  • Miadlikowska J, Richardson D, Magain N, Ball B, Anderson F, Cameron R, Lendemer JC, Truong C, Lutzoni F (2014b) Phylogenetic placement, species delimitation, and cyanobiont identity of endangered aquatic Peltigera species (lichen-forming Ascomycota, Lecanoromycetes). Am J Bot 101:1141–1156

    PubMed  Google Scholar 

  • Mishra S, Bhargava P, Adhikary SP, Pradeep A, Rai LC (2014) Weighted morphology: a new approach towards phylogenetic assessment of Nostocales (Cyanobacteria). Protoplasma. doi:10.1007/s00709-014-0629-9

    Google Scholar 

  • Moncada B, Coca LF, Lücking R (2013) Neotropical members of Sticta (lichenized Ascomycota: Lobariaceae) forming photosymbiodemes, with the description of seven new species. Bryologist 116:69–200

    Google Scholar 

  • Moncada B, Lücking R, Suárez A (2014a) Molecular phylogeny of the genus Sticta (lichenized Ascomycota: Lobariaceae) in Colombia. Fungal Divers 64:205–231

    Google Scholar 

  • Moncada B, Ready B, Lücking R (2014b) A phylogenetic revision of Hawaiian Pseudocyphellaria sensu lato (lichenized Ascomycota: Lobariaceae) reveals eight new species and a high degree of inferred endemism. Bryologist 117:119–160

    Google Scholar 

  • Muggia L, Nelson P, Wheeler T, Yakovchenko LS, Tønsberg T, Spribille T (2011) Convergent evolution of a symbiotic duet: the case of the lichen genus Polychidium (Peltigerales, Ascomycota). Am J Bot 98:1647–1656

    PubMed  Google Scholar 

  • Nadyeina O, Dymytrova L, Naumovych A, Postoyalkin S, Scheidegger C (2013) Distribution and dispersal ecology of Lobaria pulmonaria in the largest primeval beech forest of Europe. Biodivers Conserv 23:3241–3262

    Google Scholar 

  • Nascimbene J, Brunialti G, Ravera S, Frati L, Caniglia G (2010) Testing Lobaria pulmonaria (L.) Hoffm. as an indicator of lichen conservation importance of Italian forests. Ecol Indic 10:353–360

    Google Scholar 

  • Nascimbene J, Benesperi R, Brunialti G et al (2013a) Patterns and drivers of biodiversity and similarity of Lobaria pulmonaria communities in Italian forests. J Ecol 101:493–505

    Google Scholar 

  • Nascimbene J, Thor G, Nimis PL (2013b) Effects of forest management on epiphytic lichens in temperate deciduous forests of Europe—a review. For Ecol Manag 298:27–38

    Google Scholar 

  • Nash TH III (2008) Nitrogen, its metabolism and potential contribution to ecosystems. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 216–233

    Google Scholar 

  • Nelson P, Walton J, Roland C (2009) Erioderma pedicellatum (Hue) P. M. Jørg. new to the United States and western North America, discovered in Denali National Park and Preserve and Denali State Park. Evansia 26:19–23

    Google Scholar 

  • Normann F, Weigelt P, Gehrig-Downie C, Gradstein SR, Sipman HJ, Obregon A, Bendix J (2010) Diversity and vertical distribution of epiphytic macrolichens in lowland rain forest and lowland cloud forest of French Guiana. Ecol Indic 10:1111–1118

    Google Scholar 

  • O’Brien HE, Miadlikowska J, Lutzoni F (2013) Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol 198:557–566

    PubMed  Google Scholar 

  • Oberwinkler F (1984) Fungus-alga interactions in basidiolichens. Beih Nova Hedwig 79:739–774

    Google Scholar 

  • Oksanen I, Lohtander K, Paulsrud P, Rikkinen J (2002) A molecular approach to cyanobacterial diversity in a rock-pool community involving gelatinous lichens and free-living Nostoc colonies. Ann Bot Fennici 39:93–99

    CAS  Google Scholar 

  • Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K (2004) Discovery of rare and highly toxic microcystins from lichen associated cyanobacterium Nostoc sp. strain IO-102-I. Appl Environ Microbiol 70:5756–5763

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oren A (2011) Naming Cyanophyta/Cyanobacteria—a bacteriologist’s view. Fottea 11:9–16

    Google Scholar 

  • Otálora MG, Martinez I, Belinchon R et al (2011) Remnants fragments preserve genetic diversity of the old forest lichen Lobaria pulmonaria in a fragmented Mediterranean mountain forest. Biodivers Conserv 20:1239–1254

    Google Scholar 

  • Otálora MA, Aragón G, Martinez I, Wedin M (2013a) Cardinal characters on a slippery slope—a re-evaluation of phylogeny, character evolution, and evolutionary rates in the jelly lichens (Collemataceae s. str). Mol Phylogenet Evol 68:185–198

    PubMed  Google Scholar 

  • Otálora MA, Salvador C, Martínez I, Aragón G (2013b) Does the reproductive strategy affect the transmission and genetic diversity of bionts in cyanolichens? A case study using two closely related species. Microb Ecol 65:517–530

    PubMed  Google Scholar 

  • Otálora MA, Jørgensen PM, Wedin M (2014) A revised generic classification of the jelly lichens, Collemataceae. Fungal Div 64:275–293

    Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (1998) Cyanobiont specificity in some Nostoc-containing lichens and in a Peltigera aphthosa photosymbiodeme. New Phytol 139:517–524

    CAS  Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (2000) Spatial patterns of photobiont diversity in some Nostoc-containing lichens. New Phytol 146:291–299

    Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (2001) Field investigations on cyanobacterial specificity in Peltigera aphthosa. New Phytol 152:117–123

    Google Scholar 

  • Piercey-Normore MD, Coxson D, Goward T, Goffinet B (2006) Phylogenetic position of a Pacific Northwest North American endemic cyanolichen, Nephroma occultum (Ascomycota, Peltigerales). Lichenologist 38:441–456

    Google Scholar 

  • Pietrasiak N, Regus JU, Johansen JR, Lam D, Sachs JL, Santiago LS (2013) Biological soil crust community types differ in key ecological functions. Soil Biol Biochem 65:168–171

    CAS  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562

    CAS  PubMed  Google Scholar 

  • Pöykko H, Hyvärinen M, Bačkor M (2005) Removal of lichen secondary metabolites affects food choice and survival of lichenivorous moth larvae. Ecology 86:2623–2632

    Google Scholar 

  • Radies DN, Coxson DS, Johnson CJ, Konwicki K (2009) Predicting canopy macrolichen diversity and abundance within old-growth inland temperate rainforests. For Ecol Manag 259:86–97

    Google Scholar 

  • Rai H, Upreti DK, Gupta RK (2012) Diversity and distribution of terricolous lichens as indicator of habitat heterogeneity and grazing induced trampling in a temperate-alpine shrub and meadow. Biodivers Conserv 21:97–113

    Google Scholar 

  • Ramírez-Fernández L, Zúñiga C, Méndez M, Carú M, Orlando J (2013) Genetic diversity of terricolous Peltigera cyanolichens communities in different conservation states of native forest from Southern Chile. Int Microbiol 16:243–252

    PubMed  Google Scholar 

  • Richardson DHS (1991) Lichens as biological indicators—recent developments. In: Jeffrey DW, Madden B (eds) Bioindicators and environmental management. Academic Press, Toronto, pp 263–272

    Google Scholar 

  • Rikkinen J (1995) What’s behind the pretty colours? A study on the photobiology of lichens. Bryobrothera 4:1–239

    Google Scholar 

  • Rikkinen J (2002) Cyanolichens: an evolutionary overview. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Netherlands, pp 31–72

    Google Scholar 

  • Rikkinen J (2003a) Calicioid lichens from European tertiary amber. Mycologia 95:1032–1036

    PubMed  Google Scholar 

  • Rikkinen J (2003b) Ecological and evolutionary role of photobiont-mediated guilds in lichens. Symbiosis 34:99–110

    Google Scholar 

  • Rikkinen J (2004) Ordination analysis of tRNALeu (UAA) intron sequences in lichen-forming Nostoc strains and other cyanobacteria. Symb Bot Ups 34(2004):377–391

    Google Scholar 

  • Rikkinen J (2013) Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys 6:3–32

    Google Scholar 

  • Rikkinen J, Poinar G (2002) Fossilised Anzia (Lecanorales, lichen-forming Ascomycota) from European tertiary amber. Mycol Res 106:984–990

    Google Scholar 

  • Rikkinen J, Poinar G (2008) A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. J Exp Bot 59:1007–1011

    CAS  PubMed  Google Scholar 

  • Rikkinen J, Virtanen V (2008) Genetic diversity in cyanobacterial symbionts of thalloid bryophytes. J Exp Bot 59:1013–1021

    CAS  PubMed  Google Scholar 

  • Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357

    CAS  PubMed  Google Scholar 

  • Root HT, Miller JED, McCune B (2011) Biotic soil crust lichen diversity and conservation in shrub-steppe habitats of Oregon and Washington. Bryologist 114:796–812

    Google Scholar 

  • Root HT, McCune B, Jovan S (2014) Lichen communities and species indicate climate thresholds in southeast and south-central Alaska, USA. Bryologist 117:241–252

    Google Scholar 

  • Rose F (1976) Lichenological indicators of age and environmental continuity in woodlands. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 279–307

    Google Scholar 

  • Rose F (1988) Phytogeographical and ecological aspects of Lobarion communities in Europe. Bot J Linn Soc 96:69–79

    Google Scholar 

  • Sadowska-Des AD, Dal Grande F, Lumbsch HT, Beck A, Otte J, Hur JS, Kim JA, Schmitt I (2014) Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol Phylogenet Evol 76:202–210

    PubMed  Google Scholar 

  • Scheidegger C (2003) Erioderma pedicellatum. In: IUCN (ed) 2008 IUCN red list of threatened species, IUCN, Gland. www.iucnredlist.org

  • Scheidegger C, Werth S (2009) Conservation strategies for lichens: insights from population biology. Fungal Biol Rev 23:55–66

    Google Scholar 

  • Scheidegger C, Groner U, Keller C, Stofer S (2002) Biodiversity assessment tools—lichens. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer Academic Publishers, Dordrecht, pp 359–365

    Google Scholar 

  • Schelensog M, Schroeter B, Green TGA (2000) Water dependent photosynthetic activity of lichens from New Zealand: differences in the green algal and the cyanobacterial thallus parts of photosymbiodemes. Bibl Lichenol 75:149–160

    Google Scholar 

  • Schoch CL, Sung GH, López-Giráldez F et al (2009) The ascomycota tree of life: a phylum wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239

    CAS  PubMed  Google Scholar 

  • Schultz M, Arendholz WR, Büdel B (2001) Origin and evolution of the lichenized ascomycete order Lichinales: monophyly and systematic relationships inferred from ascus, fruiting body and SSU rDNA evolution. Plant Biol 3:116–123

    CAS  Google Scholar 

  • Sigurbjörnsdóttir MA, Heiðmarsson S, Jónsdóttir AR, Vilhelmsson O (2014) Novel bacteria associated with Arctic seashore lichens have potential roles in nutrient scavenging. Can J Microbiol 60:307–317

    PubMed  Google Scholar 

  • Sillett S, Goward T (1998) Ecology and conservation of Pseudocyphellaria rainierensis, a Pacific Northwest endemic lichen. In: Glenn MG, Harris RC, Dirig R, Cole MS (eds) Lichenographia Thomsoniana: North American lichenology in honor of John W. Thomson. Mycotaxon Ltd, Ithaca, pp 377–388

    Google Scholar 

  • Silverstein RN, Correra AMS, Baker AC (2012) Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc R Soc B 279:2609–2618

    PubMed Central  PubMed  Google Scholar 

  • Singh G, Dal Grande F, Cornejo C, Schmitt I, Scheidegger C (2012) Genetic basis of self-incompatibility in the lichen-forming fungus Lobaria pulmonaria and skewed frequency distribution of mating-type idiomorphs: implications for conservation. PLoS One 7:e51402

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sønstebø JH, Rohrlack T (2011) Possible implications of chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl Environ Microbiol 77:1344–1351

    PubMed Central  PubMed  Google Scholar 

  • Spier L, van Dobben H, van Dort K (2010) Is bark pH more important than tree species in determining the composition of nitrophytic or acidophytic lichen floras? Environ Pollut 158:3607–3611

    CAS  PubMed  Google Scholar 

  • Spirbille T, Tønsberg T, Stebentheiner E, Muggia L (2014) Reassessing evolutionary relationships in the filamentous cyanolichen genus Spilonema (Peltigerales, Lecanoromycetes). Lichenologist 46:373–388

    Google Scholar 

  • Stehn SE, Nelson PR, Roland CA, Jones JR (2013) Patterns in the occupancy and abundance of the globally rare lichen Erioderma pedicellatum in Denali National Park and Preserve, Alaska. Bryologist 116:002–014

    Google Scholar 

  • Stevenson SK, Coxson SD (2008) Growth responses of Lobaria retigera to forest edge and canopy structure in the inland temperate rainforest, British Columbia. For Ecol Manag 256:618–623

    Google Scholar 

  • Strauss SL, Day TA, Garcia-Pichel F (2011) Nitrogen cycling in biological soil crusts across biogeography regions in the Southwestern United States. Biogeochemistry 108:171–182

    Google Scholar 

  • Thüs H, Muggia L, Pérez-Ortega S, Favero-Longo SE, Joneson S, O’Brien H, Nelsen MP, Duque-Thüs R, Grube M, Friedl T, Brodie J, Andrew CJ, Lücking R, Lutzoni F, Gueidan C (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur J Phycol 46:399–415

    Google Scholar 

  • Tschermak-Woess E (1988) The algal partner. In: Galun M (ed) CRC handbook of lichenology, vol 1. CRC Press, Boca Raton, pp 39–92

    Google Scholar 

  • U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE (2012) Host- and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99:898–914

    PubMed  Google Scholar 

  • Voytsekhovich A, Mikhailyuk TI, Darienko TM (2011) Lichen photobionts. 2: origin and correlation with mycobiont. Algologia 21:151–177

    Google Scholar 

  • Wang YY, Liu B, Zhang XY, Zhou QM, Zhang T, Li H, Yu YF, Zhang XL, Hao XY, Wang M, Wang L, Wei JC (2014) Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). BMC Genomics 15:34

    PubMed Central  PubMed  Google Scholar 

  • Werth S, Cornejo C, Scheidegger C (2013) Characterization of microsatellite loci in the lichen fungus Lobaria pulmonaria (Lobariaceae). Appl Plant Sci 1:200290

    Google Scholar 

  • Widmer I, Dal Grande F, Cornejo C, Scheidegger C (2010) Highly variable microsatellite markers for the fungal and algal symbionts of the lichen Lobaria pulmonaria and challenges in developing biont-specific molecular markers for fungal associations. Fungal Biol 114:538–544

    CAS  PubMed  Google Scholar 

  • Wolseley P (1995) A global perspective on the status of lichens and their conservation. Mitt Eidgenöss Forsch Anst WSL 70:11–27

    Google Scholar 

  • Wu L, Zhang G, Lan S, Zhang D, Hu C (2014) Longitudinal photosynthetic gradient in crust lichens’ thalli. Microb Ecol 67:888–896

    CAS  PubMed  Google Scholar 

  • Zedda L, Gröngröft A, Schultz M, Petersen A, Mills A, Rambold G (2011) Distribution patterns of soil lichens across the principal biomes of southern Africa. J Arid Environ 75:215–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jouko Rikkinen.

Additional information

Communicated by Anurag Chaurasia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rikkinen, J. Cyanolichens. Biodivers Conserv 24, 973–993 (2015). https://doi.org/10.1007/s10531-015-0906-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0906-8

Keywords

Navigation