Skip to main content

Advertisement

Log in

Comparative study on the monocycle of Phakopsora meliosmae-myrianthae and Phakopsora pachyrhizi

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Asian grapevine leaf rust, caused by Phakopsora meliosmae-myrianthae, presents symptoms similar to Asian soybean rust, caused by P. pachyrhizi, such as the presence of satellite uredinia and early leaf fall. To shed light on the epidemiological behaviour of these rusts, we compared the monocyclic components of these Phakopsora species and the effects of these pathogens on host photosynthesis over time. Both hosts were inoculated with a 104 urediniospores mL−1 suspension and incubated at 23–25 °C. Incubation and latent periods were simultaneous at 8 days in Asian grapevine leaf rust and 13 days in Asian soybean rust. The minimum infectious periods were 21 days for P. meliosmae-myrianthae and 13 days for P. pachyrhizi. The continuous production of urediniospores through a long infectious period was observed for both pathogens. Both Phakopsora rusts showed an increase in rust severity with similar progress rates to those estimated with the monomolecular model as 0.07 day−1 and 0.02 day−1 for grapevine and soybean rusts, respectively. No increase in the number of lesions was observed from the first assessment, although the number of uredinia increased over time. P. meliosmae-myrianthae and P. pachyrhizi infection reduced the net photosynthetic rates by 22% and 5%, respectively, before the onset of symptoms. Both pathogens withstand non-ideal environmental conditions for secondary infections. We concluded that, although P. meliosmae-myrianthae has a restricted host range on Vitis sp., unlike to P. pachyrhizi with a broad host range, the epidemiological behaviour of P. meliosmae-myrianthae is in some ecological aspects similar to that of P. pachyrhizi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves, R. F. (2015). Ferrugem da videira: preservação de urediniósporos de Phakopsora euvitis e fatores relacionados à infecção do hospedeiro. Piracicaba, Brazil:University of Sao Paulo, Master Thesis (In Portuguese, English summary). http://www.teses.usp.br/teses/disponiveis/11/11135/tde-21092015-142455/

  • Alves, M. C., Pozza, E. A., Ferreira, J. B., de Araújo, D. V., Costa, J. d. C. d. B., Deuner, C. C., et al. (2007). Intensidade da ferrugem asiática (Phakopsora pachyrhizi H. Sydow & P. Sydow) da soja [Glycine max (L.) Merr.] nas cultivares Conquista, Savana e Suprema sob diferentes temperaturas e períodos de molhamento foliar. Summa Phytopathologica, 33(3), 239–244.

    Google Scholar 

  • Angelotti, F., Scapin, C. R., Tessmann, D. J., Vida, J. B., Vieira, R. A., & de Souto, E. R. (2008). Resistência de genótipos de videira à ferrugem = Genetic resistance of grape genotypes to rust. Pesquisa Agropecuária Brasileira, 43(9), 1129–1134 (In Portuguese, English summary). https://doi.org/10.1590/S0100-204X2008000900005.

    Article  Google Scholar 

  • Angelotti, F., Scapin, C. R., Tessmann, D. J., Vida, J. B., & Canteri, M. G. (2014). The effect of temperature, leaf wetness and light on development of grapevine rust. Australasian Plant Pathology, 43(1), 9–13.

    Google Scholar 

  • Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., et al. (2015). The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Security, 7(2), 303–321.

    Google Scholar 

  • Bassanezi, R. B., Amorim, L., Bergamin Filho, A., Hau, B., & Berger, R. D. (2001). Accounting for photosynthetic efficiency of bean leaves with rust, angular leaf spot and anthracnose to assess crop damage. Plant Pathology, 50(4), 443–452.

    CAS  Google Scholar 

  • Bassanezi, R. B., Amorim, L., Bergamin Filho, A., & Berger, R. D. (2002). Gas exchange and emission of chlorophyll fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of their trophic characteristics. Journal of Phytopathology, 150(1), 37–47.

    CAS  Google Scholar 

  • Bastiaans, L. (1991). Ratio between virtual and visual lesion size as a measure to describe reduction in leaf photosynthesis of rice due to leaf blast. Phytopathology, 81(6), 611–615.

    Google Scholar 

  • Bergamin Filho, A. (2008). Comparative epidemiology: Soybean rust and other diseases. In H. Kudo, K. Suenaga, R. M. Soares, & A. Toledo (Eds.), Facing the challenge of soybean rust in South America. JIRCAS working report number 48 (pp. 31–38). Tsukuba, Japan: Japan International Research Center for Agricultural Sciences.

    Google Scholar 

  • Bergamin Filho, A., & Amorim, L. (1996). Doencas de plantas tropicais epidemiologia e controle econômico. Piracicaba, SP: Agronomica Ceres.

    Google Scholar 

  • Berger, R. D., Hau, B., Weber, G. E., Bacchi, M. A., Bergamin Filho, A., & Amorim, L. (1995). A simulation model to describe epidemics of rust of phaseolus beans I. development of the model and sensitivity analysis. Phytopathology, 85(6), 715–721.

    Google Scholar 

  • Berger, R. D., Bergamin Filho, A., & Amorim, L. (1997). Lesion expansion as an epidemic component. Phytopathology, 87(10), 1005–1013.

    CAS  PubMed  Google Scholar 

  • Bonde, M. R., Melching, J. S., & Bromfield, K. R. (1976). Histology of the suscept-pathogen relationship between Glycine max and Phakopsora pachyrhizi, the cause of soybean rust. Phytopathology, 66(11), 1290–1294.

    Google Scholar 

  • Bonde, M. R., Berner, D. K., Nester, S. E., & Frederick, R. D. (2007). Effects of temperature on urediniospore germination, germ tube growth, and initiation of infection in soybean by Phakopsora isolates. Phytopathology, 97(8), 997–1003.

    CAS  PubMed  Google Scholar 

  • Bonde, M. R., Nester, S. E., & Berner, D. K. (2012). Effects of soybean leaf and plant age on susceptibility to initiation of infection by Phakopsora pachyrhizi. Plant Health Progress, 13(1), 25. https://doi.org/10.1094/php-2012-0227-01-rs.

    Article  Google Scholar 

  • Castro, H. A., Bergamin Filho, A., & Krugner, T. L. (1984). Padrão de produção de uredósporos em mudas de Eucalyptus spp. inoculadas artificialmente com Puccinia psidii. Summa Phytopathologica, 10(1), 155–170.

    Google Scholar 

  • Coutinho, T. A., Wingfield, M. J., Alfenas, A. C., & Crous, P. W. (1998). Eucalyptus rust: A disease with the potential for serious international implications. Plant Disease, 82, 819–825.

    CAS  PubMed  Google Scholar 

  • Danelli, A. L. D., & Reis, E. M. (2016). Quantification of incubation, latent and infection periods of Phakopsora pachyrhizi in soybean, according to chronological time and degree-days. Summa Phytopathologica, 42(1), 11–17.

    Google Scholar 

  • Furtado, G. Q., Alves, S. A. M., Carneiro, L. C., Godoy, C. V., & Massola Júnior, N. S. (2009). Influência do estádio fenológico e da idade dos trifólios de soja na infecção de Phakopsora pachyrhizi. Tropical Plant Pathology, 34(2), 118–122.

    Google Scholar 

  • Godoy, C. V., Bueno, A. D. F., & Gazziero, D. L. P. (2015). Brazilian soybean pest management and threats to its sustainability. Outlooks on Pest management, 26(3), 113–117.

    Google Scholar 

  • Godoy, C. V., Seixas, C. D. S., Soares, R. M., Marcelino-Guimarães, F. C., Meyer, M. C., & Costamilan, L. M. (2016). Asian soybean rust in Brazil: Past, present, and future. Pesquisa Agropecuária Brasileira, 51(5), 407–421.

    Google Scholar 

  • Gomes, E. C. d. S., Pinto, K., Leite, R. P., Silva, F. J. A., Miranda, J. d. R., & Nascimento, L. C. (2011). Ocorrência de Phakopsora euvitis Ono em folhas jovens de videira. Revista Semiárido de Visu, 1(1), 74–77.

    Google Scholar 

  • Kranz, J. (2003). On the methodology of comparative epidemiology. In J. Kranz (Ed.), Comparative epidemiology of plant diseases (pp. 9–47). Berlin, Germany: Springer Berlin Heidelberg.

    Google Scholar 

  • Kumudini, S., Godoy, C. V., Kennedy, B., Prior, E., Omielan, J., Boerma, H. R., & Hershman, D. (2010). Role of host-plant resistance and disease development stage on leaf photosynthetic competence of soybean rust infected leaves. Crop Science, 50(6), 2533–2542.

    Google Scholar 

  • Langenbach, C., Campe, R., Beyer, S. F., Mueller, A. N., & Conrath, U. (2016). Fighting Asian soybean rust. Frontiers in Plant Science, 7, 797. https://doi.org/10.3389/fpls.2016.00797.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X., Esker, P. D., Pan, Z., Dias, A. P., Xue, L., & Yang, X. B. (2010). The uniqueness of the soybean rust pathosystem: An improved understanding of the risk in different regions of the world. Plant Disease, 94(7), 796–806.

    CAS  PubMed  Google Scholar 

  • Lorrain, C., Gonçalves dos Santos, K. C., Germain, H., Hecker, A., & Duplessis, S. (2018). Advances in understanding obligate biotrophy in rust fungi. New Phytologist, nph.15641. https://doi.org/10.1111/nph.15641.

  • Madden, L. V., Hughes, G., & van den Bosch, F. (2007). The study of plant disease epidemics. St Paul, MN, USA: APS Press.

    Google Scholar 

  • Magnani, E. B. Z., Alves, E., & Araújo, D. V. (2007). Eventos dos processos de pré-penetração, penetração e colonização de Phakopsora pachyrhizi em folíolos de soja. Fitopatologia Brasileira, 32(2), 156–160.

    Google Scholar 

  • Marchetti, M. A. (1976). The effects of temperature and dew period on germination and infection by uredospores of Phakopsora pachyrhizi. Phytopathology, 66(4), 461–463.

    Google Scholar 

  • Melching, J. S., Bromfield, K. R., & Kingsolver, C. H. (1979). Infection, colonization, and uredospore production on Wayne soybean by four cultures of Phakopsora pachyrhizi, the cause of soybean rust. Phytopathology, 69(12), 1262–1265.

    Google Scholar 

  • Melching, J. S., Dowler, W. M., Koogle, D. L., & Royer, M. H. (1989). Effects of duration, frequency, and temperature of leaf wetness periods on soybean rust. Plant Disease, 73(2), 117–122.

    Google Scholar 

  • Naruzawa, E. S., Celoto, M. I. B., Papa, M. F. S., Tomquelski, G. V., & Boliani, A. C. (2006). Estudos epidemiológicos e controle químico de Phakopsora euvitis. Fitopatologia Brasileira, 31(1), 41–45.

    Google Scholar 

  • Navarro, B., Spósito, M. B., Nogueira Jr., A. F., & Amorim, L. (2015). Infection efficiency of Phakopsora euvitis in Vitis labrusca. Revista Mexicana de Fitopatologia, 33, S101 (Summary).

    Google Scholar 

  • Navarro, B. L., Nogueira Júnior, A. F., Ribeiro, R. V., & Spósito, M. B. (2019). Photosynthetic damage caused by grapevine rust (Phakopsora euvitis) in Vitis vinifera and Vitis labrusca. Australasian Plant Pathology, 48, 509–518.

    Google Scholar 

  • Newton, A. C., Fitt, B. D. L., Atkins, S. D., Walters, D. R., & Daniell, T. J. (2010). Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends in Microbiology, 18(8), 365–373.

    CAS  PubMed  Google Scholar 

  • Nogueira Júnior, A. F., Ribeiro, R. V., Appezzato-da-Glória, B., Soares, M. K. M., Rasera, J. B., & Amorim, L. (2017). Phakopsora euvitis causes unusual damage to leaves and modifies carbohydrate metabolism in grapevine. Frontiers in Plant Science, 8, 1675. https://doi.org/10.3389/fpls.2017.01675.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ono, Y., Chatasiri, S., Pota, S., & Yamaoka, Y. (2012). Phakopsora montana, another grapevine leaf rust pathogen in Japan. Journal of General Plant Pathology, 78(5), 338–347. https://doi.org/10.1007/s10327-012-0401-y.

    Article  CAS  Google Scholar 

  • Pariaud, B., Ravigné, V., Halkett, F., Goyeau, H., Carlier, J., & Lannou, C. (2009). Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathology, 58(3), 409–424.

    Google Scholar 

  • Park, S., Chen, Z.-Y., Chanda, A. K., Schneider, R. W., & Hollier, C. A. (2008). Viability of Phakopsora pachyrhizi urediniospores under simulated southern Louisiana winter temperature conditions. Plant Disease, 92(10), 1456–1462.

    CAS  PubMed  Google Scholar 

  • Pivonia, S., & Yang, X. B. (2006). Relating epidemic progress from a general disease model to seasonal appearance time of rusts in the United States: Implications for soybean rust. Phytopathology, 96(4), 400–407.

    PubMed  Google Scholar 

  • Primiano, I. V., Loehrer, M., Amorim, L., & Schaffrath, U. (2017). Asian grapevine leaf rust caused by Phakopsora euvitis: An important disease in Brazil. Plant Pathology, 66(5), 691–701.

    Google Scholar 

  • Primiano, I. V., Loehrer, M., Schaffrath, U., & Amorim, L. (2019). Formation of satellite uredinia as an important trait related to grapevine colonization by Phakopsora meliosmae-myrianthae. Plant Pathology, 68(8), 1732–1740.

    CAS  Google Scholar 

  • Robert, C., Bancal, M.-O., & Lannou, C. (2002). Wheat leaf rust uredospore production and carbon and nitrogen export in relation to lesion size and density. Phytopathology, 92(7), 762–768.

    PubMed  Google Scholar 

  • Robert, C., Bancal, M.-O., & Lannou, C. (2004). Wheat leaf rust uredospore production on adult plants: Influence of leaf nitrogen content and Septoria tritici blotch. Phytopathology, 94(7), 712–721.

    PubMed  Google Scholar 

  • Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529. https://doi.org/10.1186/s12859-017-1934-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sache, I. (1997). Effect of density and age of lesions on sporulation capacity and infection efficiency in wheat leaf rust (Puccinia recondita f.sp. tritici ). Plant Pathology, 46(4), 581–589.

    Google Scholar 

  • Sache, I., & Vallavieille-Pope, C. (1993). Comparison of the wheat brown and yellow rusts for monocyclic sporulation and infection processes, and their polycyclic consequences. Journal of Phytopathology, 138(1), 55–65.

    Google Scholar 

  • Sache, I., & Vallavieille-Pope, C. (1995). Classification of airborne plant pathogens based on sporulation and infection characteristics. Canadian Journal of Botany, 73(8), 1186–1195.

    Google Scholar 

  • Salustiano, M. E., Pozza, E. A., Ferraz Filho, A. C., & Souza, P. E. (2007). Expansão da pústula da ferrugem em três cultivares do cafeeiro. Fitopatologia Brasileira, 32(2), 146–149.

    Google Scholar 

  • Scapin-Buffara, C. R., Angelotti, F., Dufault, N. S., Pereira, C. B., & Tessmann, D. J. (2018). Seasonal progression of leaf rust in ‘Niagara Rosada’ grapevine in a biannual crop system in Brazil. European Journal of Plant Pathology, 152(3), 589–597.

    Google Scholar 

  • Shtienberg, D. (1992). Effects of foliar diseases on gas exchange processes: A comparative study. Phytopathology, 82(7), 760–765.

    Google Scholar 

  • Teng, P. S., & Close, R. C. (1978). Effect of temperature and uredinium density on urediniospore production, latent period, and infectious period of Puccinia hordei Otth. Journal of Agricultural Research, 21, 287–296.

    Google Scholar 

  • Yang, X. B., Royer, M. H., Tschanz, A. T., & Tsai, B. Y. (1990). Analysis and quantification of soybean rust epidemics from seventy-three sequential planting experiments. Phytopathology, 80(12), 1421–1427.

    Google Scholar 

  • Yeh, C., Sinclair, J., & Tschanz, A. (1982). Phakopsora pachyrhizi: Uredial development, urediospore production and factors affecting teliospore formation on soybeans. Australian Journal of Agricultural Research, 33(1), 25–31.

    Google Scholar 

  • Zadoks, J. C., & Schein, R. D. (1980). Epidemiology and plant disease management. In J. Kranz (Ed.), Comparative epidemiology: A tool for better disease management (pp. 1–17). Wageningen, Netherlands: Oxford University Press.

    Google Scholar 

  • Zanatta, T., Reis, E. M., & Zanatta, M. (2012). Adjuvant concentrations and uredospore densities on Phakopsora pachyrhizi infection efficiency in soybean. Summa Phytopathologica, 38(2), 148–151.

    Google Scholar 

Download references

Acknowledgments

We thank the São Paulo Research Foundation (FAPESP) for financial support (grant #013/24003-9) and for a PhD grant to Isabela V. Primiano (grant #015/26108-8). We thank Silvia de Afonseca Lourenço for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabela V. Primiano.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The authors declare that the manuscript is original. Ethical standards have been followed in accordance with the policies of this journal.

Human and animal rights

This work does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

Selected area (900 cm2) for spray inoculation in grapevine ‘Niagara Rosada’ leaves (a) and in soybean ‘M6410IPRO’ leaflets (b). (PNG 394 kb)

High resolution image (TIF 1464 kb)

ESM 2

Lesion growth of Phakopsora rusts. The number of lesions was constant, but each lesion grew in size and number of uredinia over time. Asian grapevine leaf rust (Phakopsora meliosmae-myrianthae) and Asian soybean rust (Phakopsora pachyrhizi) lesions on grapevine ‘Niagara Rosada’ plants (a and c) and soybean ‘M6410IPRO’ plants (b and d), respectively. Dpi = days post inoculation. (PNG 4241 kb)

High resolution image (TIFF 7979 kb)

ESM 3

Asian grapevine leaf rust (Phakopsora meliosmae-myrianthae) and Asian soybean rust (Phakopsora pachyrhizi) progress and changes in photosynthetic variables over time on grapevine ‘Niagara Rosada’ plants (a, c, and e) and soybean ‘M6410IPRO’ plants (b, d, and f) in the first (dark circles) and in the second (white circles) experiments. The relative photosynthetic variables were relative stomatal conductance (gsx/gso – e and f), relative intercellular CO2 concentration (Cix/Cio – g and h), and relative transpiration (Ex/Eo - i and j). Bars represent the mean standard error (n = 6). Dashed lines represent values of diseased plants equal to healthy plants. (PNG 95 kb)

High resolution image (TIF 8557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Primiano, I.V., Amorim, L. Comparative study on the monocycle of Phakopsora meliosmae-myrianthae and Phakopsora pachyrhizi. Eur J Plant Pathol 157, 151–162 (2020). https://doi.org/10.1007/s10658-020-01995-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-01995-x

Keywords

Navigation