Skip to main content
Log in

Cattle grazing alters the interaction of seed-borne fungi and two foliar pathogens of Leymus chinensis in a meadow steppe

  • Original Article
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Intensive grazing by herbivores lead to major ecological changes in natural grasslands, including severe degeneration. However, the understanding of how grazing affects the incidence of pathogenic and saprotrophic fungi on leaves and seeds of dominant plant species in grasslands is limited. In this study, the presence of two fungal pathogens that cause lesions on leaves of a dominant grass species of the Hulunber meadow steppe in northeast China, Leymus chinensis, as well as saprotrophic fungi associated with lesions, was investigated in plots with different grazing intensities treatments (0, 0.42, 0.63, 0.83, 1.25, and 1.67 cattle ha−1). In addition, seeds of L. chinensis were harvested from plants of the different grazing intensities and the presence of seed-borne fungi, including pathogenic and saprotrophic fungi, were examined by fungal isolation. The results indicated that with the increase of grazing intensity, the incidence of two fungal diseases on leaves of L. chinensis, leaf blotch diseases caused by Leptosphaeria avenaria and Parastagonospora nodorum, decreased. On seeds, the two most frequently isolated fungi were Le. avenaria and P. nodorum, from 57.2% and 40.6% of seeds respectively. At the highest grazing plots, the frequency of isolation of these two fungi to 23.1 and 15.6% respectively. By contrast, the frequency of isolation of Epicoccum nigrum in the highest grazing plots was 88.9%, approximately 10-fold of that in control plots. In dual-culture studies, E. nigrum isolates had inhibitory effects on the growth of isolates of the two leaf pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altesor, A., Oesterheld, A., Leoni, E., Lezama, F., & Rodriguez, C. (2005). Effect of grazing on community structure and productivity of a Uruguayan grass-land. Plant Ecology, 179, 83–91.

    Article  Google Scholar 

  • Bennett, R. S., Milgroom, M. G., & Bergstrom, G. C. (2005). Population structure of seedborne Phaeosphaeria nodorum on New York wheat. Phytopathology, 95, 300–305.

    Article  PubMed  Google Scholar 

  • Brown, A. E., Finlay, R., & Ward, J. S. (1987). Antifungal compounds produced by Epicoccum purpurascens against soil-borne plant pathogenic fungi. Soil Biology and Biochemistry, 19, 657–664.

    Article  CAS  Google Scholar 

  • Chen, T., Christensen, M. J., Nan, Z. B., & Hou, F. J. (2017). Effect of grazing intensity on seed size, germination and fungal colonization of Lespedeza davurica in a semi-arid grassland of Northwest China. Journal of Arid Environment, 144, 91–97.

    Article  Google Scholar 

  • Chen, T., Zhang, Y. W., Christensen, M. J., Li, C. H., Hou, F. J., & Nan, Z. B. (2018). Grazing intensity affects communities of culturable toot-associated fungi in a semiarid grassland of Northwest China. Land Degradation and Development, 29, 361–373.

    Article  Google Scholar 

  • Clark, R. V., Gourley, C. O., Johnston, H. W., Piening, L. J., Pelletier, G., Santerre, J., & Genereux, H. (1975). Oat yield losses from Septoria leaf blotch at four locations in eastern Canada. Canadian Plant Disease Survey, 55, 36–43.

    Google Scholar 

  • Cornaglia, P. S., Schrauf, G. E., & Deregibus, V. A. (2009). Flooding and grazing promote germination and seedling establishment in the perennial grass. Austral Ecology, 34, 343–350.

    Article  Google Scholar 

  • Daleo, P., Silliman, B., Alberti, J., Escapa, M., Canepuccia, A., Peña, N., & Iribarne, O. (2009). Grazer facilitation of fungal infection and the control of plant growth in South-Western Atlantic salt marshes. Journal of Ecology, 97, 781–787.

    Article  Google Scholar 

  • Dickinson, C. (1967). Fungal colonization of Pisum leaves. Canadian Journal of Botany, 45, 915–927.

    Article  Google Scholar 

  • Eldridge, D. J., & Delgado-Baquerizo, M. (2017). Continental-scale impacts of livestock grazing on ecosystem supporting and regulating services. Land Degradation and Development, 28, 1473–1481.

    Article  Google Scholar 

  • Gray, F. A., & Koch, D. W. (2004). Influence of late season harvesting, fall grazing, and fungicide treatment on Verticillium wilt incidence. Plant Disease, 88, 811–816.

    Article  CAS  PubMed  Google Scholar 

  • He, X. Q., Hu, X. W., & Wang, Y. R. (2010). Study on seed dormancy mechanism and breaking technique of Leymus chinensis. Acta Botanica Boreali Occidentalia Sinica, 30, 120–125.

    CAS  Google Scholar 

  • Hu, X. W., Huang, X. H., Wang, & Y. R. (2012). Hormonal and temperature regulation of seed dormancy and germination in Leymus chinensis. Plant Growth Regulation, 67, 199–207.

  • Jeger, M. J., Salama, N. K. G., Shaw, M. W., Berg, F. V. D., & Bosch, F. V. D. (2014). Effects of plant pathogens on population dynamics and community composition in grassland ecosystems: Two case studies. European Journal of Plant Pathology, 138, 513–527.

    Article  Google Scholar 

  • Keesing, F., Holt, R. D., & Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecology Letters, 9, 485–498.

    Article  CAS  PubMed  Google Scholar 

  • Keesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., Hudson, P., Jolles, A., Jones, K. E., Mitchell, C. E., Myers, S. S., Bogich, T., & Ostfeld, R. S. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468, 647–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khamna, S., Yokota, A., & Lumyong, S. (2009). Actinomycetes isolated from medicinal plant rhizosphere soils: Diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 25, 649–655.

    Article  CAS  Google Scholar 

  • Liu, R. C. (2008). Effect of grazing and fencing on disease of grassland plants. China: M. S. dissertation. Lanzhou University.

    Google Scholar 

  • Liu, X., Hu, T., & Cao, K. (2007). Biological characteristics of strain F603 of Epicoccom sp., an antagonistic fungus for controlling Phytophthora infestans. Frontiers of Agriculture in China, 1, 175–178.

    Article  Google Scholar 

  • Liu, H. Y., Mi, Z. R., Lin, L., Wang, Y. H., Zhang, Z. H., Zhang, F. W., Wang, H., Liu, L. L., Zhu, B., Cao, G. M., Zhao, X. Q., Sanders, N. J., Classen, A. T., Reich, P. B., & He, J. S. (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences, 115(16), 4051–4056.

    Article  CAS  Google Scholar 

  • Madrigal, C., Pascual, S., & Melgarejo, P. (1994). Biological control of peach twig blight (Monilinia laxa) with Epicoccum nigrum. Plant Pathology, 43, 554–561.

    Article  Google Scholar 

  • Milus, E. A., & Chalkley, D. B. (1997). Effect of previous crop, seedborne inoculum, and fungicides on development of Stagonospora blotch. Plant Disease, 81, 1279–1283.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, C. E., Tilman, D., & Groth, J. V. (2002). Effect of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology, 83, 1713–1726.

    Article  Google Scholar 

  • Nan, Z. B., & Liu, R. (1997). Detection of seed-borne fungi of Astragalus adsurgens. Acta Prataculture Sinia, 6, 11–16.

    Google Scholar 

  • Nykänen, H., & Koricheva, J. (2004). Damage-induced changes in woody plants and their effects on insect herbivore performance: A meta-analysis. Oikos, 104, 247–268.

    Article  Google Scholar 

  • Phookamsak, R., Liu, J. K., Chukeatirote, E., McKenzie, E. H. C., & Hyde, K. D. (2013). Phylogeny and morphology of Leptosphaerulina saccharicola sp. nov. and Pleosphaerulina oryzae and relationships with Pithomyces. Cryptogamie Mycologie, 34, 303–319.

    Article  Google Scholar 

  • Phookamsak, R., Liu, J., Mckenzie, E. H. C., Manamgoda, D. S., Ariyawansa, H., Thambugala, K. M., Dai, D., Camporesi, E., Chukeatirote, E., Wijayawardene, N. N., Bahkali, A. H., Mortimer, P. E., Xu, J., & Hyde, K. D. (2014). Revision of Phaeosphaeriaceae. Fungal Diversity, 68, 159–238.

    Article  Google Scholar 

  • Rottstock, T., Joshi, J., Kummer, V., & Fischer, M. (2014). Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology, 95, 1907–1917.

    Article  PubMed  Google Scholar 

  • Shah, D., Bergstrom, G. C., & Ueng, P. P. (1995). Initiation of Septoria nodorum blotch epidemics in winter wheat by seedborne Stagonospora nodorum. Phytopathology, 85, 452–457.

    Article  Google Scholar 

  • Shoemaker, R. A., & Babcock, C. E. (1989). Phaeosphaeria. Canadian Journal of Botany, 67, 1500–1599.

    Article  Google Scholar 

  • Silliman, B. R., & Newell, S. Y. (2003). Fungal farming in a snail. Proceedings of the National Academy of Sciences, 100, 15643–15648.

    Article  CAS  Google Scholar 

  • Skipp, R. A., & Lambert, M. G. (1984). Damage to white clover foliage in grazed pasture caused by fungi and other organisms. New Zealand Journal of Agricultural Research, 27, 313–320.

    Article  Google Scholar 

  • Su, Y. Y., Guo, L. D., & Hyde, K. D. (2010). Response of endophytic fungi of Stipa grandis to experimental plant function group removal in Inner Mongolia steppe, China. Fungal Diversity, 43, 93–101.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueng, P. P., Dai, Q., Cui, K., Czembor, P. C., Cunfer, B. M., Tsang, H. T., Arseniuk, E., & Bergstrom, G. C. (2003). Sequence diversity of mating-type genes in Phaeosphaeria avenaria. Current Genetics, 43, 121–130.

    CAS  PubMed  Google Scholar 

  • Wang, L., Li, X., Chen, S., & Liu, G. (2009). Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA 3. Biotechnology Letters, 31, 313–319.

    Article  CAS  PubMed  Google Scholar 

  • Wennström, A., & Ericson, L. (1991). Variation in disease incidence in grazed and ungrazed sites for the system Pulsatilla pratensis-Puccinia pulsatillae. Oikos, 60, 35–39.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic Press.

    Google Scholar 

  • Wilberforce, E. M., Boddy, L., Griffiths, R., & Griffith, G. W. (2003). Agricultural management affects communities of culturable root-endophytic fungi in temperate grasslands. Soil Biology and Biochemistry, 35, 1143–1154.

    Article  CAS  Google Scholar 

  • Yan, R. R., Xin, X. P., Zhang, B. H., Yan, Y. C., & Yang, G. X. (2010). Influence of cattle grazing gradient on plant community characteristics in Hulunber meadow steppe. Chinese Journal of Grassland, 32, 62–67.

    Google Scholar 

  • Yan, R. R., Xin, X. P., Yan, Y. C., Wang, X., Zhang, B. H., Yang, G. X., Liu, S., Deng, Y., & Li, L. H. (2015). Impacts of differing grazing rates on canopy structure and species composition in Hulunber meadow steppe. Rangeland Ecology and Management, 68, 54–64.

    Article  Google Scholar 

  • Yan, R. R., Tang, H. J., Lv, S. H., Jin, D. Y., Xin, X. P., Chen, B. R., Zhang, B. H., Yan, Y. C., Wang, X., Murray, P. J., Yang, G. X., Xu, L. J., Li, L. H., & Zhao, S. (2017). Response of ecosystem CO2 fluxes to grazing intensities-a five-year experiment in the Hulunber meadow steppe of China. Scientific Reports, 7, 9491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. F., & Li, J. D. (1994). Effect of different utilization methods on reproductive characters of Aneurolepidium chinense (Vol. 5, pp. 34–37). Grassland of China.

  • Zhang, Y. W., & Nan, Z. B. (2018). First report of leaf blotch caused by Parastagonospora nodorum on Leymus chinensis (Chinese rye grass) in China. Plant Dissease, 102(12), 2661.

    Article  Google Scholar 

  • Zhang, Y. W., Duan, T. Y., & Nan, Z. B. (2018). First report of leaf blotch caused by Phaeosphaeria avenaria on Leymus chinensis (Chinese rye grass) in China. Plant Disease, 102(7), 1447.

    Article  Google Scholar 

  • Zhou, T., & Reeleder, R. D. (1989). Application of Epicoccum purpurascens spores to control white mold of snap bean. Plant Disease, 73, 639–642.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Xiaoping Xin of Chinese Academy of Agricultural Sciences and Hulunber Grassland Ecosystem Research Station provided the experimental plots and facility. This research was financially supported by the National Public Welfare Industry of Agricultural Science and Technology Special Projects (201303057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibiao Nan.

Ethics declarations

Conflict of interest

All authors declare they have no conflict of interest, fully agree for submission of the manuscript.

Ethical approval

Our research did not involve human participants and/or animal, and the manuscript is original, no part has been published before nor is any part of it under consideration for publication at another journal.

Electronic supplementary material

Supplementary Figure 1

(DOCX 50.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, T., Nan, Z. et al. Cattle grazing alters the interaction of seed-borne fungi and two foliar pathogens of Leymus chinensis in a meadow steppe. Eur J Plant Pathol 155, 207–218 (2019). https://doi.org/10.1007/s10658-019-01764-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01764-5

Keywords

Navigation