Skip to main content
Log in

Soil respiration variability across a soil moisture and vegetation community gradient within a snow-scoured alpine meadow

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The alpine tundra landscape is a patchwork of co-mingled ecosystems that vary due to meso-topographical (<100 m) landscape position, shallow subsurface heterogeneity, and subsequent soil moisture availability. This results in hotspots of biological activity, variable carbon cycling over short horizontal distances, and confounds predictions of the alpine tundra response to forecasted environmental change. To advance our understanding of carbon cycling within snow-scoured alpine meadows, we characterized the spatio-temporal variability of soil respiration (R S) from 17 sites across a broadly representative soil moisture and vegetation gradient, within the footprint of ongoing eddy covariance measurements at Niwot Ridge, Colorado, USA. Chamber-based R S samples were collected on a weekly to bi-weekly basis over three complete growing seasons (2011–2013), and a soil moisture threshold was used to integrate the data into dry, mesic, and wet tundra categories. In every year, measured R S was greatest from mesic tundra, followed by wet and then dry tundra locations. Increasing soil moisture invoked a bidirectional R S response from areas of dry and mesic tundra (directly proportional) compared to wet tundra (inversely proportional), and the optimum R S conditions were between 0.30 and 0.45 m3 m−3 soil moisture, which mainly coincided with soil temperatures below 8 °C. We also developed simple models to predict R S from concurrent measurements of soil moisture and temperature, and from nighttime eddy covariance measurements. Both models were significant predictors of R S in all years and for all ecosystem types (where applicable), but the models did not adequately capture the intra-seasonal R S variability. The median cumulative growing season R S flux ranged from 138.6 g C m−2 in the driest year (2013) to 221.4 g C m−2 in the wettest year (2011), but the cumulative growing season fluxes varied by a factor of five between sites. Our results suggest that increased or more intense precipitation in the future has the potential to increase alpine tundra R S, although this effect will be buffered to some degree by compensatory responses from dry, mesic, and wet alpine tundra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almagro M, Lopez J, Querejeta JI, Martínez-Mena M (2009) Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol Biochem 41:594–605. doi:10.1016/j.soilbio.2008.12.021

    Article  Google Scholar 

  • Bahn M, Reichstein M, Davidson EA, Grünzweig J, Jung M, Carbone MS, Epron D, Misson L, Nouvellon Y, Roupsard O, Savage K, Trumbore SE, Gimeno C, Curiel-Yuste J, Tang J, Vargas R, Janssens IA (2010) Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeosciences 7:2147–2157. doi:10.5194/bg-7-2147-2010

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492. doi:10.1046/j.1365-2486.2003.00629.x

    Article  Google Scholar 

  • Baldwin C, Wagner F, Lall U (2003) Rocky Mountain/Great Basin regional climate-change assessment report for the U.S. global change research program. In: Wagner F (ed) Water Resources. Utah State University Press, Logan, pp 79–112

    Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814. doi:10.1038/ismej.2008.58

    Article  Google Scholar 

  • Barron-Gafford GA, Cable JM, Patrick-Bentley L, Scott RL, Huxman TE, Jenerette GD, Ogle K (2014) Quantifying the timescales over which exogenous and endogenous conditions affect soil respiration. New Phytol 202:442–454. doi:10.1111/nph.12675

    Article  Google Scholar 

  • Berryman EM, Barnard HR, Adams HR, Burns MA, Gallo E, Brooks PD (2015) Complex terrain alters temperature and moisture limitations of forest soil respiration across a semi-arid to subalpine gradient. J Geophys Res. doi:10.1002/2014JG002802

    Google Scholar 

  • Billings WD (1973) Arctic and alpine vegetations: similarities, differences, and susceptibility to disturbance. Bioscience 23:697–704

    Article  Google Scholar 

  • Blanken PD, Williams MW, Burns SP, Monson RK, Knowles JF, Chowanski K, Ackerman T (2009) A comparison of water and carbon dioxide exchange at a windy alpine tundra and subalpine forest site near Niwot Ridge, Colorado. Biogeochemistry 95:61–76. doi:10.1007/s10533-009-9325-9

    Article  Google Scholar 

  • Blankinship JC, Hart SC (2012) Consequences of manipulated snow cover on soil gaseous emission and N retention in the growing season: a meta-analysis. Ecosphere 3:1. doi:10.1890/ES11-00225.1

    Article  Google Scholar 

  • Boden TA, Marland G, Andres RJ (2010) Global, regional, and national fossil fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA. doi:10.3334/CDIAC/00001_V2010

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582. doi:10.1038/nature08930

    Article  Google Scholar 

  • Bowman WD, Steltzer H, Rosenstiel TN, Cleveland CC, Meier CL (2004) Litter effects of two co-occurring alpine species on plant growth, microbial activity and immobilization of nitrogen. Oikos 104:336–344. doi:10.1111/j.0030-1299.2004.12721.x

    Article  Google Scholar 

  • Brooks PD, Grogan P, Templer PH, Groffman P, Öquist MG, Schimel J (2011) Carbon and nitrogen cycling in snow-covered environments. Geography Compass 5:682–699. doi:10.1111/j.1749-8198.2011.00420.x

    Article  Google Scholar 

  • Burns SF (1980) Alpine soil distribution and development, Indian Peaks, Colorado Front Range. Ph.D. dissertation, Geology, University of Colorado, p 360

  • Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE (2008) Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–979. doi:10.1007/s10021-008-9172-x

    Article  Google Scholar 

  • Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Megan Steinweg J, Wallenstein MD, Martin Wetterstedt JÅ, Bradford MA (2011) Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob Change Biol 17:3392–3404. doi:10.1111/j.1365-2486.2011.02496.x

    Article  Google Scholar 

  • Craine JM, Gelderman TM (2011) Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland. Soil Biol Biochem 43:455–457. doi:10.1016/j.soilbio.2010.10.011

    Article  Google Scholar 

  • Craine J, Spurr R, McLauchlan K, Fierer N (2010) Landscape-level variation in temperature sensitivity of soil organic carbon decomposition. Soil Biol Biochem 42:373–375. doi:10.1016/j.soilbio.2009.10.024

    Article  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol 4:217–227. doi:10.1046/j.1365-2486.1998.00128.x

    Article  Google Scholar 

  • Davidson EA, Samanta S, Caramori SS, Savage K (2012) The dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob Change Biol 18:371–384. doi:10.1111/j.1365-2486.2011.02546.x

    Article  Google Scholar 

  • Emanuel RE, Riveros-Iregui DA, McGlynn BL, Epstein HE (2011) On the spatial heterogeneity of net ecosystem productivity in complex landscapes. Ecosphere 2:86. doi:10.1890/ES11-00074.1

    Article  Google Scholar 

  • Erickson TA, Williams MW, Winstral A (2005) Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resources Research 41:W04014. doi:10.1029/2003WR002973

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R et al (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69. doi:10.1016/S0168-1923(00)00235-5

    Article  Google Scholar 

  • Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787. doi:10.1016/S0038-0717(02)00007-X

    Article  Google Scholar 

  • Fisk MC, Schmidt SK, Seastedt TR (1998) Topographic patterns of above- and belowground production and nitrogen cycling in alpine tundra. Ecology 79:2253–2266. doi:10.1890/0012-9658(1998)079[2253:TPOAAB]2.0.CO;2

  • Freppaz M, Williams MW, Seastedt TR, Filippa G (2012) Response of soil organic and inorganic nutrients in alpine soils to a 16-year factorial snow and N-fertilization experiment, Colorado Front Range, USA. Appl Soil Ecol 62:131–141. doi:10.1016/j.apsoil.2012.06.006

    Article  Google Scholar 

  • Geng Y, Wang Y, Yang K, Wang S, Zeng H, Baumann F, Kuehn P, Scholten T, He J-S (2012) Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLoS One 7:e34968. doi:10.1371/journal.pone.0034968.t004

    Article  Google Scholar 

  • Giblin AE, Nadelhoffer KJ, Shaver GR, Laundre JA, McKerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecol Monogr 61:415–435. doi:10.2307/2937049

    Article  Google Scholar 

  • Harpold A, Brooks P, Rajagopal S, Heidbuchel I, Jardine A, Stielstra C (2012) Changes in snowpack accumulation and ablation in the intermountain west. Water Resour Res 48:W11501. doi:10.1029/2012WR011949

    Google Scholar 

  • Higgins PD (1976) Soil temperature effects on root respiration and the ecology of alpine and subalpine plants. Bot Gaz 137:110–120

    Article  Google Scholar 

  • Hirota M, Zhang P, Gu S, Du M, Shimono A, Shen H, Li Y, Tang Y (2009) Altitudinal variation of ecosystem CO2 fluxes in an alpine grassland from 3600 to 4200 m. J Plant Ecol 2:197–205. doi:10.1093/jpe/rtp024

    Article  Google Scholar 

  • Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268. doi:10.1007/s00442-004-1682-4

    Article  Google Scholar 

  • Imer D, Merbold L, Eugster W, Buchmann N (2013) Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands. Biogeosciences 10:5931–5945. doi:10.5194/bg-10-5931-2013

    Article  Google Scholar 

  • Irvine J, Law BE, Kurpius MR (2005) Coupling of canopy gas exchange with root and rhizosphere respiration in a semi-arid forest. Biogeochemistry 73:271–282. doi:10.1007/s10533-004-2564-x

    Article  Google Scholar 

  • Kang S, Doh S, Lee D, Lee D, Jin VL, Kimball JS (2003) Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Glob Change Biol 9:1427–1437. doi:10.1046/j.1365-2486.2003.00668.x

    Article  Google Scholar 

  • Kato T, Tang Y, Gu S, Hirota M, Du M, Li Y, Zhao X (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai–Tibetan Plateau. Glob Change Biol 12:1285–1298. doi:10.1111/j.1365-2486.2006.01153.x

    Article  Google Scholar 

  • Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811–821. doi:10.1641/B580908

    Article  Google Scholar 

  • Knowles JF (2009) Meteorological controls on the seasonal exchange of water and carbon dioxide from high-elevation alpine tundra at Niwot Ridge, Colorado. MA thesis, Geography, University of Colorado, p 155

  • Knowles JF, Blanken PD, Williams MW, Chowanski KM (2012) Energy and surface moisture seasonally limit evaporation and sublimation from snow-free alpine tundra. Agric For Meteorol 157:106–115. doi:10.1016/j.agrformet.2012.01.017

    Article  Google Scholar 

  • Knowles JF, Burns SP, Blanken PD, Monson RK (2014) Fluxes of energy, water, and carbon dioxide from mountain ecosystems at Niwot Ridge, Colorado. Plant Ecol Divers. doi:10.1080/17550874.2014.904950 [Epub ahead of print]

  • Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurements and analysis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lee H, Schuur EAG, Vogel JG, Lavoie M, Bhadra D, Staudhammer CL (2011) A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Glob Change Biol 17:1379–1393. doi:10.1111/j/1365-2486.2010.02287.x

    Article  Google Scholar 

  • Leopold M, Dethier D, Völkel J, Raab T, Rikert TC, Caine N (2008) Using geophysical methods to study the shallow subsurface of a sensitive alpine environment, Niwot Ridge, Colorado Front Range, USA. Arct Antarct Alp Res 40:519–530. doi:10.1657/1523-0430(06-124)[LEOPOLD]2.0.CO;2

  • Litaor MI, Williams MW, Seastedt TR (2008) Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J Geophys Res 113:1–10. doi:10.1029/2007JG000419

    Google Scholar 

  • Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Change Biol 15:184–195. doi:10.1111/j.1365-2486.2008.01728.x

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • McGlynn BL, Seibert J (2003) Distributed assessment of contributing area and riparian buffering along stream networks. Water Resour Res 39:1–7. doi:10.1029/2002WR001521

    Google Scholar 

  • Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci 105:19,780–19, 785. doi:10.1073/pnas.0805600105

  • Mills RTE, Gavazov KS, Spiegelberger T, Johnson D, Buttler A (2014) Diminished soil functions occur under simulated climate change in a sup-alpine pasture, but heterotrophic temperature sensitivity indicates microbial resilience. Sci Total Environ 473–474:465–472. doi:10.1016/j.scitotenv.2013.12.071

    Article  Google Scholar 

  • Moyano FE, Vasilyeva N, Bouckaert L, Cook F, Craine J, Curiel Yuste J, Don A, Epron D, Formanek P, Franzluebbers A, Ilstedt U, Kätterer T, Orchard V, Reichstein M, Rey A, Ruamps L, Subke J-A, Thomsen IK, Chenu C (2012) The moisture response of soil heterotrophic respiration: interaction with soil properties. Biogeosciences 9:1173–1182. doi:10.5194/bg-9-1173-2012

    Article  Google Scholar 

  • Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85. doi:10.1016/j.soilbio.2013.01.002

    Article  Google Scholar 

  • Moyes AB, Bowling DR (2012) Interannual variation in seasonal drivers of soil respiration in a semi-arid Rocky Mountain meadow. Biogeochemistry 113:683–697. doi:10.1007/s10533-012-9797-x

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in 6 arctic soils. Ecology 72:242–253. doi:10.2307/1938918

    Article  Google Scholar 

  • Nemali KS, Montesano F, Dove SK, van Iersel MW (2007) Calibration and performance of moisture sensors in soilless substrates: ECH2O and theta probes. Sci Hortic 112:227–234. doi:10.1016/j.scienta.2006.12.013

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Orchard VA, Cook FJ (1983) Relationship between soil respiration and soil moisture. Soil Biol Biochem 15:447–453

    Article  Google Scholar 

  • Pacific VJ, McGlynn BL, Riveros-Iregui DA, Welsch DL, Epstein HE (2008) Variability in soil respiration across riparian–hillslope transitions. Biogeochemistry 91:51–70. doi:10.1007/s10533-008-9258-8

    Article  Google Scholar 

  • Pacific VJ, McGlynn BL, Riveros-Iregui DA, Epstein HE, Welsch DL (2009) Differential soil respiration responses to changing hydrologic regimes. Water Resour Res 45:1–6. doi:10.1029/2009WR007721

    Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schoner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nature Clim Change 5(5):424–430. doi:10.1038/NCLIMATE2563

    Article  Google Scholar 

  • Potts DL, Huxman TE, Cable JM, English NB, Ignace DD, Eilts JA, Mason MJ, Weltzin JF, Williams DG (2006) Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. New Phytol 170:849–860. doi:10.1111/j.1469-8137.2006.01732.x

    Article  Google Scholar 

  • Rey A, Petsikos C, Jarvis PG, Grace J (2005) Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur J Soil Science 56:589–599. doi:10.1111/j.1365-2389.2004.00699.x

    Article  Google Scholar 

  • Risk D, Nickerson N, Phillips CL, Kellman L, Moroni M (2012) Drought alters respired delta 13CO2 from autotrophic, but not heterotrophic soil respiration. Soil Biol Biochem 50:26–32. doi:10.1016/j.soilbio.2012.01.025

    Article  Google Scholar 

  • Riveros-Iregui DA, McGlynn BL (2009) Landscape structure control on soil CO2 efflux variability in complex terrain: scaling from point observations to watershed scale fluxes. J Geophys Res 114:G02010. doi:10.1029/2008JG000885

    Google Scholar 

  • Riveros-Iregui DA, Emanuel RE, Muth DJ, McGlynn BL, Epstein HE, Welsch DL, Pacific VJ, Wraith JM (2007) Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content. Geophys Res Lett 34:1–5. doi:10.1029/2007GL030938

    Article  Google Scholar 

  • Riveros-Iregui DA, McGlynn BL, Epstein HE, Welsch DL (2008) Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: discrete surface chambers and continuous soil CO2 concentration probes. J Geophys Res 113:G04027. doi:10.1029/2008JG000811

    Google Scholar 

  • Riveros-Iregui DA, McGlynn BL, Emanuel RE, Epstein HE (2012) Complex terrain leads to bidirectional responses of soil respiration to inter-annual water availability. Glob Change Biol 18:749–756. doi:10.1111/j.1365-2486.2011.02556.x

    Article  Google Scholar 

  • Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27. doi:10.1007/s10533-004-5167-7

    Article  Google Scholar 

  • Savage KE, Davidson EA (2001) Interannual variation of soil respiration in two New England forests. Global Biogeochem Cycles 15:337–350. doi:10.1029/1999GB001248

    Article  Google Scholar 

  • Schimel DS, Kittel TGF, Knapp AK, Seastedt TR, Parton WJ, Brown VB (1991) Physiological interactions along resource gradients in a tallgrass prairie. Ecology 72:672–684. doi:10.2307/2937207

    Article  Google Scholar 

  • Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cycles 8:279–293. doi:10.1029/94GB00993

    Article  Google Scholar 

  • Schuur EAG, Trumbore SE (2006) Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Glob Change Biol 12:165–176. doi:10.1111/j.1365-2486.2005.01066.x

    Article  Google Scholar 

  • Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220. doi:10.1007/s00442-004-1520-8

    Article  Google Scholar 

  • Scott D, Billings WD (1964) Effects of environmental factors on standing crop and productivity of an alpine tundra. Ecol Monogr 34:243–270

    Article  Google Scholar 

  • Seastedt TR, Bowman WD, Caine N, McKnight D, Townsend AR, Williams MW (2004) The landscape continuum: a model for high-elevation ecosystems. Bioscience 54:111–121. doi:10.1641/0006-3568(2004)054[0111:TLCAMF]2.0.CO;2

  • Settele J, Scholes R, Betts R, Bunn SE, Leadley P, Nepstad D, Overpeck JT, Taboada MA (2014) Terrestrial and inland water systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. part a: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 153

  • Skopp J (1990) Steady-state aerobic microbial activity as a function of soil-water content. Soil Sci 54:1619–1625

    Article  Google Scholar 

  • Stielstra CM, Lohse KA, Chorover J, McIntosh JC, Barron-Gafford GA, Perdrial JN, Litvak M, Barnard HR, Brooks PD (2015) Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems. Biogeochemistry 123:447–465. doi:10.1007/s10533-015-0078-3

    Article  Google Scholar 

  • Suseela V, Conant RT, Wallenstein MD, Dukes JS (2011) Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Change Biol 18:336–348. doi:10.1111/j.1365-2486.2011.02516.x

    Article  Google Scholar 

  • Taylor RV, Seastedt TR (1994) Short- and long-term patterns of soil moisture in alpine tundra. Arct Antarct Alp Res 26:14–20. doi:10.2307/1551871

    Article  Google Scholar 

  • Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change 42:327–339

    Article  Google Scholar 

  • Trumbore SE (2006) Carbon respired by terrestrial ecosystems—recent progress and challenges. Glob Change Biol 12:141–153. doi:10.1111/j.1365-2486.2005.01067.x

    Article  Google Scholar 

  • van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. doi:10.1111/1365-2745.12054

    Article  Google Scholar 

  • Vaz CMP, Jones S, Meding M, Tuller M (2013) Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone J 12:1–16. doi:10.2136/vzj2012.0160

    Article  Google Scholar 

  • Voltz M, Webster R (1990) A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. J Soil Sci 41:473–490

    Article  Google Scholar 

  • Walker MD, Walker DA, Theodose TA, Webber PJ (2001) The vegetation: hierarchical species-environment relationships. In: Bowman WD, Seastedt TR (eds) Structure and function of an alpine ecosystem: Niwot Ridge, Colorado. Oxford University Press, New York, pp 99–127

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi:10.1126/science.1094875

    Article  Google Scholar 

  • West AE, Brooks PD, Fisk MC, Smith LK, Holland EA, Jaeger CH III, Babcock S, Lai RS, Schmidt SK (1999) Landscape patterns of CH4 fluxes in an alpine tundra ecosystem. Biogeochemistry 45:243–264. doi:10.1023/A:1006130911046

    Google Scholar 

  • Williams MW, Bardsley T, Rikkers M (1998) Overestimation of snow depth and inorganic nitrogen wetfall using NADP data, Niwot Ridge, Colorado. Atmos Environ 32:3827–3833

    Article  Google Scholar 

  • Williams MW, Losleben MV, Hamann HB (2002) Alpine areas in the Colorado Front Range as monitors of climate change and ecosystem response. Geogr Rev 92:180–191

    Article  Google Scholar 

  • Williams MW, Helmig D, Blanken P (2009) White on green: under-snow microbial processes and trace gas fluxes through snow, Niwot Ridge, Colorado Front Range. Biogeochemistry 95:1–12. doi:10.1007/s10533-009-9330-z

    Article  Google Scholar 

  • Wood TE, Detto M, Silver WL (2013) Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest. PLoS One 8:e80965. doi:10.1371/journal.pone.0080965

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF grant DEB 1027341 to the Niwot Ridge LTER. John Knowles would also like to acknowledge support from an NSF Doctoral Dissertation Research Improvement Grant (DDRI) BCS 1129562. We thank Dr. Diego Riveros-Iregui for constructive feedback on an early version of this manuscript, Dr. William Bowman for help with plant identification, and Theo Barnhart for assisting with Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Knowles.

Additional information

Responsible Editor: Stephen Porder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knowles, J.F., Blanken, P.D. & Williams, M.W. Soil respiration variability across a soil moisture and vegetation community gradient within a snow-scoured alpine meadow. Biogeochemistry 125, 185–202 (2015). https://doi.org/10.1007/s10533-015-0122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0122-3

Keywords

Navigation