Skip to main content

Advertisement

Log in

Rauvolfia tetraphylla (Devil Pepper)-Mediated Green Synthesis of Ag Nanoparticles: Applications to Anticancer, Antioxidant and Antimitotic

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the current examination, we have built up a novel, green approach for the synthesis of Ag NPs (silver nanoparticles) from Rauvolfia tetraphylla leaves extract. The synthesized Ag NPs were thoroughly characterized using different analytical techniques like Powder X-ray diffraction, Fourier transform infrared spectroscopy, UV–visible spectroscopy, scanning electron microscopy and transmission electron microscope analysis. It is confirmed as a cubic phased silver nanoparticle with an average particle size of around 40 nm with a spherical shape. Further, the characterized material was examined for antioxidant activity and it has shown the IC50 (inhibitory concentration 50%) value of 82.13 µg/mL against the scavenging of DPPH free radical. The cytogenetic effect of silver nanoparticles was tested on the root cells of Allium cepa, from this examination we have noted the antimitotic activity and precise chromosomal aberrations such as chromosome-breaks, chromosome-stickiness, laggard chromosome, clumped chromosome etc. By discharging Ag+ ions and producing ROS, silver nanoparticle exhibits great anticancer activity. Therefore, this paperwork effectively shows the synthesis of Ag nanoparticles by simple eco-friendly green way utilizing Rauvolfia tetraphylla leaves to extract as a green reducing agent as well as stabilizing/capping agent for the synthesis of Ag NPs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3
Fig. 12
Fig. 13
Scheme 4
Fig. 14

Similar content being viewed by others

References

  1. E. Illés, E. Tombácz, M. Szekeres, I. Y. Tóth, Á. Szabó, and B. Iván (2015). J. Magn. Magn Mater. 380, 132–139.

    Google Scholar 

  2. I. Y. Tóth, E. Illés, M. Szekeres, and E. Tombácz (2015). J. Magn. Magn Mater. 380, 168–174.

    Google Scholar 

  3. L. Zhao, A. Seth, N. Wibowo, C. X. Zhao, N. Mitter, C. Yu, and A. P. Middelberg (2014). Vaccine 32, 327–337.

    PubMed  Google Scholar 

  4. A. M. Badawy, R. G. Silva, B. Morris, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat (2010). Environ. Sci. Technol. 45, (1), 283–287.

    PubMed  Google Scholar 

  5. A. P. Katsoulidis and M. G. Kanatzidis (2011). Chem. Mater. 23, (7), 1818–1824.

    CAS  Google Scholar 

  6. S. Arokiyaraj, S. Vincent, M. Saravanan, Y. Lee, Y. K. Oh, and K. H. Kim (2017). Artif. Cells Nanomed. Biotechnol. 45, (2), 372–379.

    CAS  PubMed  Google Scholar 

  7. B. B. Manshian, U. Himmelreich, and S. J. Soenen (2017). Chem. Res. Toxicol. 30, (2), 595–603.

    CAS  PubMed  Google Scholar 

  8. C. Gunawan, C. P. Marquis, R. Amal, G. A. Sotiriou, S. A. Rice, and E. J. Harry (2017). ACS Nano 11, (4), 3438–3445.

    CAS  PubMed  Google Scholar 

  9. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, and T. Li (2015). J. Phys. Chem. B 109, 13857–13870.

    Google Scholar 

  10. V. Kumar and S. K. Yadav (2009). J. Chem. Technol. Biotechnol. 84, 151–157.

    CAS  Google Scholar 

  11. J. Huang, Q. Li, D. Sun, L. Yinghua, S. Yuanbo, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen (2007). Nanotechnology 18, 105–115.

    Google Scholar 

  12. S. P. Vinay and N. Chandrashekar (2019). Mater. Today Proc. 9, 499–505.

    CAS  Google Scholar 

  13. H. Barabadi, A. Alizadeh, M. Ovais, A. Ahmadi, Z. K. Shinwari, and M. Saravanan (2018). IET Nanobiotechnol. 12, (4), 377–391.

    PubMed  PubMed Central  Google Scholar 

  14. H. Barabadi, M. Ovais, Z. K. Shinwari, and M. Saravanan (2017). Green Chem. Lett. Rev. 10, (4), 285–314.

    CAS  Google Scholar 

  15. H. Barabadi, M. A. Mahjoub, B. Tajani, A. Ahmadi, and Y. Junejo (2019). J. Cluster Sci. 30, (2), 259–279.

    CAS  Google Scholar 

  16. Y. Junejo, M. Safdar, M. A. Akhtar, M. Saravanan, H. Anwar, M. Babar, and M. E. Babar (2019). J. Inorg. Organometall. Polym. Mater. 29, (1), 111–120.

    CAS  Google Scholar 

  17. M. Saravanan, V. Gopinath, M. K. Chaurasia, A. Syed, F. Ameen, and N. Purushothaman (2018). Microb. Pathog. 115, 57–63.

    CAS  PubMed  Google Scholar 

  18. R. Emmanuel, M. Saravanan, M. Ovais, S. Padmavathy, Z. K. Shinwari, and P. Prakash (2017). Microb. Pathog. 113, 295–302.

    CAS  PubMed  Google Scholar 

  19. R. Subbaiya, M. Saravanan, A. R. Priya, K. R. Shankar, M. Selvam, M. Ovais, and H. Barabadi (2017). IET Nanobiotechnol. 11, (8), 965–972.

    PubMed  PubMed Central  Google Scholar 

  20. M. Ovais, A. T. Khalil, A. Raza, M. A. Khan, I. Ahmad, N. U. Islam, and Z. K. Shinwari (2016). Nanomedicine 12, (23), 3157–3177.

    Google Scholar 

  21. A. Husen and K. S. Siddiqi (2014). Nanoscale Res. Lett. 9, 229–252.

    PubMed  PubMed Central  Google Scholar 

  22. S. P. Vinay, Udayabhanu, G. Nagaraju, C. P. Chandrappa, and N. Chandrashekar (2019). SN Appl. Sci. 1, 477. https://doi.org/10.1007/s42452-019-0437-0.

    Article  Google Scholar 

  23. D. Arumai Selvan, D. Mahendiran, R. Senthil Kumar, and A. Kalilur Rahiman (2018). J. Photochem. Photobiol. B Biol. 180, 243–252.

    CAS  Google Scholar 

  24. K. Satyavani, S. Gurudeeban, T. Ramanathan, and T. Balasubramanian (2011). J. Nanobiotechnol. 9, (1), 43.

    CAS  Google Scholar 

  25. S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, (1), 17–28.

    CAS  PubMed  Google Scholar 

  26. G. Schneider (2017). Mater. Today Proc. 4, 200–207.

    Google Scholar 

  27. L. Janovák, S. P. Tallósy, M. Sztakó, A. Deák, T. Bitó, N. Buzás, G. Bártfai, and I. Dékány (2014). J. Drug Deliv. Sci. Technol. 24, (6), 628–636.

    Google Scholar 

  28. S. Yousefi and M. Saraji (2019). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 213, 1–5.

    CAS  Google Scholar 

  29. N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni (2014). Adv. Funct. Mater. 24, (37), 5824–5832.

    CAS  Google Scholar 

  30. N. G. Bastús, F. Merkoçi, J. Piella, and V. Puntes (2014). Chem. Mater. 26, (9), 2836–2846.

    Google Scholar 

  31. G. R. Nasretdinova, R. R. Fazleeva, R. K. Mukhitova, I. R. Nizameev, M. K. Kadirov, A. Y. Ziganshina, and V. V. Yanilkin (2015). Electrochem. Commun. 50, 69–72.

    CAS  Google Scholar 

  32. M. Goudarzi, N. Mir, M. Mousavi-Kamazani, S. Bagheri, and M. Salavati-Niasari (2016). Sci. Rep. 6, 32539.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Scuderi, M. Esposito, F. Todisco, D. Simeone, I. Tarantini, L. De Marco, M. De Giorgi, G. Nicotra, L. Carbone, D. Sanvitto, A. Passaseo, G. Gigli, and M.- Cuscunà (2016). J. Phys. Chem. C 120, (42), 24314–24323.

    CAS  Google Scholar 

  34. R. Singh, U. U. Shedbalkar, S. A. Wadhwani, and B. A. Chopade (2015). Appl. Microbiol. Biotechnol. 99, (11), 4579–4593.

    CAS  PubMed  Google Scholar 

  35. A. Al-Asfar, Z. Zaheer, and E. S. Aazam (2018). J. Photochem. Photobiol. B Biol. 185, 143–152.

    CAS  Google Scholar 

  36. S. Ahmed, U. Saifullah, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Radiat. Res. Appl. Sci. 9, (1), 1–7.

    Google Scholar 

  37. U. K. Sur, B. Ankamwar, S. Karmakar, A. Halder, and P. Das (2018). Mater. Today Proc. 5, (1), 2321–2329.

    Google Scholar 

  38. J. U. Shareef, M. NavyaRani, S. Anand, and D. Rangappa (2017). Mater. Today Proc. 4, (11), 11923–11932.

    Google Scholar 

  39. K. Kanagamani, P. Muthukrishnan, M. Ilayaraja, J. V. Kumar, K. Shankar, and A. Kathiresan (2017). J. Photochem. Photobiol. A Chem. 346, 470–478.

    CAS  Google Scholar 

  40. K. Kanagamani, P. Muthukrishnan, M. Ilayaraja, K. Shankar, and A. Kathiresan (2018). J. Inorg. Organometall. Polym. Mater. 28, (3), 702–710.

    CAS  Google Scholar 

  41. R. Karthik, M. Govindasamy, S. Ming Chen, Y. H. Cheng, P. Muthukrishnan, S. Padmavathy, and A. Elangovan (2017). J. Photochem. Photobiol. B Biol. 170, 164–172.

    CAS  Google Scholar 

  42. R. Karthik, Y.-S. Hou, S.-M. Chen, A. Elangovan, M. Ganesan, and P. Muthukrishnan (2016). J. Ind. Eng. Chem. 37, 330–339.

    CAS  Google Scholar 

  43. A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry (2003). Colloids Surf. B Biointerfaces 28, 313–318.

    CAS  Google Scholar 

  44. A. R. Shahverdi, S. Minaeian, H. R. Shahverdi, H. Jamalifar, and A. A. Nohi (2007). Process Biochem. 42, 919–923.

    CAS  Google Scholar 

  45. K. Vijayaraghavan, S. K. Nalini, N. U. Prakash, and D. Madhankumar (2012). Mater. Lett. 75, 33–35.

    CAS  Google Scholar 

  46. A. K. Jha, K. Prasad, K. Prasad, and A. Kulkarni (2009). Colloids Surf. B Biointerfaces 73, 219–223.

    CAS  PubMed  Google Scholar 

  47. Anonymous, The Wealth of India-Raw materials (Council of Scientific and Industrial Research, New Delhi, Vol. VIII, 1969). pp. 1–8.

  48. S. P. Ambasta Useful plants of India (Council of Scientific and Industrial Research, New Delhi, 1986), p. 918.

    Google Scholar 

  49. S. Anitha and B. D. R. Kumari (2006). Pak. J. Biol. Sci. 9, (3), 422–424.

    Google Scholar 

  50. S. Mandal and S. Chanda (1981). Biol. Mem. 6, 1–61.

    Google Scholar 

  51. B. Ganga Rao, P. Umamaheswara Rao, E. Sambasiva Rao, T. Mallikarjuna Rao, and V. S. Praneeth (2012). Asian Pac. J. Trop. Biomed. 2, (10), 818–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. M. Lavithis and P. L. Bhalla (1995). Sexual Plant Reprod. 8, 289–298.

    Google Scholar 

  53. G. K. Rohela, P. Bylla, S. Kota, S. Abbagani, T. Ravi Chithakari, and C. Reuben (2013). J. Herbs Spices Med. Plants 19, (1), 66–75.

    Google Scholar 

  54. M. Faisal and M. Anis (2002). J. Physiol. Mol. Biol. Plants 8, (2), 295–299.

    Google Scholar 

  55. R. Kalaiarasi, G. Prasannaraja, and P. Venkatachalama (2013). Indo Am. J. Pharm. Res. 3, (10), 8052–8062.

    Google Scholar 

  56. V. D. Nair, R. Panneerselvam, and R. Gopi (2012). Indus. Crops Prod. 39, 17–25.

    CAS  Google Scholar 

  57. V. S. Nandhini and G. Vijistella Bai (2014). Int. J. Pharm. Chem. Biol. Sci. 4, (1), 47–52.

    Google Scholar 

  58. W. Brand-Williams, M. E. Cuvelier, and C. Berset (1995). Lebensm-Wiss U Technol. 28, 25–30.

    CAS  Google Scholar 

  59. D. Suresh, Udayabhanu, P. C. Nethravathi, K. Lingaraju, H. Rajanaika, S. C. Sharma, and H. Nagabhushana (2015). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 1467–1474.

    CAS  Google Scholar 

  60. A. Demirbas, V. Yilmaz, N. Ildiz, A. Baldemir, and I. Ocsoy (2017). J. Mol. Liq. 248, 1044–1049.

    CAS  Google Scholar 

  61. M. Zamani, A. M. Delfani, and M. Jabbari (2018). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 201, 288–299.

    CAS  Google Scholar 

  62. S. V. Neelamkavil and E. John (2015). Rev. Environ. Health 30, (1), 19–23.

    CAS  PubMed  Google Scholar 

  63. A. A. Bakare, A. A. Mosuro, and O. Osibanjo (2000). J. Environ. Biol. 21, (3), 263–271.

    CAS  Google Scholar 

  64. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan (2019). J. Photochem. Photobiol. B Biol. 190, 8–20.

    CAS  Google Scholar 

  65. S. P. Vinay, N. Chandrashekar, and C. P. Chandrappa (2017). Int. J. Pharmacy Biol. Sci. 7, (2), 145–152.

    CAS  Google Scholar 

  66. A. A. Rokade, J. H. Kim, S. R. Lim, S. I. Yoo, Y. E. Jin, and S. S. Park (2017). J. Clust. Sci. 28, 2017. https://doi.org/10.1007/s10876-017-1196-y.

    Article  CAS  Google Scholar 

  67. Z. Azizi, S. Pourseyedi, M. Khatami, and H. Mohammadi (2016). J. Clust. Sci. 27, 1613. https://doi.org/10.1007/s10876-016-1024-9.

    Article  CAS  Google Scholar 

  68. S. Iravani, H. Korbekandi, S. V. Mirmohammadi, and B. Zolfaghari (2014). Res. Pharm. Sci. 9, (6), 385.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. J. J. Pietron and R. W. Murray (1999). J. Phys. Chem. B. 103, 4440.

    CAS  Google Scholar 

  70. T. Klaus-Joerger, R. Joerger, E. Olsson, and C. G. Granqvist (2001). Trends Biotechnol. 19, 15–20.

    CAS  PubMed  Google Scholar 

  71. S. Ashokkumar, S. Ravi, V. Kathiravan, and S. Velmurugan (2015). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 134, 34–39.

    CAS  Google Scholar 

  72. H. Wang, L. Jia, L. Li, X. Li, Z. S. Warkocka, K. Kawaguchi, A. Pyatenko, and N. Koshizaki (2013). J. Mater. Chem. A 1, 69.

    Google Scholar 

  73. S. P. Vinay, N. Chandrashekar, and C. P. Chandrappa (2017). Res. J. Pharm. Biol. Chem. Sci. 8, (4), 527–534.

    CAS  Google Scholar 

  74. H. R. Madan, S. C. Sharma, Udayabhanu, D. Suresh, Y. S. Vidya, H. Nagabhushana, H. Rajanaik, K. S. Anantharaju, S. C. Prashantha, and P. S. Maiya (2016). Spectrochim. Acta Part A Mol. Spectrosc. 152, 404–416.

    CAS  Google Scholar 

  75. Udayabhanu, G. Nagaraju, H. Nagabhushana, R. B. Basavaraj, G. K. Raghu, D. Suresh, H. Rajanaika, and S. C. Sharma (2016). Cryst. Growth Des. 16, (12), 6828–6840.

    CAS  Google Scholar 

  76. A. Hamad, L. Li, Z. Liu, X. L. Zhong, H. Liu, and T. Wang (2015). RSC Adv. 5, 72981–72994.

    CAS  Google Scholar 

  77. L. Gharibshahi, E. Saion, E. Gharibshahi, A. H. Shaari, and K. A. Matori (2017). Materials 10, 402.

    PubMed Central  Google Scholar 

  78. A. Aziz, M. Khalid, M. Saeed Akhtar, M. Nadeem, Z. A. Gilani, H. M. N. Ul Huda Khan Asghar, J. Rehman, Z. Ullah, and M. Saleem (2018). Digest J. Nanomater. Biostruct. 13, (3), 679–683.

    Google Scholar 

  79. P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, and M. Saravanan (2013). Colloids Surf. B 108, 255–259.

    CAS  Google Scholar 

  80. K. Jyoti and A. Singh (2016). J. Genet. Eng. Biotechnol. 14, 311–317.

    PubMed  PubMed Central  Google Scholar 

  81. A. Maniraj, M. Kannan, K. Rajarathinam, S. Vivekanandhan, and S. Muthuramkumar (2019). J. Clust. Sci. 1, 25. https://doi.org/10.1007/s10876-019-01582-z.

    Article  CAS  Google Scholar 

  82. R. Sood and D. S. Chopra (2018). Mater. Sci. Eng. C 92, 575–589.

    CAS  Google Scholar 

  83. N. Chandrasekhar and S. P. Vinay (2017). Appl. Nanosci. 7, 851–861.

    CAS  Google Scholar 

  84. S. P. Vinay and N. Chandrasekhar (2017). IOSR J. Appl. Chem. 10, 57–63.

    CAS  Google Scholar 

  85. L. Wang, W. Yanan, J. Xie, W. Sheng, and W. Zhenqiang (2018). Mater. Sci. Eng. C 86, 1–8.

    Google Scholar 

  86. J. S. Moodley, S. B. N. Krishna, K. Pillay, and P. Govender (2018). Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 015011.

    Google Scholar 

  87. G. Nagaraju, Udayabhanu, M. Shivaraj, S. A. Prashanth, M. Shastri, K. V. Yathish, C. Rangappa, and D. Anupama (2017). Mater. Res. Bull. 94, 54–63.

    CAS  Google Scholar 

  88. S. Nam, B. Park, and B. D. Condon (2018). RSC Adv. 8, 21937–21947.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. N. Liang and D. D. Kitts (2014). Molecules 19, 19180–19208.

    PubMed  PubMed Central  Google Scholar 

  90. L. K. MacDonald-Wicks, L. G. Wood, and M. L. Garg (2006). J. Sci. Food Agric. 86, 2046–2056.

    CAS  Google Scholar 

  91. J. K. Moon and T. Shibamoto (2009). J. Agric. Food Chem. 57, (5), 1655–1666.

    CAS  PubMed  Google Scholar 

  92. D. Suresh, R. M. Shobharani, P. C. Nethravathi, M. A. PavanKumar, H. Nagabhushana, and S. C. Sharma (2015). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 141, 128–134.

    CAS  Google Scholar 

  93. M. Kumari, A. Mukherjee, and N. Chandrasekaran (2009). Sci. Total Environ. 407, (19), 5243–5246.

    CAS  PubMed  Google Scholar 

  94. M. Kumari, S. S. Khan, S. Pakrashi, A. Mukherjee, and N. Chandrasekaran (2011). J. Hazard Mater. 190, 613–621.

    CAS  PubMed  Google Scholar 

  95. B. Mangalampalli, N. Dumala, and P. Grover (2018). J. Environ. Sci. 66, 125–137.

    Google Scholar 

  96. D. Kumar, A. Rajeshwari, P. S. Jadon, G. Chaudhuri, A. Mukherjee, N. Chandrasekaran, and A. Mukherjee (2015). J. Environ Sci. 38, 150–157.

    CAS  Google Scholar 

  97. C. Mahendra, M. Murali, G. Manasa, P. Pooja, M. R. Abhilash, T. R. Lakshmeesha, A. Satish, K. N. Amruthesh, and M. S. Sudarshana (2017). Microb. Pathog. 110, 620–629.

    CAS  PubMed  Google Scholar 

  98. M. P. Patil and G. D. Kim (2017). Appl. Microbiol. Biotechnol. 101, 79. https://doi.org/10.1007/s00253-016-8012-8.

    Article  CAS  PubMed  Google Scholar 

  99. S. Harishkumar, N. D. Satyanarayan, and S. M. Santhosha (2018). Asian J. Pharm. Clin. Res. 11, (4), 306.

    Google Scholar 

  100. S. Harishkumar, N. D. Satyanarayan, R. Raghavendra, H. S. Nandini, N. Prabhudas, and P. Kiranmayee (2018). Der Pharma Chem. 10, (5), 49–56.

    CAS  Google Scholar 

  101. U. K. Parida, S. K. Biswal, and B. K. Bindhani (2014). Adv. Biol. Chem. 4, 360–375. https://doi.org/10.4236/abc.2014.46041.

    Article  CAS  Google Scholar 

  102. K. Kanagamani, P. Muthukrishnan, K. Shankar, A. Kathiresan, H. Barabadi, and M. Saravanan (2019). J. Cluster Sci. 1, 1–10. https://doi.org/10.1007/s10876-019-01583-y.

    Article  CAS  Google Scholar 

  103. S. Sarkar and V. Kotteeswaran (2018). Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 025014.

    Google Scholar 

  104. M. Jayaraj, R. Arun, G. Sathishkumar, D. MubarakAli, M. Rajesh, G. Sivanandhan, G. Kapildev, M. Manickavasagam, N. Thajuddin, and A. Ganapathi (2014). Mater. Res. Bull. 52, 15–24. https://doi.org/10.1016/j.materresbull.2013.12.060.

    Article  CAS  Google Scholar 

  105. R. G. Saratale, G. Benelli, G. Kumar, D. S. Kim, and G. D. Saratale (2018). Environ. Sci. Pollut. Res. Int. 25, (11), 10392–10406.

    CAS  PubMed  Google Scholar 

  106. P. Kuppusamy, S. J. Ichwan, P. N. Al-Zikri, W. H. Suriyah, I. Soundharrajan, N. Govindan, G. P. Maniam, and M. M. Yusoff (2016). Biol. Trace Elem. Res. 173, (2), 297–305.

    CAS  PubMed  Google Scholar 

  107. W. Q. Chen, R. S. Zheng, H. M. Zeng, S. W. Zhang, and J. He (2015). J. Cancer Res. 27, 2–12.

    Google Scholar 

  108. C. A. Rabik and M. E. Dolan (2007). Cancer Treat. Rev. 33, (1), 9–23.

    CAS  PubMed  Google Scholar 

  109. L. Galluzzi, L. Senovilla, I. Vitale, J. Michels, I. Martins, O. Kepp, M. Castedo, and G. Kroemer (2012). Oncogene 31, (15), 1869–1883.

    CAS  PubMed  Google Scholar 

  110. E. S. Al-Sheddi, N. N. Farshori, M. M. Al-Oqail, S. M. Al-Massarani, Q. Saquib, R. Wahab, J. Musarrat, A. A. Al-Khedhairy, and M. A. Siddiqui (2018). Bioinorg. Chem. Appl. 2018, 1–12. https://doi.org/10.1155/2018/9390784.

    Article  CAS  Google Scholar 

  111. R. G. Saratale, G. Benelli, G. Kumar, D. S. Kim, and G. D. Saratale (2017). Environ. Sci. Pollut. Res Int. 25, (11), 10392–10406.

    PubMed  Google Scholar 

  112. N. E. A. El Naggar, M. H. Hussein, and A. A. El Sawah (2017). Sci. Rep. 7, (1), 10844. https://doi.org/10.1038/s41598-017-11121-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. C. Y. Wang and S. Valiyaveettil (2013). RSC Adv. 3, 14329–14338.

    Google Scholar 

  114. D. Guo, L. Zhu, Z. Huang, H. Zhou, Y. Ge, W. Ma, J. Wu, X. Zhang, X. Zhou, Y. Zhang, Y. Zhao, and N. Gu (2013). Biomaterials 34, 7884–7894.

    CAS  PubMed  Google Scholar 

  115. S. Yeasmin, D. Malik, T. Das, and A. Bandyopadhyay (2015). RSC Adv. 5, 39992–39999.

    CAS  Google Scholar 

  116. K. K. Awasthi, A. Awasthi, R. Verma, N. Kumar, P. Roy, K. Awasthi, and P. John (2015). RSC Adv. 5, 34927–34935.

    CAS  Google Scholar 

  117. V. de Matteis, M. A. Malvindi, A. Galeone, V. Brunetti, E. de Luca, S. Kote, P. Kshirsagar, S. Sabella, G. Bardi, and P. P. Pompa (2015). Nanomed. Nanotechnol. Biol. Med. 11, 731–739.

    Google Scholar 

  118. W. Lu, K. Yao, J. Wang, and J. Yuan (2015). J. Colloid Interface Sci. 437, 35–41.

    CAS  PubMed  Google Scholar 

  119. H. Guansong, Y. Cai, T. Zhengchao, J. Luo, X. Qiao, Q. Chen, and W. Zhang (2015). RSC Adv. 5, 82050–82055.

    Google Scholar 

Download references

Acknowledgements

Udayabhanu thanks to CSIR, New Delhi, for Senior Research Fellowship (09/1204(0001)/2018-EMR-1). Dr. Chandrasekhar thanks to Dr. M R Hulinaykar, Managing Trustee, SIET, Tumakuru. Dr. GN Thank DST Nanomission (SR/NM/NS-1262/2013) for financial support. We acknowledge Dr. M. Veerabhadrayya, from Tumkur University, for helped us towards Rietveld refinement studies. We acknowledge Dr. M. Govindappa, from Dayananda Sagar College of Engineering, Bengaluru, for encouragement during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandrasekhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinay, S.P., Udayabhanu, Nagaraju, G. et al. Rauvolfia tetraphylla (Devil Pepper)-Mediated Green Synthesis of Ag Nanoparticles: Applications to Anticancer, Antioxidant and Antimitotic. J Clust Sci 30, 1545–1564 (2019). https://doi.org/10.1007/s10876-019-01598-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01598-5

Keywords

Navigation