Skip to main content
Log in

Concise review of the species Pterocladiella capillacea (S.G. Gmelin) Santelices & Hommersand

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Pterocladiella capillacea is a well-known source of high quality bacteriological and pharmaceutical grade agar and agarose, being economically exploited in few countries. From current knowledge all raw material is collected from wild populations that are being overharvested. This resulted in a biomass shortage, and consequently the wholesale prices peaked in the last years and the future of this industry is uncertain. It is also recognized that, to date, there is not any known commercial cultivation of this species, mostly due to its slow growth. Ecologically, P. capillacea fronds act as nurseries and as a macroalgal habitat for several marine invertebrates and are an “hot spot” for opportunistic bacteria. In addition, algal fronds or parts of them are directly used as food by several marine grazers (e.g. turtles, fishes, gastropods and sea urchins). The present work compiles and updates the published information on P. capillacea biology, ecology and biotechnological potential and presents a concise review on the species distribution, morphology, anatomy, ecology, life history, productivity, effect of ecological determinants, wild and cultured stocks, harvesting and utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott IA (1997) Taxonomy of economic seaweeds: with reference to some Pacific species, Volume VI. Publication No. T-040. University of California, La Jolla, CA

  • Abdel-Fattah AF, Abed NM, Edrees M (1973) Seasonal variation in the chemical composition of the agarophyte Pterocladia capillacea. J Mar Freshwat Res 24:177–181

    CAS  Google Scholar 

  • Abreu MH, Pereira R, Buschmann AH, Sousa-Pinto I, Yarish C (2011a) Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J Exp Mar Biol Ecol 407:190–199

    CAS  Google Scholar 

  • Abreu MH, Pereira R, Yarish C, Buschmann AH, Sousa-Pinto I (2011b) IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77–87

    Google Scholar 

  • Adams NM (1997) Common seaweeds of New Zealand. Canterbury University Press, Auckland

    Google Scholar 

  • Alencar DB, Diniz JC, Rocha SAS, dos Santos Pires-Cavalcante KM, Freitas JO, Nagano CS, Sampaio AH, Saker-Sampaio S (2017) Chemical composition of volatile compounds in two red seaweeds, Pterocladiella capillacea and Osmundaria obtusiloba, using static headspace gas chromatography mass spectrometry. J Appl Phycol 29:1571–1576

    Google Scholar 

  • Alencar DB, Diniz JC, Rocha SAS, Pires-Cavalcante KMS, Lima RL, Sousa KC, Freitas JO, Bezerra RM, Baracho BM, Sampaio AH, Viana FA, Saker-Sampaio S (2018) Fatty acid composition from the marine red algae Pterocladiella capillacea (S. G. Gmelin) Santelices & Hommersand 1997 and Osmundaria obtusiloba (C. Agardh) R. E. Norris 1991 and its antioxidant activity. Anais Acad Bras Cienc 90:449–459

    Google Scholar 

  • Allen JF, Nield J (2017) Redox tuning in photosystem II. Trends Plant Sci 22:97–99

    CAS  PubMed  Google Scholar 

  • Anadón R, Fernandéz C (1986) Comparacion de tres comunidades de horizontes intermareales con abundancia de Gelidium latifolium (Grev.) Born. et Thur. en la costa de Asturias (N de España). Investig Pesq 50:353–366

    Google Scholar 

  • AOnline (2016) Apanha de algas rendeu 120 mil euros em 2015. Seaweed harvest has yielded 120000 € in 2015. Açoriano Oriental newspaper 6. http://www.ccah.eu/economia/noticias/ver.php?id=11598. Accessed 21 February 2016

  • Arasaki S, Arasaki T (1983) Low calorie, high nutrition vegetables from the sea. To help you look and feel better. Japan Publications Inc., Tokyo

    Google Scholar 

  • Ardré F (1970) Contribution à l’étude des algues marines du Portugal. I La flore Portug Acta Biol Ser B 10:137–547

    Google Scholar 

  • Armisén R (1991) Agar and agarose biotechnological applications. Hydrobiologia 221:157–166

    Google Scholar 

  • Bailey JC, Freshwater DW (1997) Molecular systematics of the Gelidiales: inferences from separate and combined analyses of plastid rbcL and nuclear SSU gene sequences. Eur J Phycol 32:343–352

    Google Scholar 

  • Beer S, Eshel A (1983) Photosynthesis of Ulva sp. II. utilization of CO2 and HCO3 when submerged. J Exp Mar Biol Ecol 70:99–106

  • Bertocci I, Arenas F, Cacabelos E, Martins GM, Seabra MI, Alvaro NV, Fernandes JN, Gaiao R, Mamede N, Mulas M, Neto AI (2017) Nowhere safe? Exploring the influence of urbanization across mainland and insular seashores in continental Portugal and the Azorean Archipelago. Mar Pollut Bull 114:644–655

    CAS  PubMed  Google Scholar 

  • Bidwell RGS, McLachlan J (1985) Carbon nutrition of seaweeds: photosynthesis, photorespiration and respiration. J Exp Mar Biol Ecol 86:15–46

    CAS  Google Scholar 

  • Bixler HJ, Porse H (2010) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Google Scholar 

  • Bjork M, Haglund K, Ramazanov Z, Pedersen M (1993) Inducible mechanisms for HCO3 utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J Phycol 29:166–173

    Google Scholar 

  • Boo GH, Jang HJ, Freshwater DW, Fujii MT, Nelson WA, Lee KM, Boo SM (2012) Genetic structure and phylogeography of Pterocladiella capillacea (Gelidiaceae, Rhodophyta) based on plastid rbcl and mitochondrial cox1 and cob. J Phycol 48:S15–S16

    Google Scholar 

  • Boo GH, Le Gall L, Miller KA, Freshwater DW, Wernberg T, Terada R, Yoon KJ, Boo SM (2016) A novel phylogeny of the Gelidiales (Rhodophyta) based on five genes including the nuclear CesA, with descriptions of Orthogonacladia gen. nov. and Orthogonacladiaceae fam. nov. Mol Phylogenet Evol 101:359–372

    CAS  PubMed  Google Scholar 

  • Boo SM, Kim SY, Hong IS, Hwan IK (2010) Reexamination of the genus Pterocladiella (Gelidiaceae, Rhodophyta) in Korea based on morphology and rbcL sequences. Algae 25:1–9

    Google Scholar 

  • Bottalico A, Delle Foglie CI, Fanelli M (2008) Growth and reproductive phenology of Pterocladiella capillacea (Rhodophyta: Gelidiales) from the southern Adriatic Sea. Bot Mar 51:124–131

    Google Scholar 

  • Bouhlal R, Riadi H, Bourgougnon N (2010) Antiviral activity of the extracts of Rhodophyceae from Morocco. Afr J Biotechnol 9:7968–7975

    Google Scholar 

  • Bunker FSD, Brodie JA, Maggs CA, Bunker AR (2010) Seasearch guide to seaweeds of Britain and Ireland. Marine Conservation Society, Ross-on-Wye

    Google Scholar 

  • Buschmann AH, Retamales CA, Figueroa C (1997) Ceramialean epiphytism in an intertidal Gracilaria chilensis (Rhodophyta) bed in southern Chile. J Appl Phycol 9:129–135

    Google Scholar 

  • Buschmann AH, Troell M, Kautsky N (2001) Integrated algal farming: a review. Cah Biol Mar 42:83–90

    Google Scholar 

  • Cacabelos E, Martins GM, Thompson R, Prestes ACL, Azevedo JMN, Neto AI (2016) Factors limiting the establishment of canopy-forming algae on artificial structures. Estuar Coast Shelf Sci 181:277–283

    Google Scholar 

  • Calabrese G (1971) Resistenza di Pterocladia capillacea (Gmel.) Born. et Thur. a variazione di salinita. Giornale Bot Ital 41:139–162

    Google Scholar 

  • Callaway E (2015) Lab staple agar runs low. Nature. 528:171–172

    CAS  PubMed  Google Scholar 

  • Cha S-H, Lee K-W, Jeon Y-J (2006) Screening of extracts from red algae in Jeju for potentials marine angiotensin-I converting enzyme (ACE) inhibitory activity. Algae 21:343–348

    Google Scholar 

  • Cook CM, Lanaras T, Roubelakis-Angelakis KA (1988) Bicarbonate transport and alkalization of the medium by four species of Rhodophyta. J Exp Bot 39:1185–1198

    CAS  Google Scholar 

  • Cote GL, Hanisak MD (1986) Production and properties of native agars from Gracilaria tikvahiae and other red algae. Bot Mar 29:359–366

    CAS  Google Scholar 

  • Coutinho R, Yoneshigue Y (1988) Diurnal variation in photosynthesis vs. irradiance curves from “sun” and “shade” plants of Pterocladia capillacea (Gmelin) Bornet et Thuret (Gelidiaciaceae: Rhodophyta) from Cabo Frio, Rio de Janeiro, Brazil. J Exp Mar Biol Ecol 118:217–228

    Google Scholar 

  • D'Elia CF, DeBoer JA (1978) Nutritional studies of two red algae. II. Kinetics of ammonium and nitrate uptake. J Phycol 14:266–272

    CAS  Google Scholar 

  • DeBoer JA, Guigli HJ, Israel TL, D'Elia CF (1978) Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. J Phycol 14:261–266

    CAS  Google Scholar 

  • Dixon PS (1958) The structure and development of the thallus in the British species of Gelidium and Pterocladia. Ann Bot 22:353–368

    Google Scholar 

  • Dixon PS (1965) Perennation, vegetative propagation and algal life histories, with special reference to Asparagopsis and other Rhodophyta. Bot Gothoburg 3:67–74

    Google Scholar 

  • Dixon PS (1973) Biology of the Rhodophyta. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Dixon PS, Irvine LM (1977) Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 1. Introduction, Nemaliales, Gigartinales, 1st edn. British Museum (Natural History), London

    Google Scholar 

  • El-Din SMM, El-Ahwany AMD (2016) Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J Taibah Univ Sci 10:471–484

    Google Scholar 

  • Errea MI, Matulewicz MC (2003) Unusual structures in the polysaccharides from the red seaweed Pterocladiella capillacea (Gelidiaceae, Gelidiales). Carbohydr Res 338:943–953

    CAS  PubMed  Google Scholar 

  • Felicini GP, Bottalico A, Fanelli M (2002) Morphogenesis in Pterocladiella capillacea (Rhodophyta, Gelidiales): bud differentiation in relation to irradiance-temperature combinations. Plant Biosyst 136:261–267

    Google Scholar 

  • Fralick RA (1980) Algas agarófitas. Exposição oral sobre desenvolvimento das algas nos Açores. Agarophyte algae. Oral presentation on algae development in the Azores. Presidência do Governo, Departamento Regional de Estudos e Planeamento, Região Autónoma dos Açores

  • Fralick RA, Andrade F (1981) The growth, reproduction, harvesting and management of Pterocladia pinnata (Rhodophyceae) in the Azores, Portugal. In: Levring T (ed) Proceedings of the Tenth International Seaweed Symposium, Goteborg (Sweden), 1980, Goteborg, Sweden. Walter de Gruter, Berlin, pp 289–295

    Google Scholar 

  • Fralick RA, Baldwin HP, Neto AI, Hehre EJ (1990) Physiological responses of Pterocladia and Gelidium (Gelidiales, Rhodophyta) from the Azores, Portugal. Hydrobiologia 204-205:479–482

    Google Scholar 

  • Freile-Pelegrín Y, Robledo D, Armisén R, García-Reina G (1996) Seasonal changes in agar characteristics of two populations of Pterocladia capillacea in Gran Canaria, Spain. J Appl Phycol 8:239–246

    Google Scholar 

  • Freshwater DW, Bailey JC (1998) A multigene phylogeny of the Gelidiales including nuclear large-subunit rRNA sequence data. J Appl Phycol 10:229–236

    CAS  Google Scholar 

  • Freshwater DW, Tudor K, O’Shaughnessy K, Wysor B (2010) DNA barcoding in the red algal order Gelidiales: comparison of COI with rbcL and verification of the ‘barcoding gap’. Cryptogam Algol 31:435–449

    Google Scholar 

  • Friedlander M (2008) Advances in cultivation of Gelidiales. J Appl Phycol 20:451–456

    Google Scholar 

  • Friedlander M, Lipkin Y (1982) Rearing of agarophytes and carrageenophytes under field conditions in the Eastern Mediterranean. Bot Mar 25:101–105

    Google Scholar 

  • Friedlander M, Zelikovitch N (1984) Growth rates, phycocolloid yield and quality of the red seaweeds, Gracilaria sp., Pterocladia capillacea, Hypnea musciformis, and Hypnea cornuta, in field studies in Israel. Aquaculture 40:57–66

    CAS  Google Scholar 

  • Fujimoto M, Nishihara GN, Terada R (2014) The effect of irradiance and temperature on the photosynthesis of two agarophytes Gelidium elegans and Pterocladiella tenuis (Gelidiales) from Kagoshima, Japan. Fish Sci 80:695–703

    CAS  Google Scholar 

  • Gal-Or S, Israel A (2004) Growth responses of Pterocladiella capillacea (Rhodophyta) in laboratory and outdoor cultivation. J Appl Phycol 16:195–202

    Google Scholar 

  • Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Google Scholar 

  • Garcia-Jimenez P, Robaina RR (2017) Volatiles in the aquatic marine ecosystem: ethylene and related plant hormones and sporulation in red seaweeds. In: Kumar M, Ralph P (eds) Systems biology of marine ecosystems. Springer, Cham, pp 99–116

    Google Scholar 

  • García-Jiménez P, Robaina RR (2012) Effects of ethylene on tetrasporogenesis in Pterocladiella capillacea (Rhodophyta). J Phycol 48:710–715

    PubMed  Google Scholar 

  • Gayral P (1966) Les Algues des Côtes Françaises (Manche et Atlantique), Paris

  • Gerring PK, Andrew NL, Dun A (2001) Assessment of Pterocladia lucida at Waihau Bay, New Zealand. New Zealan Ministry of Fisheries, Wellington

    Google Scholar 

  • Guiry MD, Guiry GM (2019) AlgaeBase. World-wide electronic publication. National University of Ireland. http://www.algaebase.org. Accessed 20 September 2019

  • Hanisak MD (1979) Nitrogen limitation of Codium fragile ssp. tomentosoides as determined by tissue analysis. Mar Biol 50:333–337

    CAS  Google Scholar 

  • Hanisak MD (1990) The use of Gracilaria tikvahiae (Gracilariales, Rhodophyta) as a model system to understand the nitrogen nutrition of cultured seaweeds. Hydrobiologia 204:79–87

    Google Scholar 

  • Harb TB, Nardelli A, Chow F (2018) Physiological responses of Pterocladiella capillacea (Rhodophyta, Gelidiales) under two light intensities. Photosynthetica 56:1093–1106

    CAS  Google Scholar 

  • Harrison PJ, Hurd CL (2001) Nutrient physiology of seaweeds: application of concepts to aquaculture. Cah Biol Mar 42:71–82

    Google Scholar 

  • Hommersand MH, Fredericq S (1996) Vegetative and reproductive development of Pterocladia capillacea (Gelidiales, Rhodophyta) from La Jolla, California. Nova Hedwigia, Beihe 112:147–160

    Google Scholar 

  • Hurd CL, Harrison PJ, Bischof K, Lobban CS (2014) Seaweed ecology and physiology, Second Edition edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hurd CL, Nelson WA, Falshaw R, Neill KF (2004) History, current status and future of marine macroalgal research in New Zealand: taxonomy, ecology, physiology and human uses. Phycol Res 52:80–106

    Google Scholar 

  • Ibrahim AMM, Mostafa HM, El-Masry MH, El-Naggar MMA (2005) Active biological materials inhibiting tumor initiation extracted from marine algae, Egypt. Egypt J Aquat Res 31:146–155

    CAS  Google Scholar 

  • Ibrahim HAH, Beltagy EA, Shams El-Din NG, Zokm GME, El-Sikaily AM, Abu-Elela GM (2015) Seaweeds agarophytes and associated epiphytic bacteria along Alexandria coastline, Egypt, with emphasis on the evaluation and extraction of agar and agarose. Rev Biol Mar Oceanogr 50:545–561

    Google Scholar 

  • Iha C, Jamas M, Guimarães SMPB, Fujii MT, Freshwater DW, Oliveira MC (2017) Pterocladiella (Gelidiales, Rhodophyta) species of Brazil including morphological studies of Pterocladiella media and a reassessment of Pterocladiella taylorii. Phycologia 56:624–637

    CAS  Google Scholar 

  • Iha C, Milstein D, Guimarães SMPB, Freshwater DW, Oliveira MC (2015) DNA barcoding reveals high diversity in the Gelidiales of the Brazilian southeast coast. Bot Mar 58:295–305

    CAS  Google Scholar 

  • INII (1966) Aproveitamento de algas na costa portuguesa. Use of algae on the Portuguese coast. Instituto Nacional de Investigação Industrial, Lisboa

    Google Scholar 

  • Israel A, Katz S, Dubinsky Z, Merrill JE, Friedlander M (1999) Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J Appl Phycol 11:447–453

    Google Scholar 

  • Kain JM, Dawes CP (1987) Useful European seaweeds: past hopes and present cultivation. In: Ragan MA, Bird CJ (eds) Twelfth International Seaweed Symposium: Proceedings of the Twelfth International Seaweed Symposium held in Sao Paulo, Brazil, July 27–August 1, 1986. Kluwer, Dordrecht, pp 173–181

    Google Scholar 

  • Kapraun DF, Freshwater DW (2012) Estimates of nuclear DNA content in red algal lineages. AoB Plants 2012:pis005

  • Khamis E, El-Rafey E, Moustafa Abdel Gaber A, Hefnawy A, Galal El-Din Shams El-Din N, Salah El-Din Esmail Ahmed M (2016) Comparative study between green and red algae in the control of corrosion and deposition of scale in water systems. Desalin Water Treat 57:23571–23588

    CAS  Google Scholar 

  • Lahaye M, Rochas C (1991) Chemical structure and physico-chemical properties of agar. Hydrobiologia 221:137–148

    CAS  Google Scholar 

  • Larsson C, Axelsson L (1999) Bicarbonate uptake and utilization in marine macroalgae. Eur J Phycol 34:79–86

    Google Scholar 

  • Lawson GW, John DM (1982) The marine algae and coastal environment of Tropical West Africa. Nova Hedwigia, 70. J. Cramer, Vaduz

  • Lee M-S, Wang S-W, Wang G-J, Pang K-L, Lee C-K, Kuo Y-H, Cha H-J, Lin R-K, Lee T-H (2016) Angiogenesis inhibitors and anti-inflammatory agents from Phoma sp. NTOU4195. J Nat Prod 79:2983–2990

    CAS  PubMed  Google Scholar 

  • Lee RE (2008) Phycology, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lemus A, Bird K, Kapraun DF, Koehn F (1991) Agar yield, quality and standing crop biomass of Gelidium serrulatum, Gelidium floridanum and Pterocladia capillacea in Venezuela. Food Hydrocoll 5:469–479

    CAS  Google Scholar 

  • Levring T (1974) The marine algae of the Archipelago of Madeira. Bolm Mus Munic Funchal 28

  • Lignell Å, Pedersén M (1989) Effects of pH and inorganic carbon concentration on growth of Gracilaria secundata. Brit Phycol J 24:83–89

    Google Scholar 

  • Lobban CS, Harrison PJ (1997) Seaweed ecology and physiology. Cambridge University Press, New York

    Google Scholar 

  • LOTAÇOR (2019) Total annual yields (dry weight in tonnes) of Pterocladiella capillacea harvested in the Archipelago of the Azores. Lotaçor S.A. - Serviço de Lotas dos Açores. http://www.lotacor.pt/PescadoDescarregadoAuth/gratis.php. Accessed 2 Oct 2019

  • MacCaughey V (1918) Algae of the Hawaiian archipelago, II. Bot Gaz 65:121–149

    Google Scholar 

  • Machado LP, Carvalho LR, Young MCM, Cardoso-Lopes EM, Centeno DC, Zambotti-Villela L, Colepicolo P, Yokoya NS (2015) Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts. Rev Bras Farmacogn 25:657–662

    CAS  Google Scholar 

  • Macler BA, West JA (1987) Life history and physiology of the red alga, Gelidium coulteri, in unialgal culture. Aquaculture 61:281–293

    CAS  Google Scholar 

  • Macler B, Zupan JR (1991) Physiological basis for the cultivation of the Gelidiaceae. Hydrobiologia 221:83–90

    Google Scholar 

  • Marinho-Soriano E (2017) Historical context of commercial exploitation of seaweeds in Brazil. J Appl Phycol 29:665–671

    Google Scholar 

  • Mata L, Silva J, Schuenhoff A, Santos R (2007) Is the tetrasporophyte of Asparagopsis armata (Bonnemaisoniales) limited by inorganic carbon in integrated aquaculture? J Phycol 43:1252–1258

    CAS  Google Scholar 

  • McDermid KJ (2007) Nutritional composition of marine plants in the diet of the green sea turtle (Chelonia mydas) in the Hawaiian Islands. Bull Mar Sci 81:55–71

    Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry. FAO Fisheries Technical Paper. No 441

  • Melo RA (1998) Gelidium commercial exploitation: natural resources and cultivation. J Appl Phycol 10:303–314

    Google Scholar 

  • Melo RA (2002) Exploração dos recursos algológicos em Portugal. In: Martins-Loução MAc (ed) Fragmentos em Ecologia. FCUL-Livraria Escolar Editora, pp 45–65

  • Mercado JM, Niell FX, Gil-Rodríguez MC (2001) Photosynthesis might be limited by light, not inorganic carbon availability, in three intertidal Gelidiales species. New Phytol 149:431–439

    CAS  Google Scholar 

  • Moawad MN, Tadros HRZ, Ghobrial MG, Bassiouny AR, Kamal M, Kandeel KM, Ata A (2016) Quantitative screening of biochemical compositions and anti-α-glucosidase activity for six selected marine macroalgae from Mediterranean Coast of Egypt. Int J Contemp Appl Sci 3:104–129

    Google Scholar 

  • Nascimento EFI, Rosso S (2007) Fauna associated with benthic marine macroalgae (Rhodophyta and Phaeophyta) from São Sebastião, São Paulo. Rev Bras Ecol 11:38–52

    Google Scholar 

  • Nasr AH, Mohsen AF, Bekheet IA (1966) Effect of salinity and temperature variations on Pterocladia capillacea. Hydrobiologia 27:395–400

    Google Scholar 

  • NETALGAE (2012) Overview of the seaweed industry by country Ireland, France, Norway, Portugal, Spain, United Kingdom. Co-financed the support of the European Union - by the Atlantic Area operational programme, through the European Regional Development Fund (ERDF) and County Council in Nordland (Norway). http://www.netalgae.eu/uploadedfiles/posters_final_UK_1.pdf. Accessed 20 April 2019

  • Neto AI (1997) Studies on algal communities of São Miguel, Azores. Dissertation. Universidade dos Açores

  • Neto AI (2000a) Ecology and dynamics of two intertidal algal communities on the littoral of the island of São Miguel (Azores). Hydrobiologia 432:135–147

    Google Scholar 

  • Neto AI (2000b) Observations on the biology and ecology of selected macroalgae from the littoral of São Miguel (Azores). Bot Mar 43:483–498

    Google Scholar 

  • Neto AI (2001) Macroalgal species diversity and biomass of subtidal communities of Miguel (Azores). Helgol Mar Res 55:101–111

    Google Scholar 

  • Neto AI, Tittley I, Raposeiro P (2005) Flora Marinha do Litoral dos Açores. Rocky shore marine flora of the Azores. Secretaria Regional do Ambiente e do Mar, Horta, Portugal

    Google Scholar 

  • Ng CKY, Ang PO, Russell DJ, Balazs GH, Murphy MB (2016) Marine macrophytes and plastics consumed by green turtles (Chelonia mydas) in Hong Kong, South China Sea Region. Chelonian Conserv Biol 15:289–292

    Google Scholar 

  • Nishinari K, Fang Y (2017) Relation between structure and rheological/thermal properties of agar. A mini-review on the effect of alkali treatment and the role of agaropectin. Food Struct 13:24–34

    Google Scholar 

  • Oliveira-Filho EC, Sazima IP (1973) Estudos sobre a biologia de algas agarófitas. I—recolonização, brotamento e fenologia em populações naturais de Pterocladia capillacea (Rhodophyta-Gelidiaceae). Bol Zool Biol Mar 30:677–690

    Google Scholar 

  • Oliveira EC, Berchez FAS (1993) Resource biology of Pterocladia capillacea (Gelidiales, Rhodophyta) populations in Brazil. Hydrobiologia 260-261:255–261

    Google Scholar 

  • Oliveira EC, Saito RM, Santos Netol JF, Garófalo GMC (1996) Temporal and spatial variation in agar from a population of Pterocladia capillacea (Gelidiales, Rhodophyta) from Brazil. Hydrobiologia 326:501–504

    Google Scholar 

  • Oliveira SRM, Nascimento AE, Lima MEP, Leite YFMM, Benevides NMB (2002) Purification and characterisation of a lectin from the red marine alga Pterocladiella capillacea (S.G. Gmel.) Santel. & Hommers. Braz J Bot 25:397–403

    CAS  Google Scholar 

  • Osman MEH, Abushady AM, Elshobary ME (2009) In vitro screening of antimicrobial activity of extracts of some macroalgae collected from Abu-Qir bay Alexandria, Egypt. Afr J Biotechnol 9:7203–7208

    Google Scholar 

  • Paiva L, Lima E, Neto A, Baptista J (2017a) Angiotensin I-converting enzyme (ACE) inhibitory activity, antioxidant properties, phenolic content and amino acid profiles of Fucus spiralis L. protein hydrolysate fractions. Mar Drugs 15:E311

    PubMed  Google Scholar 

  • Paiva L, Lima E, Neto AI, Marcone M, Baptista J (2016) Health-promoting ingredients from four selected Azorean macroalgae. Food Res Int 89:432–438

    CAS  PubMed  Google Scholar 

  • Paiva L, Lima E, Neto AI, Marcone M, Baptista J (2017b) Nutritional and functional bioactivity value of selected Azorean nacroalgae: Ulva compressa, Ulva rigida, Gelidium microdon, and Pterocladiella capillacea. J Food Sci 82:1757–1764

    CAS  PubMed  Google Scholar 

  • Paiva LS, Lima EMC, Neto AI, Baptista JAB (2015) Screening for angiotensin I-converting enzyme (ACE) inhibitory activity of enzymatic hydrolysates obtained from Azorean macroalgae. Arquipelago - Life and Marine Sciences 32:11–17

    Google Scholar 

  • Paiva LS, Patarra RF, Neto AI, LIMA EMC, Baptista J (2012) Antioxidant activity of macroalgae from the Azores. Arquipelago - Life and Marine sciences 29:1–6

    Google Scholar 

  • Palminha F (1971) Exploração e utilização de algas marinhas na plataforma portuguesa e nas ilhas do Arquipélago dos Açores. Junta Nacional do Fomento das Pescas 7:25–36

    Google Scholar 

  • Palminha F, Melo RA, Santos R (1982) A existência de Gelidium sesquipedale (Clem.) Born et Thur. na costa sul do Algarve. I. Distribuição loca.l Boletim do INIP 8:93-105

  • Palminha F, Melo RA, Santos R (1985) A existência de Gelidium sesquipedale (Clem.) Born et Thur. na costa sul do Algarve. II. Biomassa total. Boletim do INIP 13:77–91

    Google Scholar 

  • Patarra RF (2018) Culture studies of economically important seaweeds. Doctoral thesis in Biology, Universidade dos Açores

  • Patarra RF, Buschmann AH, Abreu MH, Neto AI (2014) Cultivo de macroalgas nos Açores… Oportunidades e desafios. Seaweed cultivation in the Azores ... Opportunities and challenges. Boletim de Biotecnologia da Sociedade Portuguesa de Biotecnologia 2:16–18

  • Patarra RF, Leite J, Pereira R, Baptista J, Neto AI (2013) Fatty acid composition of selected macrophytes. Nat Prod Res 27:665–669

    CAS  PubMed  Google Scholar 

  • Patarra RF, Lloveras AA, Carreiro AS, Abreu MH, Buschmann AH, Neto AI (2019) Short term effects of irradiance on the growth of Pterocladiella capillacea (Gelidiales, Rhodophyta). Arquipelago. Life and Marine Sciences 36:85–94

  • Patarra RF, Paiva L, Neto AI, Lima E, Baptista J (2011) Nutritional value of selected macroalgae. J Appl Phycol 23:205–208

    CAS  Google Scholar 

  • Patwary MU, Sensen CW, MacKay RM, vanderMeer JP (1998) Nucleotide sequences of small-subunit and internal transcribed spacer regions of nuclear rRNA genes support the autonomy of some genera of the Gelidiales (Rhodophyta). J Phycol 34:299–305

  • Pereira L (2009) Guia Ilustrado das Macroalgas—Conhecer e reconhecer algumas espécies da flora portuguesa. Imprensa da Universidade de Coimbra, Coimbra

    Google Scholar 

  • Pereira L, Correia F (2015) Algas marinhas da costa Portuguesa-ecologia, biodiversidade e utilizações. Nota de Rodapé Edições, Paris

    Google Scholar 

  • Perrone C, Felicini GP, Bottalico A (2006) The prostrate system of the Gelidiales: diagnostic and taxonomic importance. Bot Mar 49:23–33

    Google Scholar 

  • Polifrone M, Gil-Rodríguez MC, Álvarez SD, Stroobant M, Viera-Rodríguez MA (2012) Reproductive phenology of three species of Gelidiales (Rhodophyta) in two macroalgal communities from Tenerife (Atlantic Ocean, Canary Islands, Spain). Anal Jardin Bot Madrid 69:247–252

    Google Scholar 

  • Porse H, Rudolph B (2017) The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J Appl Phycol 29:2187–2200

    Google Scholar 

  • Portaria (2014a) Portaria N. °1, 10 January. Approves harvesting regulation of marine species in the Azores. http://www.azores.gov.pt/JO/Serie+I/2014/S%C3%A9rie+I+N%C2%BA+3+de+10+de+Janeiro+de+2014/Portaria+N%C2%BA+1+de+2014.htm. Accessed 25 April 2019

  • Portaria (2014b) Portaria N. ° 44, 8 July. Amended to Portaria N.° 1/2014. http://www.azores.gov.pt/JO/Serie+I/2014/S%C3%A9rie+I+N%C2%BA+77+de+8+de+Julho+de+2014/Portaria+N%C2%BA+44+de+2014.htm. Accessed 25 April 2019

  • Portaria (2018a) Portaria N.° 57, 20 May. Approves harvesting regulation of marine species in the Azores. https://jo.azores.gov.pt/#/ato/943b33b9-f25a-4894-963e-4ea075e1c2f4. Accessed 25 April 2019

  • Portaria (2018b) Portaria N.° 69, 22 June. Amended to Portaria N.° 57, 20 May. https://jo.azores.gov.pt/#/ato/7f43820e-ddd1-47df-bdd8-b6120a24f112. Accessed 25 April 2019

  • Pujol CA, Errea MI, Matulewicz MC, Damonte EB (1996) Antiherpetic activity of S1, an algal derived sulphated galactan. Phytother Res 10:410–413

    CAS  Google Scholar 

  • Rao AV, Bekheet IA (1976) Preparation of agar-agar from the red seaweed Pterocladia capillacea of the coast of Alexandria, Egypt. Appl Environ Microbiol 32:479–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans Roy Soc B 363:2641–2650

    CAS  Google Scholar 

  • Raven JA, Johnston AM, Kübler JE, Korb R, McInroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Vanderklift M, Fredriksen S, Dunton KH (2002) Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct Plant Biol 29:355–378

    CAS  Google Scholar 

  • Reed M (1907) The economic seaweeds of Hawaii and their food value. Annual report of the Hawaii. Agricultural Experimental Station 1906. Honolulu, Hawaii

  • Reisser J, Proietti M, Sazima I, Kinas P, Horta P, Secchi E (2013) Feeding ecology of the green turtle (Chelonia mydas) at rocky reefs in western South Atlantic. Mar Biol 160:3169–3179

    Google Scholar 

  • Rhein-Knudsen N, Ale MT, Ajalloueian F, Yu L, Meyer AS (2017) Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocoll 63:50–58

    CAS  Google Scholar 

  • Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13:3340–3359

    PubMed  PubMed Central  Google Scholar 

  • Rico JM (1991) Field studies and growth experiments on Gelidiurn latifoliurn from Asturias (northern Spain). Hydrobiologia 221:67–75

    Google Scholar 

  • Rodríguez D (1996) Vegetative propagation by fragmentation of Gelidium sclerophyllum (Gelidiales, Rhodophyta). Hydrobiologia 326:361–365

    Google Scholar 

  • Rodríguez D, Santelices B (1987) Patterns of apical structure in the genera Gelidium and Pterocladia (Gelidiaceae, Rhodophyta). Hydrobiologia 151:199–203

    Google Scholar 

  • Sangil C, Martins GM, Hernández JC, Alves F, Neto AI, Ribeiro C, León-Cisneros K, Canning-Clode J, Rosas-Alquicira E, Mendoza JC, Titley I, Wallenstein F, Couto RP, Kaufmann M (2018) Shallow subtidal macroalgae in the North-eastern Atlantic archipelagos (Macaronesian region): a spatial approach to community structure. Eur J Phycol 53:83–98

    Google Scholar 

  • Santelices B (1978) Multiple interaction of factors in the distribution of some Hawaiian Gelidiales (Rhodophyta). Pac Sci 32:119–147

    Google Scholar 

  • Santelices B (1988a) Synopsis of biological data on the seaweed genera Gelidium and Pterocladia (Rhodophyta). FAO Fisheries Synopsis no. 145, Rome

  • Santelices B (1988b) Taxonomic studies on Chinese Gelidiales (Rhodophyta). In: Abbot IA (ed) Taxonomy of economic seaweeds—with reference to some Pacific and Caribbean species, Volume II. California Sea Grant College Program, California, pp 91–107

  • Santelices B (1991a) Concluding remarks. Hydrobiologia 221:195–1996

    Google Scholar 

  • Santelices B (1991b) Intrageneric differences in cystocarp structure in Gelidium and Pterocladia. Hydrobiologia 221:1–17

    Google Scholar 

  • Santelices B (1991c) Production ecology of Gelidium. Hydrobiologia 221:31–44

    Google Scholar 

  • Santelices B (1991d) Variations in cystocarp structure in Pterocladia Gelidiales Rhodophyta. Pac Sci 45:1–11

    Google Scholar 

  • Santelices B (2001) Implications of clonal and chimeric-type thallus organization on seaweed farming and harvesting. J Appl Phycol 13:153–160

    Google Scholar 

  • Santelices B, Hommersand M (1997) Pterocladiella, a new genus in the Gelidiaceae (Gelidiales, Rhodophyta). Phycologia 36:114–119

    Google Scholar 

  • Santos G (1980) Quality of carrageenan and agar. In: Abbott I, Foster M, Eklund L (eds) Pacific Seaweed Aquaculture. Sea Grant College Program, Institute of Marine Resources, Univesity of California, La Jolla, California, pp 123-129 and 200-201

  • Santos MGM, Lagrota MHC, Miranda MMFS, Yoneshigue-Valentin Y, Wigg MD (1999) A screening for the antiviral effect of extracts from Brazilian marine algae against acyclovir resistant herpes simplex virus type 1. Bot Mar 42:227–230

    Google Scholar 

  • Santos R, Duarte P (1991) Marine plant harvest in Portugal. J Appl Phycol 3:11–18

    Google Scholar 

  • Santos R, Melo RA (2018) Global shortage of technical agars: back to basics (resource management). J Appl Phycol 30:2463–2473

    PubMed  PubMed Central  Google Scholar 

  • Schmidt ÉC, MRdL F, Kreusch MG, Pereira DT, Costa GB, Simioni C, Ouriques LC, Steiner N, Chow F, ESL F, Ramlov F, Maraschin M, Bouzon ZL (2015) Profiles of carotenoids and amino acids and total phenolic compounds of the red alga Pterocladiella capillacea exposed to cadmium and different salinities. J Appl Phycol 28:1955–1963

    Google Scholar 

  • Scrosati R (2001) Demography of genets of clonal red seaweeds: current limitations and proposed solutions using genetic markers from experimental populations. Hidrobiológica 11:149–155

    Google Scholar 

  • Scrosati R (2002a) Morphological plasticity and apparent loss of apical dominance following the natural loss of the main apex in Pterocladiella capillacea (Rhodophyta, Gelidiales) fronds. Phycologia 41:96–98

    Google Scholar 

  • Scrosati R (2002b) An updated definition of genet applicable to clonal seaweeds, bryophytes, and vascular plants. Basic Appl Ecol 3:97–99

    Google Scholar 

  • Seoane-Camba J (1965) Estudios sobre las algas bentónicas en la costa de la Península Ibérica (litoral de Cádiz). Investig Pesq 29:3–216

    Google Scholar 

  • Serviere-Zaragoza E, Scrosati R (2002) Reproductive phenology of Pterocladiella capillacea (Rhodophyta: Gelidiales) from southern Baja California, Mexico. Pac Sci 56:285–290

    Google Scholar 

  • Shanmugam M, Mody KH (2000) Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Curr Sci 79:1672–1683

    CAS  Google Scholar 

  • Shimada S, Horiguchi T, Masuda M (1999) Phylogenetic affinities of genera Acanthopeltis and Yatabella (Gelidiales, Rhodophyta) inferred from molecular analyses. Phycologia 38:528–540

    Google Scholar 

  • Shimada S, Horiguchi T, Masuda M (2000) Two new species of Gelidium (Rhodophyta, Gelidiales), Gelidium tenuifolium and Gelidium koshikianum, from Japan. Phycol Res 48:37–46

    Google Scholar 

  • Shimada S, Masuda M (2002) Japanese species of Pterocladiella Santelices et Hommersand (Rhodophyta, Gelidiales). In: Abbott IA, Mcdermid KJ (eds) Taxonomy of economic seaweeds with reference to some Pacific species. Vol. VIII, vol 8. California Sea Grant College, La Jolla, pp 167–181

    Google Scholar 

  • Silva LM, Lima V, Holanda ML, Pinheiro PG, Rodrigues JA, Lima ME, Benevides NM (2010) Antinociceptive and anti-inflammatory activities of lectin from marine red alga Pterocladiella capillacea. Biol Pharm Bull 33:830–835

    CAS  PubMed  Google Scholar 

  • Soares AR, Robaina MCS, Mendes GS, Silva TSL, Gestinari LMS, Pamplona OS, Yoneshigue-Valentin Y, Kaiser CR, Romanos MTV (2012) Antiviral activity of extracts from Brazilian seaweeds against herpes simplex virus. Rev Bras Farmacog 22:714–723

    CAS  Google Scholar 

  • Sohn CH (1998) The seaweed resources of Korea. In: Critchley AT, Ohno M, Largo DB, Gillespie RD (eds) Seaweed resources of the world. Japan International Cooperation Agency, Yokosuka, Japan, pp 62–69

    Google Scholar 

  • Sousa-Pinto I, Araújo R (2006) The seaweed resources of Portugal. In: Critchley AT, Ohno M (eds) Seaweed resources of the world. Japan International Cooperation Agency, Yokosuka, Japan, pp 176–184

    Google Scholar 

  • Sousa-Pinto I, Murano E, Coelho S, Felga A, Pereira R (1999) The effect of light on growth and agar content of Gelidium pulchellum (Gelidiaceae, Rhodophyta) in culture. Hydrobiologia 398-399:329–338

    Google Scholar 

  • Stewart JG (1984) Vegetative growth rates of Pterocladia capillacea (Gelidiaceae, Rhodophyta). Bot Mar 27:85–94

    Google Scholar 

  • Tarhouni-Jabberi S, Zakraoui O, Ioannou E, Riahi-Chebbi I, Haoues M, Roussis V, Kharrat R, Essafi-Benkhadir K (2017) Mertensene, a halogenated monoterpene, induces G2/M cell cycle arrest and caspase dependent apoptosis of human colon adenocarcinoma HT29 cell line through the modulation of ERK-1/-2, AKT and NF-kB signaling. Mar Drugs 15

  • Taylor RB, Steinberg PD (2005) Host use by Australasian seaweed mesograzers in relation to feeding preferences of larger grazers. Ecology 86:2955–2967

    Google Scholar 

  • Tolomio C, Andreoli C, Rascio N, Talarico L (1986) Pterocladia pinnata (Huds.) Papenf. (Gelidiales) in Italian seas. In: 12th International Seaweed Symposium, São Paulo, p 109

  • Tronchin EM, Freshwater DW (2007) Four Gelidiales (Rhodophyta) new to southern Africa, Aphanta pachyrrhiza gen. et sp. nov., Gelidium profundum sp. nov., Pterocladiella caerulescens and P. psammophila sp. nov. Phycologia 46:325–348

    Google Scholar 

  • Ugadim Y (1988) Estudo comparado de Gelidium coarctatum Kuetzing e Pterocladia capillacea (Gmelin) Bornet et Thuret (Rhodophyta-Gelidiaceae) no litoral brasileiro. Gayana Bot 45:203–223

    Google Scholar 

  • Veras DRA (2011) Moluscos associados à macroalga Pterocladiella caerulescens (Rhodophyta, Pterocladiaceae) na zona entremarés da praia da Pedra Rachada, Paracuru, Ceará, Nordeste do Brasil. Universidade Federal do Ceará, Dissertation

    Google Scholar 

  • Wallenstein FFMM, Neto AI (2006) Intertidal rocky shore biotopes of the Azores: a quantitative approach. Helgol Mar Res 60:196–206

    Google Scholar 

  • Wallenstein FFMM, Neto AI, Álvaro NV, Tittley I (2008) Subtidal rocky shore communities of the Azores: developing a biotope survey method. J Coast Res 1:244–249

    Google Scholar 

  • Wallenstein FM, Terra MR, Pombo J, Neto AI (2009) Macroalgal turfs in the Azores. Mar Ecol 30:113–117

    Google Scholar 

  • Wheeler PA, North WJ (1981) Nitrogen supply, tissue composition and frond growth rates for Macrocystis pyrifera off the coast of southern California. Mar Biol 64:59–69

    CAS  Google Scholar 

  • Xia B-M, Tseng CK, Wang Y-Q (2004) Studies on Chinese species of Gelidiella and Pterocladiella (Gelidiales, Rhodophyta). Hydrobiologia 512:201–207

    Google Scholar 

  • Yokoya NS, Oliveira EC (1992) Temperature responses of economically important red algae and their potential for mariculture in Brazilian waters. J Appl Phycol 4:339–345

    Google Scholar 

  • Young K, Duckworth M, Yaphe W (1971) The structure of agar: Part III. Pyruvic acid, a common feature of agars from different agarophytes. Carbohydr Res 16:446–448

    CAS  Google Scholar 

Download references

Funding

Rita F. Patarra and Ana I. Neto benefited from the projects UID/BIA/00329/2013, 2015–2018 and UID/BIA/00329/2019 and DRCT-M1.1.a/005/Funcionamento-C/2016. Leonel Pereira had the support of Foundation for Science and Technology (FCT), through the strategic project UID/MAR/04292/2019 granted to MARE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Patarra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patarra, R.F., Iha, C., Pereira, L. et al. Concise review of the species Pterocladiella capillacea (S.G. Gmelin) Santelices & Hommersand. J Appl Phycol 32, 787–808 (2020). https://doi.org/10.1007/s10811-019-02009-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-02009-y

Keywords

Navigation