Skip to main content
Log in

Visual degumming process of ramie fiber using a microbial consortium RAMCD407

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Morphological changes and biochemical process of ramie retting by RAMCD407 was investigated using microscopy techniques, including OM, PLM, FLSM and SEM coupled with enzyme activity analysis. Results showed that retting was completed within 56 h followed by 0.2% NaOH treatment. Residual gum content and breaking strength of the final fiber was 2.84% and 5.2 cN/dtex, respectively. This fulfills the requirement for ramie spinning. Retting included four main processes: water absorption and CCCO formation; cortex removal; removal of gum in the middle lamella; and removal of gum on the surface of fiber. The first two processes were completed under low enzyme activity condition, while the third process was related to higher pectinase enzyme activity and the last process was related to higher enzyme activities of pectinase and xylanase. In fact, only a small fraction of hemicellulose and pectin is required to be hydrolyzed to ensure fiber separation. In this process, pectinase played a key role supported by xylanase. Valuable retting residues, such as pectinase crystals, pectin blocks, xylan chips and microcrystalline cellulose was recovered from residual liquor by filtration and/or centrifugation. Reuse of these waste residues can help increase the overall economic benefit for ramie industries. The occurrence of spherical balls with double shell structure was found in retting process, and FLSM showed that the outer shell was composed of xylan-rich material. Compared to traditional chemical degumming methods, ramie retting by RAMCD407 is an eco-friendly degumming technique.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

OM:

Ordinary light microscope

PLM:

Polarized light microscope

FLSM:

Fluorescence microscope

SEM:

Scanning electron microscope

CCCO:

Cluster crystals of calcium oxalate

FT-IR:

Fourier transform infrared

References

  • Adetunji LR, Adekunle A, Orsat V, Raghavan V (2017) Advances in the pectin production process using novel extraction techniques: a review. Food Hydrocolloids 62:239–250

    Article  CAS  Google Scholar 

  • Akin DE (2012) Linen most useful: perspectives on structure, chemistry, and enzymes for retting flax. ISRN Biotechnol. https://doi.org/10.5402/2013/186534

    Article  PubMed  PubMed Central  Google Scholar 

  • Akpinar O, Ak O, Kavas A, Bakir U, Yilmaz L (2007) Enzymatic production of xylooligosaccharides from cotton stalks. J Agric Food Chem 55(14):5544–5551

    Article  CAS  PubMed  Google Scholar 

  • Angelini LG, Tavarini S (2013) Ramie [Boehmeria nivea (L.) Gaud.] as a potential new fibre crop forthe Mediterranean region: growth, crop yield and fibre quality in a long-term field experiment in Central Italy. Ind Crop Prod 51:138–144

    Article  Google Scholar 

  • Angelini LG, Lazzeri A, Levita G, Fontanelli D, Bozzi C (2000) Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind Crop Prod 11:145–161

    Article  Google Scholar 

  • Antonov V, Marek J, Bjelkova M, Smirous P, Fischer H (2007) Easily available enzymes as natural retting agents. Biotechnol J 2:342–346

    Article  CAS  PubMed  Google Scholar 

  • Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26:332–349

    Article  CAS  Google Scholar 

  • Basu S, Saha MN, Chattopadhyay D, Chakrabarti K (2009) Large-scale degumming of ramie fibre using a newly isolated Bacillus pumilus DKS1 with high pectate lyase activity. J Ind Microbiol Biotechnol 36:239–245

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SD, Das AK (2001) Alkali degumming of decorticated ramie. Color Technol 117(6):342–345

    Article  CAS  Google Scholar 

  • Biely P, Petrakova E (1984) Novel inducers of the xylan-degrading enzyme system of cryptococcus albidus. J Bacteriol 160(1):408–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruhlmann F, Leupin M, Erismann KH, Fiechter A (2000) Enzymatic degumming of ramie bast fibers. J Biotechnol 76:43–50

    Article  CAS  PubMed  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344(14):1879–1900

    Article  CAS  PubMed  Google Scholar 

  • Cao JW, Zheng LS, Chen SY (1992) Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie. Enzyme Microb Technol 14:1013–1016

    Article  CAS  Google Scholar 

  • Chanakya HN, Sreesha M (2012) Anaerobic retting of banana and arecanut wastes in a plug flow digester for recovery of fiber, biogas and compost. Energy Sustain Dev 16:231–235

    Article  CAS  Google Scholar 

  • Cheng Y, Liu ZC, Zeng J, Cheng LF, Yan Z, Duan SW et al (2016) Construction and co-expression of polycistronic plasmids encoding bio-degumming-related enzymes to improve the degumming process of ramie fibres. Biotechnol Lett 38:2089–2096

    Article  CAS  PubMed  Google Scholar 

  • China Textile Industry Association (1986) GB5882-1986 Testing method of bundle breaking tenacity of ramie fiber. Standards Press of China (in Chinese)

  • China Textile Industry Association (1986) GB5889-1986 Method of quantitative analysis of ramie chemical components. Standards Press of China (in Chinese)

  • Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL et al (2015) Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol 29:108–119

    Article  CAS  PubMed  Google Scholar 

  • Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin oalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925

    Article  CAS  PubMed  Google Scholar 

  • Fang G, Chen HG, Zhang YP, Chen AQ (2016) Immobilization of pectinase onto Fe3O4@SiO2–NH2 and its activity and stability. Int J Biol Macromol 88:189–195

    Article  CAS  PubMed  Google Scholar 

  • Fang G, Chen HG, Chen AQ, Mao KW, Wang Q (2017) An efficient method of bio-chemical combined treatment for obtaining high-quality hemp fiber. BioResources 12(1):1566–1578

    Article  CAS  Google Scholar 

  • Ferrer A, Alciaturi C, Faneite A et al (2016) Analyses of biomass fibers by XRD, FT-IR, and NIR in analytical techniques and methods for biomass. Springer, Berlin, pp 45–83

    Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  PubMed  Google Scholar 

  • Goksu EI, Karamanlioglu M, Bakir U, Yilmaz L, Yilmazer U (2007) Production and characterization of films from cotton stalk xylan. J Agric Food Chem 55:10685–10691

    Article  CAS  PubMed  Google Scholar 

  • Guo FF, Zou MY, Li XZ, Zhao J, Qu YB (2013) An effective degumming enzyme from Bacillus sp. Y1 and synergistic action of hydrogen peroxide and protease on enzymatic degumming of ramie fibers. Biomed Res Int 2:212315. https://doi.org/10.1155/2013/212315

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  • Himmelsbach DS, Khalili S, Akin DE (2002) The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L.) stems. J Sci Food Agric 82(7):685–696

    Article  CAS  Google Scholar 

  • Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12

    Article  CAS  PubMed  Google Scholar 

  • Jayapal N, Samanta AK, Kolte AP, Senani S et al (2013) Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Ind Crop Prod 42:14–24

    Article  CAS  Google Scholar 

  • Kacurakova M, Capek P, Sasinkova V et al (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43(2):195–203

    Article  CAS  Google Scholar 

  • Kačuráková M, Belton PS, Wilson RH et al (1988) Hydration properties of xylan-type structures: an FTIR study of xylooligosaccharides. J Sci Food Agric 77(1):38–44

    Article  Google Scholar 

  • Kamnev AA, Colina M, Rodriguez J et al (1988) Comparative spectroscopic characterization of different pectins and their sources. Food Hydrocolloids 12(3):263–271

    Article  Google Scholar 

  • Kandimalla R, Kalita S, Choudhury B, Devi D, Kalita D, Kalita K, Dash S, Kotoky J (2016) Fiber from ramie plant (Boehmeria nivea): a novel suture biomaterial. Mater Sci Eng, C 62:816–822

    Article  CAS  Google Scholar 

  • Kapoor M, Beg QK, Bhushan B, Singh K et al (2001) Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibres. Process Biochem 36:803–807

    Article  CAS  Google Scholar 

  • Kozlowski R, Batog J, Konczewicz W, Talarczyk MM et al (2006) Enzymes in bast fibrous plant processing. Biotechnol Lett 28:761–765

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Hu F, Sannigrahi P, Jung S, Ragauskas AJ, Wyman CE (2013) Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng 110(3):737–753

    Article  CAS  PubMed  Google Scholar 

  • Li HJ, Pu YQ, Kumar R, Ragauskas AJ, Wyman CE (2014) Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 111:485–492

    Article  CAS  PubMed  Google Scholar 

  • Liang CN, Gui XW, Zhou C, Xue YF, Ma YH, Tang SY (2015) Improving the thermoactivity and thermostability of pectate lyase from Bacillus pumilus for ramie degumming. Appl Microbiol Biotechnol 99:2673–2682

    Article  CAS  PubMed  Google Scholar 

  • Liu ZC, Duan SW, Sun QX, Peng YD et al (2012) A rapid process of ramie bio-degumming by Pectobacterium sp. CXJZU-120. Text Res J 82(15):1553–1559

    Article  CAS  Google Scholar 

  • Marek J, Antonov V, Bjelkova, M, Smirous P, et al (2008) Enzymatic bioprocessing—new tool for extensive natural fibre source utilization, fiber foundations—transportation, clothing, and shelter in the bioeconomy. In: Proceedings of the international conference on flax and other bast plants, pp 159–169

  • Metcalfe CR, Chalk L (1972) Anatomy of the dicotyledons. Clarendon Press, London

    Google Scholar 

  • Mukhopadhyay A, Dutta N, Chattopadhyay D, Chakrabarti K (2013) Degumming of ramie fiber and the production of reducing sugars from waste peels using nanoparticle supplemented pectate lyase. Bioresour Technol 137:202–208

    Article  CAS  PubMed  Google Scholar 

  • Noreena A, Nazlic ZH, Akrama J, Rasulb I et al (2017) Pectins functionalized biomaterials; a new viable approach for biomedical applications: a review. Int J Biol Macromol 101:254–272

    Article  CAS  Google Scholar 

  • Palomaki T, Saarilahti HT (1997) Isolation and characterization ofnew C-terminal substitution mutation affecting secretion of polygalacturonase in Erwinia carotovora ssp. carotovora. FEBS Lett 400:122–126

    Article  CAS  PubMed  Google Scholar 

  • Pandey SN (2007a) Ramie fibre: part I. Chemical composition and chemical properties. A critical review of recent developments. Text Prog 39(1):1–66

    Article  Google Scholar 

  • Pandey SN (2007b) Ramie fibre: part II. Physical fibre properties. A critical appreciation of recent developments. Text Prog 39(4):189–268

    Article  Google Scholar 

  • Paridah MT, Basher AB, SaifulAzry S et al (2011) Retting process of some bast plant fibres and its effect on fibre quality: a review. BioResources 6(4):5260–5281

    Google Scholar 

  • Paul NB, Bhattacharya SK (1979) 47—the microbial degumming of raw ramie fibre. J Text I 70:512–517

    Article  Google Scholar 

  • Peng F, Ren JL, Xu F et al (2010) Structural analysis of a fraction of polysaccharides from Usnea montis-fuji. J Biobased Mater Biol 4(1):12–15

    Article  CAS  Google Scholar 

  • Rao WQ, Chen HG, Yu M, Wang CQ (2012) Construction of microbial complex for Ramie Retting. Plant Fiber Sci China 34(3):146–150

    Google Scholar 

  • Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339

    Article  CAS  PubMed  Google Scholar 

  • Siqueira G, Menezes AJD, Bras J, Dufresne A (2010) Ramie and Luffa cylindrica nanowhiskers as reinforced phase in polycaprolactone. In: Proceedings of the international convention of society of wood science and technology and United Nations Economic Commission for Europe-Timber Committee, Geneva, Switzerland

  • Sun JX, Sun XF, Sun RC et al (2004) Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym 56(2):195–204

    Article  CAS  Google Scholar 

  • Wang Q, Chen HG, Fang G, Chen AQ, Yuan P, Liua JS (2017) Isolation of Bacillus cereus P05 and Pseudomonas sp. X12 and their application in the ramie retting. Ind Crop Prod 97:518–524

    Article  CAS  Google Scholar 

  • Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  CAS  Google Scholar 

  • Wobiwo FA, Alleluya VK, Emaga TH, Boda M et al (2017) Recovery of fibers and biomethane from banana peduncles biomass through anaerobic digestion. Energy Sustain Dev 37:60–65

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  CAS  Google Scholar 

  • Yeoh S, Shi J, Langrish TAG (2008) Comparisons between different techniques for water-based extraction of pectin from orange peels. Desalination 218(1–3):229–237

    Article  CAS  Google Scholar 

  • Zhang CJ, Yao J, Cheng Zhou, Mao LW, Zhang GM, Ma YH (2013) The alkaline pectate lyase PEL168 of Bacillus subtilis heterologously expressed in Pichia pastoris is more stable and efficient for degumming ramie fiber. BMC Biotecnol 13(1):26

    Article  CAS  Google Scholar 

  • Zheng Y, Zhang Z, Luo ZW (1988) Optimizing the complex formulation of boiling-off liquor for ramie chemical degumming. Text Res J 58(11):663–666

    Article  CAS  Google Scholar 

  • Zheng LS, Du YM, Zhang JY (2000) Biobleaching effect of xylanase preparation from an alkalophilic Bacillus sp. on ramie fibers. Biotechnol Lett 22:1363–1367

    Article  CAS  Google Scholar 

  • Zheng LS, Du YM, Zhang JY (2001) Degumming of ramie fibers by alkalophilic bacteria and their polysaccharide-degrading enzymes. Bioresour Technol 78:89–94

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Xue YF, Ma YH (2017) Cloning, evaluation, and high-level expression of a thermo-alkaline pectate lyase from alkaliphilic Bacillus clausii with potential in ramie degumming. Appl Microbiol Biotechnol 101(9):3663–3676

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant Nos. 2010BAD02B04, 2012BAD36B03-04). The authors wish to express their gratitude to “Collaborative Innovation Plan of Hubei Province for Key Technology of Eco-Ramie Industry”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honggao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, K., Chen, H., Qi, H. et al. Visual degumming process of ramie fiber using a microbial consortium RAMCD407. Cellulose 26, 3513–3528 (2019). https://doi.org/10.1007/s10570-019-02288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02288-1

Keywords

Navigation