Skip to main content
Log in

SnO2: rGO transparent semiconducting thin films under annealing by hydrazine—modification of optical gap and electrical resistance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, SnO2: rGO compound thin films were deposited on glass substrates by spray pyrolysis method. For the synthesis of SnO2: rGO thin films, different amounts of reduced graphene oxides (0, 25, 50, 75, 100, and 150 mg) were added to the solution. Then, the influence of reduced graphene oxide, and annealing by hydrazine as a reducing agent on the structural, electrical, and optical properties of these films were investigated. The results of XRD analysis in all the samples showed the SnO2 phase is formed and the intensity of peaks increases relatively after reducing with hydrazine and increasing the value of rGO. FE-SEM images of SnO2: rGO samples showed that grain size and porosity decreased after reduction with hydrazine. An enhancement of electrical properties was observed with the addition of reduced graphene oxide and annealing under hydrazine. The minimum sheet resistance equal to 0.42 kΩ/sq. for SnO2: rGO (50 mg) thin films was obtained. The Hall effect experiment also showed the n-type conductivity of all synthesized thin films, and the carrier concentration was calculated to be 1021 cm−3. In addition, the band gap values of the films in the range of 3.58–3.72 eV were obtained and this method is a successful technique for tuning of the band gap of SnO2 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Magari, T. Kataoka, W. Yeh, M. Furuta, High-mobility hydrogenated polycrystalline In2O3 (In2O3: H) thin-film transistors. Nat. Commun. 13(1), 1–8 (2022)

    Article  Google Scholar 

  2. Z. Feng, A. Gaiardo, M. Valt, B. Fabbri, D. Casotti, S. Krik, L. Vanzetti, M.D. Ciana, S. Fioravanti, S. Caramori, A. Rota, Investigation on sensing performance of highly doped Sb/SnO2. Sensors 22(3), 1233 (2022)

    Article  CAS  Google Scholar 

  3. L. Mohamed, M. Noureddine, B. Mokhtar, Y. Al-Douri, B. Djillali, B. Lakhdar, A.F. Abd El-Rehim, M. Jadan, Dislocations and crystallite size distribution of cadmium oxide thin films synthesized by spray pyrolysis technique. Mater. Sci. Eng., B 1(286), 116055 (2022)

    Article  Google Scholar 

  4. L. Johnson, D. Kilin, Effect of ligand groups on photoexcited charge carrier dynamics at the perovskite/TiO2 interface. RSC Adv. 12(1), 78–87 (2022)

    Article  CAS  Google Scholar 

  5. S. Sagadevan, S. Vennila, A.R. Marlinda et al., Synthesis and evaluation of the structural, optical, and antibacterial properties of copper oxide nanoparticles. Appl. Phys. A 125, 489 (2019)

    Article  CAS  Google Scholar 

  6. A. Bouhemadou, D. Allali, K. Boudiaf, B. Al Qarni, S. Bin-Omran, R. Khenata, Y. Al-Douri, Electronic, optical, elastic, thermoelectric and thermodynamic properties of the spinel oxides ZnRh2O4 and CdRh2O4. J. Alloy. Compd. 5(774), 299–314 (2019)

    Article  Google Scholar 

  7. A. Badawi, M.G. Althobaiti, S.S. Alharthi, A.M. Al-Baradi, Tailoring the optical properties of CdO nanostructures via barium doping for optical windows applications. Phys. Lett. A 30(411), 127553 (2021)

    Article  Google Scholar 

  8. G.K. Dalapati, H. Sharma, A. Guchhait, N. Chakrabarty, P. Bamola, Q. Liu, G. Saianand, A.M. Sai Krishna, S. Mukhopadhyay, A. Dey, T.K. Wong, Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review. J. Mater. Chem. A (2021). https://doi.org/10.1039/D1TA01291F

    Article  Google Scholar 

  9. S. Fernández, J.P. RGOnzález, J. Grandal, A.F. Braña, M.B. Gómez-Mancebo, J.J. Gandía, Roles of low temperature sputtered indium tin oxide for solar photovoltaic technology. Materials 14(24), 7758 (2021)

    Article  Google Scholar 

  10. V.C. Tony, C.H. Voon, C.C. Lee, B.Y. Lim, S.C. Gopinath, K.L. Foo, M.K. Arshad, A.R. Ruslinda, U. Hashim, M.N. Nashaain, Y. Al-Douri, Effective synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotube. Mater. Res. 18(20), 1658–1668 (2017)

    Article  Google Scholar 

  11. M. Shaban, A. Almohammedi, R. Saad, A.M. El Sayed, Design of SnO2: Ni, Ir nanoparticulate photoelectrodes for efficient photoelectrochemical water splitting. Nanomaterials 12(3), 453 (2022)

    Article  CAS  Google Scholar 

  12. S.A. Sajedi, M.M. Bagheri-Mohagheghi, A. Shirpay, Synthesis and characterization of PVA:CA/SnO2 polymer nanocomposites for flexible electrode applications: investigation of structural and optical properties. Opt Quant Electron 55, 54 (2023)

    Article  CAS  Google Scholar 

  13. I.A. Alagdal, A.R. West, Oxygen non-stoichiometry, conductivity and gas sensor response of SnO2 pellets. J. Mater. Chem. A. 3(46), 23213–23219 (2015)

    Article  CAS  Google Scholar 

  14. Y. Hu, J. Hwang, Y. Lee, P. Conlin, D.G. Schlom, S. Datta, K. Cho, First principles calculations of intrinsic mobilities in tin-based oxide semiconductors SnO, SnO2, and Ta2SnO6. J. Appl. Phys. 126(18), 185701 (2019)

    Article  Google Scholar 

  15. K. Balasubramanian, G. Venkatachari, Synthesis and characterization of Sb doped SnO2 for the photovoltaic applications: different route. Mater. Res. Exp. 6(12), 12506 (2020)

    Article  Google Scholar 

  16. S. Thodeti, R.M. Reddy, J.S. Kumar, Synthesis and characterization of pure and indium doped SnO2 nanoparticles by sol-gel methods. Int. J. Sci. Eng. Res. 7, 310–317 (2016)

    Google Scholar 

  17. M. Han, W. Liu, Y. Qu, L. Du, H. Wei, Graphene oxide–SnO2 nanocomposite: synthesis, characterization, and enhanced gas sensing properties. J. Mater. Sci.: Mater. Electron. 28(22), 16973–16980 (2017)

    CAS  Google Scholar 

  18. X.M. Huang, L.Z. Liu, S. Zhou, J.J. Zhao, Physical properties and device applications of graphene oxide. Front. Phys. 15(3), 1–70 (2020)

    Article  CAS  Google Scholar 

  19. M. Sang, J. Shin, K. Kim, K.J. Yu, Electronic and thermal properties of graphene and recent advances in graphene-based electronics applications. Nanomaterials 9(3), 374 (2019)

    Article  CAS  Google Scholar 

  20. L. Velasco Davoise, A.M. Díez-Pascual, C.R. Peña, Application of graphene-related materials in organic solar cells. Materials 15(3), 1171 (2022)

    Article  CAS  Google Scholar 

  21. S. Sagadevan, M.M. Shahid, Z. Yiqiang, W.C. Oh, T. Soga, J.A. Lett, S.F. Alshahateet, I. Fatimah, A. Waqar, S. Paiman, M.R. Johan, Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnol. Rev. 10(1), 605–635 (2021)

    Article  CAS  Google Scholar 

  22. P. Mandal, J. Debbarma, M. Saha, A review on the emergence of graphene in photovoltaics industry. Biointerface Res. Appl. Chem. 11, 15009–15036 (2021)

    Article  CAS  Google Scholar 

  23. A. Jiříčková, O. Jankovský, Z. Sofer, D. Sedmidubský, Synthesis and applications of graphene oxide. Materials 15(3), 920 (2022)

    Article  Google Scholar 

  24. A.D. Sontakke, M.K. Purkait, A brief review on graphene oxide nanoscrolls: structure, synthesis, characterization and scope of applications. Chem. Eng. J. 15(420), 129914 (2021)

    Article  Google Scholar 

  25. C. Shuai, B. Peng, P. Feng, L. Yu, R. Lai, A. Min, In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. J. Adv. Res. 1(35), 13–24 (2022)

    Article  Google Scholar 

  26. C. Wang, W. Zheng, Z. Wang, Z.Z. Yin, Y. Qin, Y. Kong, Synthesis of graphene oxide supported CoSe2 as high-performance supercapattery electrodes. J. Electroanal. Chem. 15(901), 115759 (2021)

    Article  Google Scholar 

  27. P. ÁrGOston, K. Albe, R.M. Nieminen, M.J. Puska, Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO. Phys. Rev. Lett. 103(24), 245501 (2009)

    Article  Google Scholar 

  28. F. Meng, H. Zheng, Y. Chang, Y. Zhao, M. Li, C. Wang, Y. Sun, J. Liu, One-step synthesis of Au/SnO2/RRGO nanocomposites and their VOC sensing properties. IEEE Trans. Nanotechnol. 17(2), 212–219 (2018)

    Article  CAS  Google Scholar 

  29. H. Moussa, E. Girot, K. Mozet, H. Alem, G. Medjahdi, R. Schneider, ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl. Catal. B 15(185), 11–21 (2016)

    Article  Google Scholar 

  30. E. ParrGOletti, U.H. Hossain, I. Di Bernardo, H. Chen, T. Tran-Phu, J. Lipton-Duffin, G. Cappelletti, A. Tricoli, Room-temperature photodetectors and VOC sensors based on graphene oxide–ZnO nano-heterojunctions. Nanoscale 11(47), 22932–22945 (2019)

    Article  Google Scholar 

  31. Z. Yuan, J. Zhao, F. Meng, W. Qin, Y. Chen, M. Yang, M. Ibrahim, Y. Zhao, Sandwich-like composites of double-thin films Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. J. Alloy. Compd. 15(793), 24–30 (2019)

    Article  Google Scholar 

  32. S. Xu, L. Fu, T.S. Pham, A. Yu, F. Han, L. Chen, Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight. Ceram. Int. 41(3), 4007–4013 (2015)

    Article  CAS  Google Scholar 

  33. F. Meng, Y. Chang, W. Qin, Z. Yuan, J. Zhao, J. Zhang, E. Han, S. Wang, M. Yang, Y. Shen, M. Ibrahim, ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Appl. Nano Mater. 2(5), 2734–2742 (2019)

    Article  CAS  Google Scholar 

  34. B. Tao, J. Yin, F. Miao, Y. Zang, High-performance humidity sensor based on RGO/ZnO/plant cellulose film for respiratory monitoring. Ionics (2022). https://doi.org/10.1007/s11581-022-04478-7

    Article  Google Scholar 

  35. L. Khamkhash, S. Em, A. Molkenova, Y.H. Hwang, T.S. Atabaev, Crack-free and thickness-controllable deposition of TiO2–rRGO thin films for solar harnessing devices. Coatings 12(2), 218 (2022)

    Article  CAS  Google Scholar 

  36. A.F. Ahmed, W.I. Yaseen, Q.A. Abbas et al., Plasma treatment effect on SnO2–RGO nano-heterojunction: fabrication, characterization and optoelectronic applications. Appl. Phys. A 127, 746 (2021). https://doi.org/10.1007/s00339-021-04902-1

    Article  CAS  Google Scholar 

  37. H.A. Jalaukhan A, B. Ghanbari Shohany, R. Etefagh, Preparation and investigation of optical properties and photocatalytic activity of SnO2/RGO thin films. Scientia Iranica 28(3), 1908–1916 (2021)

    Google Scholar 

  38. E. ParrGOletti, U.H. Hossain, I. Di Bernardo, H. Chen, T. Tran-Phu, G.L. Chiarello, J. Lipton-Duffin, V. Pifferi, A. Tricoli, G. Cappelletti, Engineering of SnO2–graphene oxide nanoheterojunctions for selective room-temperature chemical sensing and optoelectronic devices. ACS Appl. Mater. Interfaces. 12(35), 39549–39560 (2020)

    Article  Google Scholar 

  39. E. ParrGOletti, A. Tricoli, V. Pifferi, S. Orsini, M. Longhi, V. Guglielmi, G. Cerrato, L. Falciola, M. Derudi, G. Cappelletti, An electrochemical outlook upon the gaseous ethanol sensing by graphene oxide-SnO2 hybrid materials. Appl. Surf. Sci. 31(483), 1081–1089 (2019)

    Article  Google Scholar 

  40. M.E. Amine Monir, H. Baltach, A. Abdiche, Y. Al-Douri, R. Khenata, S.B. Omran, X. Wang, D.P. Rai, A. Bouhemadou, W.K. Ahmed, C.H. Voon, Doping-induced half-metallic ferromagnetism in vanadium and chromium-doped alkali oxides K2O and Rb2O: Ab initio method. J. Supercond. Novel Magn. 30, 2197–2210 (2017)

    Article  Google Scholar 

  41. A. Bouhemadou, O. Boudrifa, N. Guechi, R. Khenata, Y. Al-Douri, Ş Uğur, B. Ghebouli, S. Bin-Omran, Structural, elastic, electronic, chemical bonding and optical properties of Cu-based oxides ACuO (A=Li, Na, K and Rb): An ab initio study. Comput. Mater. Sci. 1(81), 561–574 (2014)

    Article  Google Scholar 

  42. A.A. Odeh, Y. Al-Douri, Metal oxides in electronics 13. Metal Oxide Powder Technol.: Fundamentals Proc. Methods Appl. 2, 263 (2020)

    Article  Google Scholar 

  43. S.A. Sajedi, M.M. Bagheri-Mohagheghi, A. Shirpay, Synthesis, and characterization of PVA: CA/SnO2 polymer nanocomposites for flexible electrode applications: investigation of structural and optical properties. Opt. Quant. Electron. 55(1), 54 (2023)

    Article  CAS  Google Scholar 

  44. A. Shirpay, M.M. Bagheri-Mohagheghi, Study of structural properties and JV voltametric cyclic of MoTe2 binary thin films: Phase transition from MoO3-TeO2 to 2H-MoTe2. Mater. Sci. Eng., B 1(272), 115351 (2021)

    Article  Google Scholar 

  45. Y.J. Choi, H.Y. Lee, S. Kim, P.K. Song, Controlled lattice thermal conductivity of transparent conductive oxide thin film via localized vibration of doping atoms. Nanomaterials 11(9), 2363 (2021)

    Article  CAS  Google Scholar 

  46. A. Shirpay, M. Tavakoli, The behavior of the active modes of the anatase phase of TiO2 at high temperatures by Raman scattering spectroscopy. Indian J. Phys. 96(6), 1673–1681 (2022)

    Article  CAS  Google Scholar 

  47. T.J. Barr, R.N. Sampaio, B.N. DiMarco, E.M. James, G.J. Meyer, Phantom electrons in mesoporous nanocrystalline SnO2 thin films with cation-dependent reduction onsets. Chem. Mater. 29(9), 3919–3927 (2017)

    Article  CAS  Google Scholar 

  48. N. Khademi, M.M. Bagheri-Mohagheghi, A. Shirpay, Bi-doped SnO2 transparent conducting thin films deposited by spray pyrolysis: structural, electrical, optical and photo-thermoelectric properties. Opt. Quant. Electron. 54(2), 130 (2022)

    Article  CAS  Google Scholar 

  49. Y. Al-Douri, K. Gherab, K.M. Batoo, E.H. Raslan, Detecting the DNA of dengue serotype 2 using aluminium nanoparticle doped zinc oxide nanostructure: synthesis, analysis and characterization. J. Market. Res. 9(3), 5515–5523 (2020)

    CAS  Google Scholar 

  50. A. Shirpay, M.M. Bagheri-Mohagheghi, The precursor solution effect on the synthesis, structure, and optical properties of the WO3–TeO2 binary compound. Appl. Phys. A 125, 1–7 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MMB-Mohagheghi, and PSS. The first draft of the manuscript was written by AS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. M. Bagheri-Mohagheghi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabzevar, P.S., Bagheri-Mohagheghi, M.M. & Shirpay, A. SnO2: rGO transparent semiconducting thin films under annealing by hydrazine—modification of optical gap and electrical resistance. J Mater Sci: Mater Electron 34, 791 (2023). https://doi.org/10.1007/s10854-023-10225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10225-z

Navigation