Skip to main content
Log in

Identification of laccase-like multicopper oxidases from the pathogenic fungus Setosphaeria turcica and their expression pattern during growth and infection

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Setosphaeria turcica (syn. Exserohilum turcicum) is the pathogenic fungus of maize (Zea mays) causing northern leaf blight, which is a major maize disease worldwide. Laccase-like multicopper oxidases (LMCOs) are generally found in different fungi and play important physiological roles during growth and pathogenesis of the fungus. Nine LMCOs were found in the S. turcica genome using a Hidden Markov Model for three Pfam copper oxidase families. They shared a low homology of 19.79%–48.70% and were classified into five LMCO super families, but had conserved amino acid residues in the Cu-binding sites. Transcription levels of LMCOs were detected by quantitative real-time PCR during different stages of invasion, i.e. in non-germinated conidia, during formation of germ tubes, appressoria and penetration pegs as well as during hyphal growth after penetration. StLAC6 and StLAC8 were highly expressed in mycelium and expression of StLAC2 was significant in non-germinated conidia. During infection, the expression of StLAC1 and StLAC8 was high during appressorium formation and the expression of StLAC6 was high during penetration peg formation. The laccase activity and gene expression of LMCOs cultivated with the laccase inducers CuSO4, ABTS and resveratrol was detected. When treated with Cu2+, the laccase activity significantly increased. Furthermore, the expression of all genes was significantly increased, except that of StLAC7. In the presence of the phenolic phytoalexin resveratrol, laccase activity did not increase, but the expression levels of StLAC2, StLAC4 and StLAC5 were up-regulated. These results suggest that LMCOs in S. turcica play different roles during fungal growth and infection processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andberg, M., Hakulinen, N., Auer, S., Saloheimo, M., Koivula, A., Rouvinen, J., & Kruus, K. (2009). Essential role of the c-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. The FEBS Journal, 276(21), 6285–6300.

    Article  CAS  PubMed  Google Scholar 

  • Balcázar-López, E., Méndez-Lorenzo, L. H., Batista-García, R. A., Esquivel-Naranjo, U., Ayala, M., Kumar, V. V., Savary, O., Cabana, H., Herrera-Estrella, A., & Folch-Mallol, J. L. (2016). Xenobiotic compounds degradation by heterologous expression of a Trametessanguineus laccase in Trichoderma atroviride. PLoS One, 11(2), e0147997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltierra-Trejo, E., Márquez-Benavides, L., & Sánchez-Yáñez, J. M. (2015). Inconsistencies and ambiguities in calculating enzyme activity: The case of laccase. Journal of Microbiological Methods, 119, 126–131.

    Article  CAS  PubMed  Google Scholar 

  • Bugg, T. D., Ahmad, M., Hardiman, E. M., & Rahmanpour, R. (2011). Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 28(12), 1883–1896.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Z. Y., Jia, H., Zhu, X. M., & Dong, J. G. (2011). Relationship between DHN melanin and formation of appressorium turgor pressure of Setosphaeria turcica. Scientia Agricultura Sinica, 44(5), 925–932.

    Google Scholar 

  • Castanera, R., Pérez, G., Omarini, A., Alfaro, M., Pisabarro, A. G., Faraco, V., Amore, A., & Ramírez, L. (2012). Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures. Applied and Environmental Microbiology, 78(11), 4037–4045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cázares-García, S. V., Vázquez-Garcidueñas, S., & Vázquez-Marrufo, G. (2013). Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PLoS One, 8(1), e55295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J. M., Simon, A., & Viaud, M. (2007). Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 277(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Courty, P. E., Hoegger, P. J., Kilaru, S., Kohler, A., Buée, M., Garbaye, J., Martin, F., & Kües, U. (2009). Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytologist, 182(3), 736–750.

    Article  CAS  PubMed  Google Scholar 

  • Dashtban, M., Schraft, H., Syed, T. A., & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1(1), 36–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durand, F., Gounel, S., & Mano, N. (2013). Purification and characterization of a new laccase from the filamentous fungus Podospora anserina. Protein Expression and Purification, 88(1), 61–66.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, J., & Wilson, R. A. (2014). Cells in cells: Morphogenetic and metabolic strategies conditioning rice infection by the blast fungus Magnaporthe oryzae. Protoplasma, 251(1), 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y. H., & Marzluf, G. A. (1990). Nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific dna-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 87(14), 5331–5335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67(3), 369–385.

    Article  CAS  PubMed  Google Scholar 

  • Gu, S. Q., Li, P., Wu, M., Hao, Z. M., Gong, X. D., Zhang, X. Y., Tian, L., Zhang, P., Wang, Y., Cao, Z. Y., Fan, Y. S., Han, J. M., & Dong, J. G. (2014). StSTE12 is required for the pathogenicity of Setosphaeria turcica by regulating appressorium development and penetration. Microbiological Research, 169(11), 817–823.

    Article  CAS  PubMed  Google Scholar 

  • Hashikawa, N., Yamamoto, N., & Sakurai, H. (2007). Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements. Journal of Biological Chemistry, 282(14), 10333–10340.

    Article  CAS  PubMed  Google Scholar 

  • Hoegger, P. J., Kilaru, S., James, T. Y., Thacker, J. R., & Kües, U. (2006). Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. The FEBS Journal, 273(10), 2308–2326.

    Article  CAS  PubMed  Google Scholar 

  • Kallio, J. P., Gasparetti, C., Andberg, M., Boer, H., Koivula, A., Kruus, K., Rouvinen, J., & Hakulinen, N. (2011). Crystal structure of an ascomycete fungal laccase from Thielavia arenaria--common structural features of asco-laccases. The FEBS Journal, 278(13), 2283–2295.

    Article  CAS  PubMed  Google Scholar 

  • Khambhaty, Y., Ananth, S., Sreeram, K. J., Rao, J. R., & Nair, B. U. (2015). Dual utility of a novel, copper enhanced laccase from Trichoderma aureoviridae. International Journal of Biological Macromolecules, 81, 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Kilaru, S., Hoegger, P. J., & Kües, U. (2006). The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Current Genetics, 50(1), 45–60.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H., Yang, Y. K., & Chambliss, G. H. (2005). Evidence that Bacillus catabolitecontrol protein CcpA interacts with RNA polymerase to inhibit transcription. Molecular Microbiology, 56(1), 155–162.

    Article  CAS  PubMed  Google Scholar 

  • Kües, U., & Rühl, M. (2011). Multiple multi-copper oxidase gene families in basidiomycetes - what for? Current Genomics, 12(2), 72–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, S. V., Phale, P. S., Durani, S., & Wangikar, P. P. (2003). Combined sequence and structure analysis of the fungal laccase family. Biotechnology and Bioengineering, 83(4), 386–394.

    Article  CAS  PubMed  Google Scholar 

  • Kuo, H. C., Détry, N., Choi, J., & Lee, Y. H. (2015). Potential roles of laccases on virulence of Heterobasidion annosum s.s. Microbial Pathogenesis, 81, 16–21.

    Article  CAS  PubMed  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.

    Article  CAS  Google Scholar 

  • Lin, S. Y., Okuda, S., Ikeda, K., Okuno, T., & Takano, Y. (2012). LAC2 encoding a secreted laccase is involved in appressorial melanization and conidial pigmentation in Colletotrichum orbiculare. Molecular Plant-Microbe Interactions, 25(12), 1552–1561.

    Article  CAS  PubMed  Google Scholar 

  • Litvintseva, A. P., & Henson, J. M. (2002). Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus. Applied and Environmental Microbiology, 68(3), 1305–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, S., Cao, K., Liu, N., Meng, C., Cao, Z., Dai, D., Jia, H., Zang, J., Li, Z., Hao, Z., Gu, S., & Dong, J. (2017). The StLAC2 gene is required for cell wall integrity, DHN-melanin synthesis and the pathogenicity of Setosphaeria turcica. Fungal Biology, 121(6–7), 589–601.

    Article  PubMed  Google Scholar 

  • Maestre-Reyna, M., Liu, W. C., Jeng, W. Y., Lee, C. C., Hsu, C. A., Wen, T. N., Wang, A. H., & Shyur, L. F. (2015). Structural and functional roles of glycosylation in fungal laccase from Lentinus sp. PLoS One, 10(4), e0120601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews, S. L., Smithson, C. E., & Grunden, A. M. (2016). Purification and characterization of a recombinant laccase-like multi-copper oxidase from Paenibacillus glucanolyticus SLM1. Journal of Applied Microbiology, 121(5), 1335–1345.

    Article  CAS  PubMed  Google Scholar 

  • Messerschmidt, A., & Huber, R. (1990). The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. European Journal of Biochemistry, 187(2), 341–352.

    Article  CAS  PubMed  Google Scholar 

  • Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A., & Punta, M. (2013). Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research, 41(12), e121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munk, L., Sitarz, A. K., Kalyani, D. C., Mikkelsen, J. D., & Meyer, A. S. (2015). Can laccases catalyze bond cleavage in lignin? Biotechnology Advances, 33(1), 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Nakade, K., Watanabe, H., Sakamoto, Y., & Sato, T. (2011). Gene silencing of the Lentinula edodes lcc1 gene by expression of a homologous inverted repeat sequence. Microbiological Research, 166(6), 484–493.

    Article  CAS  PubMed  Google Scholar 

  • Park, M., Kim, M., Kim, S., Ha, B., & Ro, H. S. (2015). Differential expression of laccase genes in Pleurotus ostreatus and biochemical characterization of laccase isozymes produced in Pichia pastoris. Mycobiology, 43(3), 280–287.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G., & Faraco, V. (2011). Induction and transcriptional regulation of laccases in fungi. Current Genomics, 12(2), 104–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiss, R., Ihssen, J., Richter, M., Eichhorn, E., Schilling, B., & Thöny-Meyer, L. (2013). Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One, 8(6), e65633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhl, M., Majcherczyk, A., & Kues, U. (2013). Lcc1 and Lcc5 are the main laccases secreted in liquid cultures of Coprinopsis cinerea strains. Antonie Van Leeuwenhoek, 103(5), 1029–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto, Y., Nakade, K., Yoshida, K., Natsume, S., Miyazaki, K., Sato, S., van Peer, A. F., & Konno, N. (2015). Grouping of multicopper oxidases in Lentinula edodes by sequence similarities and expression patterns. AMB Express, 5(1), 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapmak, A., Boyce, K. J., Andrianopoulos, A., & Vanittanakom, N. (2015). The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei. PLoS One, 10(4), e0122728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schouten, A., Wagemakers, L., Stefanato, F. L., Kaaij, R. M. V. D., & Kan, J. A. L. V. (2002). Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Molecular Microbiology, 43(4), 883–894.

    Article  CAS  PubMed  Google Scholar 

  • Shen, S., Hao, Z., Gu, S., Wang, J., Cao, Z., Li, Z., Wang, Q., Li, P., Hao, J., & Dong, J. (2013). The catalytic subunit of cAMP-dependent protein kinase a StPKA-c contributes to conidiation and early invasion in the phytopathogenic fungus Setosphaeria turcica. FEMS Microbiology Letters, 343(2), 135–144.

    Article  CAS  PubMed  Google Scholar 

  • Simon, M., Adam, G., Rapatz, W., Spevak, W., & Ruis, H. (1991). The Saccharomyces cerevisiaeADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Molecular and Cellular Biology, 11(2), 699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirim, D., Wagner, F., Wang, L., Schmid, R. D., & Pleiss, J. (2011). The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database: The Journal of Biological Databases and Curation, 2011, bar006.

    Article  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Q. Y., & Zhang, C. X. (2013). Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci., 20(2), 254–260.

    Article  PubMed  Google Scholar 

  • Upadhyay, S., Torres, G., & Lin, X. (2013). Laccases involved in 1,8-dihydroxynaphthalene melanin biosynthesis in Aspergillus fumigatus are regulated by developmental factors and copper homeostasis. Eukaryotic Cell, 12(12), 1641–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, N., Chapeland-Leclerc, F., Silar, P., & Ruprich-Robert, G. (2014). Systematic gene deletions evidences that laccases are involved in several stages of wood degradation in the filamentous fungus Podospora anserina. Environmental Microbiology, 16(1), 141–161.

    Article  CAS  PubMed  Google Scholar 

  • Xie, N., Ruprich-Robert, G., Silar, P., Herbert, E., Ferrari, R., & Chapeland-Leclerc, F. (2018). Characterization of three multicopper oxidases in the filamentous fungus Podospora anserina: a new role of an ABR1-like protein in fungal development? Fungal Genetics and Biology, 116(4), 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Xu, F., Berka, R. M., Wahleithner, J. A., Nelson, B. A., Shuster, J. R., Brown, S. H., Palmer, A. E., & Solomon, E. I. (1998). Site-directed mutations in fungal laccase: Effect on redox potential, activity and ph profile. Biochemical Journal, 334(Pt 1), 63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan, X., Cao, Z. Y., Xing, J. H., & Dong, J. G. (2011). Screening of laccase-producing isolates among plant pathogenic fungi. Scientia Agricultura Sinica, 44(4), 723–729.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the China Agriculture Research System (CARS-02-25), National Natural Science Foundation of China (31601598), Science and technology research project of Hebei (QN2014091) and Science and technology research project of Hebei (ZD2014053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingao Dong.

Ethics declarations

This work does not contain any study with animals and/or humans.

Electronic supplementary material

ESM 1

(DOCX 17.1 kb)

ESM 2

(DOCX 15.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Cao, Z., Cao, K. et al. Identification of laccase-like multicopper oxidases from the pathogenic fungus Setosphaeria turcica and their expression pattern during growth and infection. Eur J Plant Pathol 153, 1149–1163 (2019). https://doi.org/10.1007/s10658-018-01632-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-01632-8

Keywords

Navigation