Skip to main content
Log in

Potential global and regional geographic distribution of Phomopsis vaccinii on Vaccinium species projected by two species distribution models

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Vaccinium twig blight (caused by Phomopsis vaccinii, teleomorph Diaporthe vaccinii) is a major endemic disease on blueberries and cranberries in the Eastern and Northwestern USA and Canada. It has also been found in Europe, Chile and China. Publications on its occurrence in the USA and Canada indicate that the pathogen is limited to cool climates. Published data on worldwide occurrence were inventoried and supplemented with National Plant Diagnostic Network (NPDN) data in the USA. These occurrence and long-term climate data were entered in the niche models MaxEnt and Multi-Model Framework to predict the potential global distribution of the disease. Precipitation in the driest quarter and mean annual temperature contributed most to the prediction. The results indicate that P. vaccinii is not limited to cool climates, although the optimal annual average temperature is 10 °C according to the MaxEnt model. The models correctly predicted that the climate in the central and eastern USA and the west coast of the USA and Canada would be conducive to blueberry twig blight. Large areas in Europe, eastern Australia and New Zealand, and smaller areas in South America and East Asia would be conducive too. For the first time, the NPDN database was shown to be an important source of information for the prediction of the potential global distribution of a plant pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ames, G. K., Gergerich, R. C., Weidemann, G. J., & Patterson, C. A. (1988). First report of Diaporthe vaccinii on blueberry in Arkansas. Plant Disease, 72, 362.

    Article  Google Scholar 

  • Araújo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33, 1677–1688.

    Article  Google Scholar 

  • Bosso, L., Russo, D., di Febraro, M., Cristinzio, G., & Zoina, A. (2016). Potential distribution of Xylella fastidiosa in Italy: a maximum entropy model. Phytopathologia Mediterranea, 55, 62–72.

    Google Scholar 

  • Brazelton, C. (2013). World blueberry acreage & production. In World blueberry acreage & production report (pp. 77). US highbush blueberry council.

  • Brown, J. L. (2014). SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeography, and species distribution model analyses. Methods in Ecology and Evolution, 5, 694–700.

    Article  Google Scholar 

  • Carlson, L. W. (1963). Physiology, pathogenicity and control of fungi causing certain cranberry diseases. Madison: University of Wisconsin.

    Google Scholar 

  • Caruso, F. L., & Ramsdell, D. C. (1995). Compendium of blueberry and cranberry diseases. St. Paul MN: American Phytopathological Society.

    Google Scholar 

  • Caruso, F. L., Bristow, P. R., & Oudemans, P. V. (2000). Cranberries: the most intriguing native north American fruit. APSnet Features. Online. doi:10.1094/APSnetFeature-2000-1100.

    Google Scholar 

  • Daykin, R. D., & Milholland, R. D. (1990). Histopathology of blueberry twig blight caused by Phomopsis vaccinii. Phytopathology, 80, 736–740.

    Article  Google Scholar 

  • Diekmann, M. (1999). Southern deciduous forests. Acta Phytogeographica Suecica, 84, 33–53.

    Google Scholar 

  • Diekmann, M., Frison, E., & Putter, T. (1994). FAO/IPGRI technical guidelines for the safe movement of small fruit germplasm (Vol. 13). Rome: International Plant Genetic Resources Institute, Food and Agriculture Organization of the United Nations.

  • Dokukina, E. A. (2001). Fungal diseases of heather berry shrubs in recreational forests (PhD thesis). Moscow: Institute of Forest Science, Russian Academy of Sciences (ILAN). (in Russian)

  • EFSA Panel on Plant Health (PLH). (2014). Scientific opinion on the pest categorization of Diaporthe vaccinii shear. European Food Safety Authority (EFSA) Journal, 12, 28. doi:10.2903/j.efsa.2014.3774.

    Google Scholar 

  • Elith, J., Simpson, J., Hirsch, M., & Burgman, M. (2013). Taxonomic uncertainty and decision making for biosecurity: spatial models for myrtle/guava rust. Australasian Plant Pathology, 42, 43–51.

    Article  Google Scholar 

  • EPPO. (2004). First report of Diaporthe vaccinii in Lithuania. EPPO Reporting Service, 6, 6.

    Google Scholar 

  • EPPO. (2010). First record of Diaporthe vaccinii in Germany. EPPO Reporting Service, 6, 3.

    Google Scholar 

  • EPPO. (2015). First report of Diaporthe vaccinii in Poland and its subsequent eradication. EPPO Reporting Service, 1, 3.

    Google Scholar 

  • Farr, D. F., Castlebury, L. A., & Rossman, A. Y. (2002a). Morphological and molecular characterization of Phomopsis vaccinii and additional isolates of Phomopsis from blueberry and cranberry in the eastern United States. Mycologia, 94, 494–504.

    Article  CAS  PubMed  Google Scholar 

  • Farr, D. F., Castlebury, L. A., Rossman, A. Y., & Putnam, M. L. (2002b). A new species of Phomopsis causing twig dieback of Vaccinium vitis-idaea (lingonberry). Mycological Research, 10, 745–752.

    Article  Google Scholar 

  • Galynskaya, N. A., & Liaguskiy, V. G. (2012). Highbush blueberry diseases in Belarus. Central Botanical Garden, National Academy of Sciences of Belarus, 23 (in Russian).

  • Galynskaya N. A., Yarmolovich V. A., Morozov O. V., Gordey D. V. (2011) A pathogenic fungi complex in young plantations of Vaccinium angustifolium Ait. In Belorussian Poozerje. Proceedings of BGTU, No 1, Forestry (pp. 224–228). (in Russian)

  • Guerrero, C., & Godoy, A. (1989). Detection of Phomopsis vaccinii (shear. Stevens and Bein) in highbush blueberry Vaccinium corymbosum L. Agricultura Técnica (Santiago), 49, 220–223.

    Google Scholar 

  • Linders, E. G. A., van Damme, J. M. M., & Zadoks, J. C. (1996). Epidemics of Diaporthe adunca in experimental and in natural populations of Plantago lanceolata and the effect of partial resistance on disease development. Plant Pathology, 45, 70–83.

    Article  Google Scholar 

  • Lockhart, C., Hall, I., & Murray, R. (1973). Yield losses in cranberry in Nova Scotia, 1969-72. Canadian Plant Disease Survey, 53, 99–100.

    Google Scholar 

  • Lombard, L., Van Leeuwen, G. C. M., Guarnaccia, V., Polizzi, G., Van Rijswick, P. C. J., Rosendahl, K. C. H. M., Gabler, J., & Crous, P. W. (2014). Diaporthe species associated with Vaccinium, with specific reference to Europe. Phytopathologia Mediterranea, 53, 287–299.

    Google Scholar 

  • Martinussen, I., Rohloff, J., Uleberg, E., Junttila, O., Hohtola, A., Jaakola, L., & Häggman, H. (2009). Climatic effects on the production and quality of bilberries Vaccinium myrtillus. Agronomijas Vēstis, 12, 71–74.

    Google Scholar 

  • Meentemeyer, R. K., Haas, S. E., & Václavík, T. (2012). Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annual Review of Phytopathology, 50, 379–402.

    Article  CAS  PubMed  Google Scholar 

  • Milholland, R. D. (1982). Blueberry twig blight caused by Phomopsis vaccinii. Plant Disease, 66, 1034–1036.

    Article  Google Scholar 

  • Milholland, R. D., & Daykin, M. E. (1983). Blueberry fruit rot caused by Phomopsis vaccinii. Plant Disease, 67, 325–326.

    Article  Google Scholar 

  • Morozov, O. V., Gordey, D. V., Yarmolowich, V. A., & Tereshkina, N. V. (2014). Increase of resistance of lowbush blueberry (Vaccinium angustifolium ait.) against diseases in the conditions of the Belarusian poozerye. In State of art and prospects of forest non-wood resource utilization (pp. 106–112). Presented at the International workshop on state of art and prospects of forest non-wood resource utilization, Minsk, Republic of Belarus: Belarusian State University, Kostroma. (in Russian)

  • Narouei Khandan, H., Worner, S. P., Jones, E. E., Villjanen-Rollinson, S. L. H., Gallipoli, L., Mazzaglia, A., & Balestra, G. M. (2013). Predicting the potential global distribution of Pseudomonas syringae pv. actinidiae (Psa). New Zealand Plant Protection, 66, 184–193.

    Google Scholar 

  • Narouei-Khandan, H., Halbert, S., Worner, S., & van Bruggen, A. C. (2016). Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. European Journal of Plant Pathology, 144, 655–670.

    Article  Google Scholar 

  • National Plant Protection organization (NPPO). (2015). Diaporthe vaccinii – blueberry twig blight - on one blueberry plant at one fruit production facility in the Netherlands. Ministry of Economic affairs: Netherlands Food and Consumer, Product Safety Authority https://www.nvwa.nl/txmpub/files/?p_file_id=2208923. Accessed 14 Jan 2016.

    Google Scholar 

  • Olatinwo, R. O., Hanson, E. J., & Schilder, A. M. C. (2003). A first assessment of the cranberry fruit rot complex in Michigan. Plant Disease, 87, 550–556.

    Article  Google Scholar 

  • Parker, P. E., & Ramsdell, D. C. (1977). Epidemiology and chemical control of Phomopsis canker of highbush blueberry. Phytopathology, 67, 1481–1484.

    Article  CAS  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Polashock, J. J., & Kramer, M. (2006). Resistance of blueberry cultivars to Botryosphaeria stem blight and Phomopsis twig blight. Hortscience, 41, 1457–1461.

    Google Scholar 

  • QingHua, Y., Hongha, Z., Chen, L., & XiaoDong, L. (2015). The pathogen causing Phomopsis twig blight of blueberry. Mycosystema, 32, 959–966.

    Google Scholar 

  • Rydin, H., Sjörs, H., & Löfroth, M. (1999). Mires. Acta Phytogeographica Suecica, 84, 91–112.

    Google Scholar 

  • Sabaratnam, S., Wood, B., Nabetani, K., & Sweeney, M. (2015). Surveillance of cranberry fruit rot pathogens, their impact and grower education. Ministry of Agriculture, British Colombia, Canada: Interim Research Report http://www.bccranberries.com/pdfs/researchreports/2014/Sabaratnam-Impact-Fruit-Rot-Pathogens-2014.pdf. Accessed on 13 Oct 2016.

    Google Scholar 

  • Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel three-step pseudo-absence selection technique for improved species distribution modelling. PloS One, 8, e71218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimwela, M. M., Blackburn, J. K., Jones, J. B., Nkuba, J., Narouei-Khandan, H. A., Ploetz, R. C., Beed, F., & van Bruggen, A. H. C. (2016a). Local and regional spread of banana Xanthomonas wilt (BXW) in space and over time in Kagera. Plant Pathology: Tanzania (in press).

    Google Scholar 

  • Shimwela, M. M., Narouei Khandan, H. A., Halbert, S. E., Keremane, M. L., Minsavage, G. V., Timilsina, S., Massawe, D. P., Jones, J. B., & van Bruggen, A. H. C. (2016b). First occurrence of Diaphorina citri in East Africa, characterization of the Ca. Liberibacter species causing huanglongbing (HLB) in Tanzania, and potential further spread of D. citri and HLB in Africa and Europe. European Journal of Plant Pathology. doi: 10.1007/s10658–016-0921-y

  • Škvorc, Ž., Franjić, J., Krstonošić, D., Sever, K., & Alešković, I. (2011). Vegetation features of beech forests of Psunj, Papuk and Krndija mountains. Croatian Journal of Forest Engineering, 32, 174–176.

    Google Scholar 

  • Stack, J. P., Bostock, R. M., Hammerschmidt, R., Jones, J. B., & Luke, E. (2014). The national plant diagnostic network: partnering to protect plant systems. Plant Disease, 98, 708–715.

    Article  Google Scholar 

  • Stiles, C. M., & Oudemans, P. V. (1999). Distribution of cranberry fruit-rotting fungi in New Jersey and evidence for nonspecific host resistance. Phytopathology, 89, 218–225.

    Article  CAS  PubMed  Google Scholar 

  • Townsend Peterson, A., Papeş, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and MaxEnt. Ecography, 30, 550–560.

    Article  Google Scholar 

  • Udayanga, D., Castlebury, L. A., Rossman, A. Y., Chukeatirote, E., & Hyde, K. D. (2014). Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex. Fungal Diversity, 67, 203–229.

    Article  Google Scholar 

  • USDA APHIS. (2015). Treatment Manual. .https://www.aphis.usda.gov/import_export/plants/manuals/ports/downloads/treatment.pdf

  • Vilka, L., & Volkova, J. (2015). Morphological diversity of Phomopsis vaccinii isolates from cranberry Vaccinium macrocarpon Ait.) in Latvia. Proceedings of the Latvia University of Agriculture, 33, 8–18.

  • Vippen, J., & Jeffries, M. (2011). Diseases diagnosed on commercial crops submitted to the British Columbia Ministry of Agriculture Plant diagnostic laboratory in 2010. Canadian Plant Disease Survey, 91, 7–16.

    Google Scholar 

  • Weingartner, D. P., & Klos, E. J. (1975). Etiology and symptomatology of canker and dieback diseases on highbush blueberries caused by Godronia (Fusicoccum) cassandrae and Diaporthe (Phomopsis) vaccinii. Phytopathology, 65, 105–110.

    Article  Google Scholar 

  • Wilcox, M. S. (1940). Diaporthe vaccinii, the ascigerous stage of Phomopsis, causing a twig blight of blueberry. Phytopathology, 30, 441–443.

    Google Scholar 

  • Worner, S. P., Ikeda, T., Leday, G., Zealand, N., & Joy, M. (2010). Surveillance tools for freshwater invertebrates. In MAF Biosecurity Technical Paper. Wellington: Ministry of Agriculture and Forestry.

    Google Scholar 

  • Yuen, J., & Mila, A. (2015). Landscape-scale disease risk quantification and prediction. Annual Review of Phytopathology, 53, 471–484.

    Article  CAS  PubMed  Google Scholar 

  • Zoratti, L., Palmieri, L., Jaakola, L., & Häggman, H. (2015). Genetic diversity and population structure of an important wild berry crop. AoB Plants, 7, plv117.

Download references

Acknowledgements

This research was funded by the Esther B. O’Keeffe foundation. We thank Mike Hill and Eileen Luke for providing data on blueberry twig blight occurrence from the NPDN data base. We also express our gratitude to the following persons who provided help on P. vaccinii distribution: Cheryl Blomquist, Steve Koike, Bernardo Latorre, André Lévesque, Marco Pautasso, Roel Potting, Mariusz Szmagara, Albert Tenuta, and Dhanushka Udayanga.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. A. Narouei-Khandan or A. H. C. van Bruggen.

Electronic supplementary material

ESM 1

(DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narouei-Khandan, H.A., Harmon, C.L., Harmon, P. et al. Potential global and regional geographic distribution of Phomopsis vaccinii on Vaccinium species projected by two species distribution models. Eur J Plant Pathol 148, 919–930 (2017). https://doi.org/10.1007/s10658-017-1146-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1146-4

Keywords

Navigation