Skip to main content

Advertisement

Log in

Three novel species of fungi associated with pine species showing needle blight-like disease symptoms

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Pine needle diseases, such as red band and brown spot needle blight, are serious pine diseases that threatens forests in many countries. Several outbreaks have been reported resulting in loss of productivity and mortality in both exotic and native plantations of Pinus spp. Symptomatology of these two diseases is quite similar and characterized by the appearance of yellowish areas/bands on hosts’ leaves that subsequently lead to the appearance of more extensive lesions and/or necrotic areas. In an attempt to understand the main causes of needle blight-like disease symptoms a study was carried in two pine stands that were apparently affected by red band and brown spot needle blights. Needles showing spots and/or bands with fruiting bodies were sampled. From 25 pine trees samples, 82 fungal isolates were successfully retrieved. The most common fungal genera were Pestalotiopsis (42.68%, n = 35), Rhizosphaera (28.04%, n = 23) and Cladosporium (9.75%, n = 8). Seven isolates could not be assigned to a species through molecular identification by ITS sequence analysis, potentially representing novel taxa. Based on multilocus phylogenetic analyses, using ITS, tub2 and tef1-α sequences, and morphological data, we propose three novel fungal species: Didymocyrtis pini sp. nov., Pestalotiopsis iberica sp. nov. and Rhizosphaera pinicola sp. nov. These species are potential active players in the symptomatology initially associated to red band and brown spot needle blight diseases. Although the pathogenicity of these fungi needs to be confirmed, this study suggests a high complexity underlying fungal species associated with these diseases which may impact disease epidemiology and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams, J. C., & Orehart, A. L. (1982). Decline and death of Pinus spp. in Delaware Caused by Bursaphelenchus xylophilus. Journal of Nematology, 14(3), 382–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alves, A., Correia, A., Luque, J., & Phillips, A. (2004). Botryosphaeria corticola sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia, 96(3), 598–613. https://doi.org/10.1080/15572536.2005.11832956

    Article  PubMed  Google Scholar 

  • Alves, A., Phillips, A. J. L., Henriques, I., & Correia, A. (2007). Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Research in Microbiology, 158, 112–121. https://doi.org/10.1016/j.resmic.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  • Bednářová, M., Dvořák, M., Janoušek, J., & Jankovský, L. (2013). Other foliar diseases of coniferous trees. In P. Gonthier & G. Nicolotti (Eds.), Infectious forest diseases (pp. 458–487).

  • Bensch, K., Groenewald, J. Z., Dijksterhuis, J., Andersen, B., Summerell, B. A., Shin, H.-D., Dugan, F. M., Schroers, H.-J., Braun, U., & Crous, P. W. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology, 67, 1–94. https://doi.org/10.3114/sim.2010.67.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezos, D., Martínez-Álvarez, P., Sanz-ros, A. V., Martín-García, J., Fernandez, M. M., & Diez, J. J. (2018). Fungal communities associated with Bark Beetles in Pinus radiata Plantations in Northern Spain affected by Pine Pitch Canker, with special focus on Fusarium Species. Forests, 9, 1–20. https://doi.org/10.3390/f9110698

    Article  Google Scholar 

  • Blank, L., Martín-García, J., Bezos, D., Vettraino, A. M., Krasnov, H., Lomba, J. M., Fernández, M., & Diez, J. J. (2019). Factors affecting the distribution of pine pitch canker in Northern Spain. Forests, 10, 1–16. https://doi.org/10.3390/f10040305

    Article  Google Scholar 

  • Botella, L., & Diez, J. J. (2011). Phylogenetic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Diversity, 47, 9–18. https://doi.org/10.1007/s13225-010-0061-1

    Article  Google Scholar 

  • Bußkamp, J., Langer, G. J., & Langer, E. J. (2020). Sphaeropsis sapinea and fungal endophyte diversity in twigs of Scots pine (Pinus sylvestris) in Germany. Mycological Progress, 19, 985–999. https://doi.org/10.1007/s11557-020-01617-0

    Article  Google Scholar 

  • Crous, P. W., Wingfield, M. J., Schumacher, R. K., Summerell, B. A., Giraldo, A., Gené, J., Guarro, J., Wanasinghe, D. N., Hyde, K. D., Camporesi, E., Jones, E. B. G., Thambugala, K. M., Malysheva, E. F., Malysheva, V. F., Acharya, K., Álvarez, J., Alvarado, P., Assefa, A., Barnes, C. W., et al. (2014). Fungal Planet description sheets: 281–319. Persoonia, 33, 212–289. https://doi.org/10.3767/003158514X685680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crous, P. W., Wingfield, M. J., Burgess, T. I., Hardy, G. E. S. J., Gené, J., Guarro, J., Baseia, I. G., García, D., Gusmão, L. F. P., Thangavel, R., Adamčík, S., Barili, A., Barnes, C. W., Bezerra, J. D. P., Bordallo, J. J., Santiago, A. L. C. M. D. A., De Oliveira, L. F., De Souza, C. A. F., & Déniel, F. (2018). Fungal Planet description sheets: 716–784. Persoonia, 40, 240–393. https://doi.org/10.3767/persoonia.2018.40.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diederich, P., & Kocourkova, J. (2007). The lichenicolous Phoma species (coelomycetes) on Cladonia. The Lichenologist, 39, 153–163. https://doi.org/10.1017/S0024282907006044

    Article  Google Scholar 

  • Diederich, P., Lawrey, J. D., & Ertz, D. (2018). The 2018 classification and checklist of lichenicolous fungi, with 2000 non-lichenized, obligately lichenicolous taxa. The Bryologist, 121(3), 340–425. https://doi.org/10.1639/0007-2745-121.3.340

    Article  Google Scholar 

  • Ertz, D., Diederich, P., Lawrey, J. D., Berger, F., Freebury, C. E., Coppins, B., Gardiennet, A., & Hafellner, J. (2015). Phylogenetic insights resolve Dacampiaceae (Pleosporales) as polyphyletic: Didymocyrtis (Pleosporales, Phaeosphaeriaceae) with Phoma - like anamorphs resurrected and segregated from Polycoccum (Trypetheliales, Polycoccaceae fam. nov.). Fungal Diversity, 74, 53–89. https://doi.org/10.1007/s13225-015-0345-6

    Article  Google Scholar 

  • European and Mediterranean Plant Protection Organization (EPPO). (2020). EPPO A1 and A2 Lists of pests recommended for regulation as quarantine pests. In EPPO Standards (Vol. 2). https://gd.eppo.int/download/standard/2/pm1-002-29-en.pdf

  • European Forest Institute (EFI). (2020). A Mediterranean Forest Research Agenda – MFRA 2010–2020.

  • Giordano, L., Gonthier, P., Varese, G. C., Miserere, L., & Nicolotti, G. (2009). Mycobiota inhabiting sapwood of healthy and declining Scots pine (Pinus sylvestris L.) trees in the Alps. Fungal Diversity, 38, 69–83.

    Google Scholar 

  • Goldberg, N. P. (2017). Rhizosphaera needle cast disease of blue spruce.

  • Gonçalves, M. F. M., Esteves, A. C., & Alves, A. (2020). Revealing the hidden diversity of marine fungi in Portugal with the description of two novel species, Neoascochyta fuci sp. nov. and Paraconiothyrium salinum sp. nov. International Journal of Systematic and Evolutionary Microbiology, 70, 5337–5354. https://doi.org/10.1099/ijsem.0.004410

    Article  CAS  PubMed  Google Scholar 

  • Hall, T. A. (1999). BioEdit a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium, 41, 94–98.

    Google Scholar 

  • Hunter, G. C., Wingfield, B. D., Crous, P. W., & Wingfield, M. J. (2006). A multi-gene phylogeny for species of Mycosphaerella occurring on Eucalyptus leaves. Studies in Mycology, 55, 147–161. https://doi.org/10.3114/sim.55.1.147

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivanová, H. (2016). Comparison of the fungi Pestalotiopsis funerea (Desm.) Steyaert and Truncatella hartigii (Tubeuf) Steyaert isolated from some species of the genus Pinus L. in morphological characteristics of conidia and appendages. Journal of Forest Science, 62(6), 279–284.

    Article  Google Scholar 

  • Jansons, A., Zeltinš, P., Donis, J., & Neimane, U. (2020). Long-term effect of lophodermium needle cast on the growth of scots pine and implications for financial outcomes. Forests, 11, 1–12. https://doi.org/10.3390/f11070718

    Article  Google Scholar 

  • Jie, C., Xin, H., Xuefeng, L., & Ling, M. (2020). First report of Pestalotiopsis neglecta causing black spot needle blight of Pinus sylvestris var. mongolica in China. Plant Disease, 104(5), 1545–1545.

    Google Scholar 

  • Juzwik, J., & Service, U. F., Central, N., Experiment, F., Avenue, F., & Paul, S. (1993). Morphology, cultural characteristics, and pathogenicity of Rhizosphaera kalkhoffii on Picea spp. in Northern Minnesota and Wisconsin. Plant Disease, 77(6), 630–634.

    Article  Google Scholar 

  • Korhonen, K., & Stahl, G. (2020). Maintenance and appropriate enhancement of forest resources and their contribution to global carbon cycles. In State of Europe’s Forests 2020.

  • Kowalski, T. (1993). Fungi in living symptomless needles of Pinus sylvestris with respect to some observed disease processes. Journal of Phytopathology, 145, 129–146. https://doi.org/10.1111/j.1439-0434.1993.tb01409.x

    Article  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumi, J., & Lang, K. J. (1979). The susceptibility of various spruce species to Rhizosphaera kalkhoffii and some cultural characteristics of the fungus in vitro. Journal of Forest Pathology, 9, 35–46.

    Article  Google Scholar 

  • Lamichhane, J. R., & Venturi, V. (2015). Synergisms between microbial pathogens in plant disease complexes: A growing trend. Frontiers in Plant Science, 6, 1–12. https://doi.org/10.3389/fpls.2015.00385

    Article  Google Scholar 

  • Lawrence, D. P., Gannibal, P. B., Dugan, F. M., & Pryor, B. M. (2014). Characterization of Alternaria isolates from the infectoria species-group and a new taxon from Arrhenatherum, Pseudoalternaria arrhenatheria sp. nov. Mycological Progress, 13, 257–276. https://doi.org/10.1007/s11557-013-0910-x

    Article  Google Scholar 

  • Lawrey, J., & Diederich, P. (2003). Lichenicolous Fungi: Interactions, Evolution, and Biodiversity. The Bryologist, 106(1), 80–120.

    Article  Google Scholar 

  • Lawrey, J. D., Diederich, P., Nelsen, M. P., Freebury, C., Van den Broek, D., Sikaroodi, M., & Ertz, D. (2012). Phylogenetic placement of lichenicolous Phoma species in the Phaeosphaeriaceae (Pleosporales, Dothideomycetes). Fungal Diversity, 55, 195–213. https://doi.org/10.1007/s13225-012-0166-9

    Article  Google Scholar 

  • Liu, F., Bonthond, G., Groenewald, J. Z., Cai, L., & Crous, P. W. (2019). Sporocadaceae, a family of coelomycetous fungi with appendage-bearing. Studies in Mycology, 92, 287–415. https://doi.org/10.1016/j.simyco.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  • Lopes, A., Phillips, A. J. L., & Alves, A. (2017). Mating type genes in the genus Neofusicoccum: Mating strategies and usefulness in species delimitation. Fungal Biology, 121, 394–404. https://doi.org/10.1016/j.funbio.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  • Madar, Z., Solel, Z., & Kimchi, M. (1991). Pestalotiopsis Canker of Cypress in Israel. Phytoparasitica, 19(1), 79–81.

    Article  Google Scholar 

  • Magnani, R. F., Rodrigues-Fo, E., & Daolio, C. (2003). Three highly oxygenated caryophyllene sesquiterpenes from Pestalotiopsis sp., a fungus isolated from Bark of Pinus taeda. Zeitschrift Für Naturforschung, 58, 319–324.

    Article  CAS  Google Scholar 

  • Maharachchikumbura, S. S. N., Guo, L.-D., Cai, L., Chukeatirote, E., Wu, W. P., Sun, X., Crous, P. W., Bhat, D. J., McKenzie, E. H. C., Bahkali, A. H., & Hyde, K. D. (2012). A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Diversity, 56, 95–129. https://doi.org/10.1007/s13225-012-0198-1

    Article  Google Scholar 

  • Maharachchikumbura, S. S. N., Hyde, K. D., Groenewald, J. Z., Xu, J., & Crous, P. W. (2014). Pestalotiopsis revisited. Studies in Mycology, 79, 121–186. https://doi.org/10.1016/j.simyco.2014.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez, A. T., & Ramírez, C. (1983). Rhizosphaera oudemansii (Sphaeropsidales) associated with a needle cast of Spanish Abies pinsapo. Mycopathologia, 83, 175–182.

    Article  Google Scholar 

  • Martínez-Álvarez, P., Martín-García, J., Rodríguez-Ceinós, S., & Diez, J. J. (2012). Monitoring endophyte populations in pine plantations and native oak forests in Northern Spain. Forest Systems, 21, 373. https://doi.org/10.5424/fs/2012213-02254

    Article  Google Scholar 

  • Martínez-Álvarez, P., Fernández-González, R. A., Sanz-Ros, A. V., Pando, V., & Diez, J. J. (2016). Two fungal endophytes reduce the severity of pitch canker disease in Pinus radiata seedlings. Biological Control, 94, 1–10. https://doi.org/10.1016/j.biocontrol.2015.11.011

    Article  Google Scholar 

  • Mercader, G. M., Flores, S. Z., Vargas, G. G., & Von Stowasser, E. S. (2006). Screening to antagonistic fungi for Botrytis cinerea biocontrol in Chilean forest nurseries. Bosque, 27(2), 126–134. https://doi.org/10.4067/s0717-92002006000200007

    Article  Google Scholar 

  • Mesanza, N., Raposo, R., Elvira-Recuenco, M., Hernández-Escribano, L., Barnes, I., van der Nest, A., Pascual, M. T., Barrena, I., Martín, U. S., Cantero, A., & Iturritxa, E. (2021). New Hosts for Lecanosticta acicola and Dothistroma septosporum in Spain. Forest Pathology, 51, 1–6. https://doi.org/10.20944/PREPRINTS201912.0031.V1

    Article  Google Scholar 

  • Mittal, R. K., Singh, P., & Wang, B. S. P. (1987). Botrytis: A hazard to reforestation. Forest Pathology, 17, 369–384. https://doi.org/10.1111/j.1439-0329.1987.tb01330.x

    Article  Google Scholar 

  • Möller, E. M., Bahnweg, G., Sandermann, H., & Geiger, H. H. (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research, 20(22), 6115–6116. https://doi.org/10.1093/nar/20.22.6115

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales-Rodríguez, C., Matteo, D. V., Aleandri, M., & Vannini, A. (2019). Pestalotiopsis biciliata, a new leaf pathogen of Eucalyptus spp. recorded in Italy. Forest Pathology, 1–7. https://doi.org/10.1111/efp.12492

  • Mullett, M., & Barnes, I. (2012). Dothistroma Isolation and molecular identification methods. In COST ACTION FP1102 determining invasiveness and risk of dothistroma (Issue May). https://doi.org/10.1007/978-1-4020-4585-1_266

  • Mullett, M. S., Adamson, K., Bragança, H., Bulgakov, T. S., Georgieva, M., Henriques, J., Jürisoo, L., Laas, M., & Drenkhan, R. (2018). New country and regional records of the pine needle blight pathogens Lecanosticta acicola, Dothistroma septosporum and Dothistroma pini. Forest Pathology, 48(5), 1–10. https://doi.org/10.1111/efp.12440

    Article  Google Scholar 

  • Muñoz-Adalia, E. J., Sanz-Ros, A. V., Flores-Pacheco, J. A., Hantula, J., Diez, J. J., Vainio, E. J., & Fernández, M. (2017). Sydowia polyspora dominates fungal communities carried by two Tomicus species in pine plantations threatened by Fusarium circinatum. Forests, 8, 1–16. https://doi.org/10.3390/f8040127

    Article  Google Scholar 

  • Ortíz de Urbina, E., Mesanza, N., Aragonés, A., Raposo, R., Elvira-Recuenco, M., Boqué, R., Patten, C., Aitken, J., & Iturritxa, E. (2016). Emerging Needle Blight Diseases in Atlantic Pinus Ecosystems of Spain. Forests, 8(1), 18. https://doi.org/10.3390/f8010018

    Article  Google Scholar 

  • Phookamsak, R., Liu, J.-K., Mckenzie, E. H. C., Manamgoda, D. S., Ariyawansa, H., Thambugala, K. M., Dai, D.-Q., Camporesi, E., Chukeatirote, E., Wijayawardene, N. N., Bahkali, A. H., Mortimer, P. E., Xu, J.-C., & Hyde, K. D. (2014). Revision of Phaeosphaeriaceae. Fungal Diversity, 68, 159–238. https://doi.org/10.1007/s13225-014-0308-3

    Article  Google Scholar 

  • Qi, M., Xie, C.-X., Chen, Q.-W., & Yu, Z.-D. (2021). Pestalotiopsis trachicarpicola, a novel pathogen causes twig blight of Pinus bungeana (Pinaceae : Pinoideae) in China. Antonie Van Leeuwenhoek, 114, 1–9. https://doi.org/10.1007/s10482-020-01500-8

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Schneider, S., Jung, E., Queloz, V., Meyer, J. B., & Rigling, D. (2019). Detection of pine needle diseases caused by Dothistroma septosporum, Dothistroma pini and Lecanosticta acicola using different methodologies. Forest Pathology, 49(2), 1–9. https://doi.org/10.1111/efp.12495

    Article  Google Scholar 

  • Schubert, K., Greslebin, A., Groenewald, J. Z., & Crous, P. W. (2009). New foliicolous species of Cladosporium from South America. Persoonia, 22, 111–122. https://doi.org/10.3767/003158509X449381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, A. C., Diogo, E., Henriques, J., Ramos, A. P., Sandoval-Denis, M., Crous, P. W., & Bragança, H. (2020). Pestalotiopsis pini sp. nov., an Emerging Pathogen on Stone Pine (Pinus pinea L.). Forests, 11, 1–17.

    Google Scholar 

  • Skilling, D. D., & Walla, J. A. (1986). Rhizosphaera needle cast of spruce. In J. W. Riffle (Ed.), Diseases of trees in the great plains (pp. 124–127).

  • Summerell, B. A. (2019). Resolving Fusarium: Current status of the genus. Annual Review of Phytopathology, 57, 323–339. https://doi.org/10.1146/annurev-phyto-082718-100204

    Article  CAS  PubMed  Google Scholar 

  • Swofford, D. L. (1993). PAUP: Phylogenetic Analysis Using Parsimony. Mac Version 3. 1. 1. (Computer Program and Manual).

  • Syme, P. (2018). Werner’s nomenclature of colours: Adapted to zoology, botany, chemistry, mineralogy, anatomy, and the arts. Smithsonian Institution.

    Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876–4882.

    Article  CAS  Google Scholar 

  • Trakunyingcharoen, T., Lombard, L., Groenewald, J. Z., Cheewangkoon, R., Toanun, C., Alfenas, A. C., & Crous, P. W. (2014). Mycoparasitic species of Sphaerellopsis, and allied lichenicolous and other genera. International Mycological Association, 5(2), 391–414. https://doi.org/10.5598/imafungus.2014.05.02.05

    Article  Google Scholar 

  • Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant–microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology, 18, 607–621. https://doi.org/10.1038/s41579-020-0412-1

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela-Lopez, N., Sutton, D. A., Cano-Lira, J. F., Paredes, K., Wiederhold, N., Guarro, J., & Stchigel, A. M. (2017). Coelomycetous fungi in the clinical setting: morphological convergence and cryptic diversity. Journal of Clinical Microbioly, 55, 552–567.

    Article  CAS  Google Scholar 

  • Xu, J., Ebada, S. S., & Proksch, P. (2010). Pestalotiopsis a highly creative genus: Chemistry and bioactivity of secondary metabolites. Fungal Diversity, 44, 15–31. https://doi.org/10.1007/s13225-010-0055-z

    Article  Google Scholar 

  • Zamora, P., Martínez-Ruiz, C., & Diez, J. J. (2008). Fungi in needles and twigs of pine plantations from northern Spain. Fungal Diversity, 30, 171–184.

    Google Scholar 

Download references

Acknowledgements

Thanks are due to the Portuguese Foundation for Science and Technology (FCT/MCTES) for the financial support to CESAM (UIDP/50017/2020 + UIDB/50017/2020) and the PhD grants of  Pedro Monteiro (SFRH/BD/143879/2019) and Micael Gonçalves (SFRH/BD/129020/2017). This study was also made possible through project PID2019-110459RB-I00 funded by MICINN (Spain) and FEDER (EU) budget as well as project VA208P20 funded by JCYL (Spain).

All principles of ethical and professional conduct have been followed during this research and elaboration of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Alves.

Ethics declarations

Research involving human participants and/or animals

Not applicable.

Informed consent

All authors have reviewed the manuscript and approved its submission to the European Journal of Plant Pathology.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, P., Gonçalves, M.F.M., Pinto, G. et al. Three novel species of fungi associated with pine species showing needle blight-like disease symptoms. Eur J Plant Pathol 162, 183–202 (2022). https://doi.org/10.1007/s10658-021-02395-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02395-5

Keywords

Navigation