Skip to main content

Advertisement

Log in

Description of a fetal skeleton of the extinct sloth Nothrotherium maquinense (Xenarthra, Folivora): Ontogenetic and palaeoecological interpretations

  • Research
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

A well-preserved fetus of the extinct nothrotheriid sloth Nothrotherium maquinense, recovered in situ within the skeletal remains of its mother from the karstic cave Toca da Boa Vista (Bahia, Brazil), is described and compared. The fetus is represented by numerous cranio-dental and postcranial elements, and its mother is represented by teeth and several postcranial elements. In the fetus, the exoccipitals formed the lateral and dorsal borders of the foramen magnum, from which the supraoccipital was excluded. Teeth were permanent, as in xenarthrans generally, and with growth the molariforms transformed from pyramidal to prismatic as in other ground sloths. The fetus preserves evidence of intrauterine mastication suggesting a relatively short post-natal period of lactation. Like Nothrotheriops, Nothrotherium was probably a generalist and opportunistic herbivore. The long bones are less elongated and more robust than in the adult and the claws were very powerful, perhaps having allowed the infant sloth to cling to its mother’s back after birth as in modern anteaters. The presence in the fetus of petrosal, ischium, and pubis indicates a late-stage fetus, probably near birth, as suggested by the position of the fetus, head backwards in relation to the mother. A newborn individual of this species was approximately one-third the length of its mother. This extinct nothrotheriid gave birth to a single offspring at a time, as typically occurs in the living sloths Bradypus and Choloepus. The taphonomic conditions within Toca da Boa Vista and site of recovery do not support habitual use of caves by this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Auler AS, Piló LB, Smart PL, Wang X, Hoffmann D, Richards DA, Edwards RL, Neves WA, Cheng H (2006) U-series dating and taphonomy of Quaternary vertebrates from Brazilian caves. Palaeogeogr Palaeoclim Palaeoecol 240:508–522. https://doi.org/10.1016/j.palaeo.2006.03.002

    Article  Google Scholar 

  • Bargo MS (2001) The ground sloth Megatherium americanum: skull shape, bit forces, and diet. Acta Palaeontol Pol 46:173–192

    Google Scholar 

  • Bargo MS, Vizcaíno SF (2008) Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45:175–196

    Google Scholar 

  • Bargo MS, Toledo N, Vizcaíno SF (2006a) Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). J Morphol 267:248–263. https://doi.org/10.1002/jmor.10399

    Article  PubMed  Google Scholar 

  • Bargo MS, De Iuliis G, Vizcaíno, SF (2006b) Hypsodonty in Pleistocene ground sloths. Acta Palaeontol Pol 51: 53–61

    Google Scholar 

  • Benirschke K (2008) Reproductive parameters and placentation in anteaters and sloths. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 160–171

  • Bocherens H, Cotte M, Bonini RA, Straccia P, Scian D, Soibelzon L, Prevosti FJ (2017) Isotopic insight on paleodiet of extinct Pleistocene megafaunal Xenarthrans from Argentina. Gondwana Res 48:7–14. https://doi.org/10.1016/j.gr.2017.04.003

    Article  CAS  Google Scholar 

  • Bostelmann E, López P, Salas-Gismondi R, Mena F (2011) First record of Diabolotherium cf. nordenkioldi, Kraglievich 1926, (Mammalia, Tardigrada, Megalonychidae), from the Late Pleistocene of Chile. Ameghiniana 48(4):R146

  • Brandoni D, Vezzosi RI (2019) Nothrotheriops sp. (Mammalia, Xenarthra) from the Late Pleistocene of Argentina: implications for the dispersion of ground sloths during the Great American Biotic Interchange. Boreas 48:879–890. https://doi.org/10.1111/bor.12401

  • Britton SW (1941) Form and function in the sloth. The Q Rev Biol 16:13–34

  • Cartelle C (1992) Edentata e megamamíferos herbívoros extintos da Toca das Ossos (Ourolândia, Bahia, Brasil). Disssertation, Universidade Federal de Minas Gerais, Belo Horizonte

  • Cartelle C (2000a) Preguiças gigantes viveram no Brasil. Ciência Hoje 27:19–25

    Google Scholar 

  • Cartelle C (2000b) Peter W. Lund, a naturalist of several sciences. Lundiana 3(2):83–85. https://doi.org/10.35699/2675-5327.2002.21812

    Article  Google Scholar 

  • Cartelle C (2017a) Peter W. Lund, mastozoógo genial. In: 9° Congresso Brasileiro de Mastozoologia – EBEQ. Pirenópolis, Brazil, p 282

    Google Scholar 

  • Cartelle C (2017b) Constructing the past. A look at Lagoa Santa paleontology. In: Da Gloria P, Neves W, Hubbe M (eds) Archaeological and Paleontological Research in Lagoa Santa. The Quest for the First Americans. Springer International, Cham, pp 297–317. https://doi.org/10.1007/978-3-319-57466-0_14

  • Cartelle C (2020) Cave paleontology in the Lagoa Santa Karst. Auler AS, Pessoa P (eds) Lagoa Santa Karst: Brazil´s Iconic Karst Region. Springer Nature, Cham, pp 209–225. https://doi.org/10.1007/978-3-030-35940-9_11

  • Cartelle C, Bohórquez GA (1986) Descrição das pré-maxilas de Nothrotherium maquinense (Lund) Lydekker, 1889 (Edentata, Megalonychidae) e de Eremotherium laurillardi Cartelle et Bohórquez, 1982. (Edentata, Megatheriidae). Iheringia Ser Geol (11):9–14

    Google Scholar 

  • Cartelle C, De Iuliis G (2006) Eremotherium laurillardi (Lund) (Xenarthra, Megatheriidae), the Panamerican giant ground sloth: taxonomic aspects of the ontogeny of skull and dentition. J Syst Palaeontol 4:199–209. https://doi.org/10.1017/S1477201905001781

    Article  Google Scholar 

  • Cartelle C, Fonseca JS (1983) Contribuição ao melhor conhecimento da pequena preguiça terrícola Nothrotherium maquinense (Lund), Lydekker, 1889. Lundiana (2):127–181. https://doi.org/10.35699/2675-5327.1982.21672

  • Cartelle C, Hartwig WC (1996) A new extinct primate among the Pleistocene megafauna of Bahia, Brazil. Proc Natl Acad Sci USA 93:6405–6409. https://doi.org/10.1073/pnas.93.13.6405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartelle C, De Iuliis G, Pujos F (2014) Eremotherium laurillardi (Lund, 1842) (Xenarthra, Megatheriinae) is the only valid megatheriine sloth species in the Pleistocene of intertropical Brazil: a response to Faure et al., 2014. CR Palevol 14:15–23. https://doi.org/10.1016/j.crpv.2014.09.002

  • Casali DM, Boscaini A, Gaudin TJ, Perini FA (2022) Reassessing the phylogeny and divergence times of sloths (Mammalia: Pilosa: Folivora), exploring alternative morphological partitioning and dating models. Zool J Linn Soc Lond 196:1505–1551. https://doi.org/10.1093/zoolinnean/zlac041

    Article  Google Scholar 

  • Croft DA, Anaya F, Auerbach D, Garzione C, MacFadden BJ (2009) New data on Miocene Neotropical provinciality from Cerdas, Bolivia. J Mamm Evol 16:175–198

  • Cuvier G (1796) Notice sur le squelette d’une très grande espèce de quadrupède inconnue jusqu’à présent, trouvé au Paraguay, et déposé au cabinet d’histoire naturelle de Madrid. Magazin Encycl 1:303–310

  • Czaplewski NJ, Cartelle C (1998) Pleistocene bats from cave deposits in Bahia, Brazil. J Mammal 79:784–803. https://doi.org/10.2307/1383089

    Article  Google Scholar 

  • Dantas MAT, Cherkinsky A, Lessa CMB, Vilaboin Santos L, Cozzuol MA, Calvalcante Omena É, Da Silva JLP, Sial AN, Bocherens H (2020). Isotopic paleoecology (δ13C, δ18O) of a late Pleistocene vertebrate community from the Brazilian intertropical region. Rev Bras Paleontol 23:138–152. https://doi.org/10.4072/rbp.2020.2.05

    Article  Google Scholar 

  • Buchmann FS, Frank HT, Sandim Ferreira VM, Antal Cruz E (2016) Evidência de vida gregária em paleotocas atribuídas a Mylodontidae (preguiças-gigantes). Rev Bras Paleontol 19:259–270. https://doi.org/10.4072/rbp.2016.2.09

    Article  Google Scholar 

  • De Iuliis G, McDonald HG, Stanchly N, Spevard J, Powis TG (2015) Nothrotheriops shastensis (Sinclair) from Actun Lak: first record of Nothrotheriidae (Mammalia, Xenarthra, Pilosa) from Belize. Ameghiniana 52:153–171. https://doi.org/10.5710/AMGH.05.11.2014.2821

    Article  Google Scholar 

  • Del Pilar Sánchez-Chavez A (2021) Diet of Hoffmann’s two-toed sloth (Choloepus hoffmanni) in Andean forest. Mammalia 85:515–524. https://doi.org/10.1515/mammalia-2021-0016

    Article  Google Scholar 

  • Del Valle Jerez S, Halloy M (2003) El oso hormiguero, Myrmecophaga tridactyla: crecimiento e independización de una cría. Masto Neotrop 10:331–339

    Google Scholar 

  • Delsuc F, Kuch M, Gibb GC, Karpinski E, Hackenberger D, Szpak P, Martínez JG, Mead JI, McDonald HG, MacPhee RDE, Billet G, Hautier L, Poinar HN (2019) Ancient mitogenomes reveal the evolutionary history and biogeography of sloths. Curr Biol 29:2031–2042. https://doi.org/10.1016/j.cub.2019.05.043

    Article  CAS  PubMed  Google Scholar 

  • Dondas A, Isla FI, Carballido JL (2009) Paleocaves exhumed from the Miramar Formation (Ensenadan Stage-age, Pleistocene), Mar del Plata, Argentina. Quat Int 210:44–50. https://doi.org/10.1016/j.quaint.2009.07.001

    Article  Google Scholar 

  • Enders AC (2008) Placentation in armadillos, with emphasis on development of the placenta in palyembryonic species. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 172–180

  • Engelmann RK (2022) Occipital condyle width (OCW) is a highly accurate predictor of body mass in therian mammals. BMC Evol Biol 20:54. https://doi.org/10.1186/s12915-021-01224-9

    Article  Google Scholar 

  • Esteban GI (1996) Revisión de los Mylodontinae cuaternarios (Edentata-Tardigrada) de Argentina, Bolivia y Uruguay. Sistemática, filogenia, paleobiología, paleozoogeografía y paleoecología. Dissertation, Universidad Nacional de Tucumán

  • Fariña RA, Blanco RE (1996) Megatherium, the stabber. Proc R Soc B Biol Sci 263:1725–1729. https://doi.org/10.1098/rspb.1996.0252

    Article  Google Scholar 

  • Frank HT, De Carvalho Buchmann FS, Gonçalves De Lima HT, Caron F, Pereira Lopes R, Fornari M (2011) Karstic features generated from large paleovertebrate tunnels in southern Brazil. Espeleo-Tema 22:139–153

    Google Scholar 

  • Frank HT, Dias De Oliveira L, Vicroski FJN, Breier R, Gauer Pasqualon N, Aráujo F, De Carvalho Buchmann FS, Fornari M, Gonçalves De Lima HT, Pereira Lopes R, Caron F (2012) The complex history of a sandstone-hosted cave in the state of Santa Catarina, Brazil. Espeleo-Tema 23:87–101

    Google Scholar 

  • Franzen JL, Aurich C, Habersetzer J (2015) Description of a well-preserved fetus of the European Eocene equoid Eurohippus messelensis. PLoS ONE 10:e0137985. https://doi.org/10.1371/journal.pone.0137985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparini GM, Holanda EC, De Araújo Júnior HL, Dos Santos Avilla L (2016) A Quaternary very young juvenile Tapirus Brisson, 1762 (Mammalia, Perissodactyla) from a cave deposit in northern Brazil: taxonomy and taphonomy. Hist Biol 28:803–811. https://doi.org/10.1080/08912963.2015.1035269

    Article  Google Scholar 

  • Gaudin TJ (2003) Phylogeny of the Xenarthra (Mammalia). In: Fariña RA, Vizcaíno SF, Storch G (eds), Morphological Studies in Fossil and Extant Xenarthra. Senck Biol 83:27–40

  • Gaudin TJ (2011) On the osteology of the auditory region and orbital wall in the extinct West Indian sloth genus Neocnus Arredondo, 1961 (Placentalia, Xenarthra, Megalonychidae). Ann Carnegie Mus 80:5–28. https://doi.org/10.2992/007.080.0102

    Article  Google Scholar 

  • Gaudin TJ, Tuckniss S, Boscaini A, Pujos F, De Iuliis G (2020) Cranial osteology and taxonomy of Pronothrotherium (Xenarthra, Folivora, Nothrotheriidae) from the late Miocene – early Pliocene of Catamarca Province (Argentina). Publ Electron Asoc Paleontol Argent 20:55–82. https://doi.org/10.5710/PEAPA.04.09.2020.320

    Article  Google Scholar 

  • Gaudin TJ, Boscaini AA, Mamani Quispe B, Andrade Flores R, Fernández-Monescillo M, Marivaux L, Antoine P-O, Münch P, Pujos F (2023) Recognition of a new nothrotheriid genus (Mammalia, Folivora) from the late Miocene of Achiri (Bolivia) and the taxonomic status of the genus Xyophorus. Hist Biol 35(6):1041-1051. https://doi.org/10.1080/08912963.2022.2075744

    Article  Google Scholar 

  • Gingerich PD, Ul-Haq M, Von Koenigswald W, Sanders JW, Holly Smith B, Zalmout LS (2009) New protocetid whale from the middle Eocene of Pakistan: birth on land, precocial development, and sexual dimorphism. PLoS ONE 4:e4366. https://doi.org/10.1371/journal.pone.0004366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grass AD (2019) Inferring differential behavior between giant ground sloth adults and juveniles through scapula morphology. J Vertebr Paleontol 39:e1569018. https://doi.org/10.1080/02724634.2019.1569018

    Article  Google Scholar 

  • Green JL (2009) Dental microwear in the orthodentine of the Xenarthra (Mammalia) and its use in reconstructing the palaeodiet of extinct taxa: the case study of Nothrotheriops shastensis (Xenarthra, Tardigrada, Nothrotheriidae). Zool J Linn Soc Lond 156:201–222. https://doi.org/10.1111/j.1096-3642.2008.00486.x

    Article  Google Scholar 

  • Green JL, Kalthoff DC (2015) Xenarthran dental microstructure and dental microwear analyses, with new data for Megatherium americanum (Megatheriidae). J Mammal 96:645–657. https://doi.org/10.1093/jmamma/gyv045

    Article  Google Scholar 

  • Hansen RM (1978) Shasta ground sloth food habits, Rampart Cave, Arizona. Paleobiology 4:302–319. https://doi.org/10.1017/S0094837300006011

    Article  Google Scholar 

  • Hartwig WC, Cartelle C (1996) A complete skeleton of the giant South American primate. Nature 381:307–311. https://doi.org/10.1038/381307a0

    Article  CAS  PubMed  Google Scholar 

  • Hautier L, Weisbecker V, Sánchez-Villagra MR, Goswani E, Asher R (2010) Skeletal development in sloths and the evolution of mammalian vertebral patterning. Proc Natl Acad Sci USA 107:18903–18908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hautier L, Weisbecker V, Goswami A, Knight F, Kardjilov N, Asher R (2011) Skeletal ossification and sequence heterochrony in xenarthran evolution. Evol Dev 13:460–476. https://doi.org/10.1111/j.1525-142X.2011.00503.x

    Article  PubMed  Google Scholar 

  • Hautier L, Gomes Rodriguez H, Billet G, Asher RJ (2016) The hidden teeth of sloths: evolutionary vestiges and the development of a simplified dentition. Sci Rep 6:27763. https://doi.org/10.1038/srep27763

    Article  CAS  Google Scholar 

  • Herring SW (1985) The ontogeny of mammalian mastication. Am Zool 25:339–350.

    Article  Google Scholar 

  • Hofreiter M, Poinar HM, Spaulding WG, Bauer K, Martin PS, Possnert G, Pääbo R (2000) A molecular analysis of ground sloth diet through the last glaciation. Mol Ecol 9:1975–1984. https://doi.org/10.1046/j.1365-294X.2000.01106.x

    Article  CAS  PubMed  Google Scholar 

  • Holten B, Sterll M (2010) P.W. Lund: og knokkelhulerne i Lagoa Santa. Statens Naturhistoriske Museum, Kobenhavns Universitet, Copenhagen

    Google Scholar 

  • Langer P (2008) The phases of maternal investment in eutherian mammals. Zoology 111:148–162. https://doi.org/10.1016/j.zool.2007.06.007

    Article  PubMed  Google Scholar 

  • Lara-Ruiz P, Garcia Chiarello A (2005) Life-history traits and sexual dimorphism of the Atlantic forest maned sloth Bradypus torquatus (Xenarthra: Bradypodidae). J Zool 267:63–73. https://doi.org/10.1017/S0952836905007259

    Article  Google Scholar 

  • Liu J, Organ CL, Benton MJ, Brandley MC, Aitchison JC (2017) Live birth in an archosauromorph reptile. Nat Commun 8:14445. https://doi.org/10.1038/ncomms14445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes RP, Frank HT, De Carvalho Buchmann FS, Caron F (2017) Megaichnus igen. nov.: giant paleoburrows attributed to extinct Cenozoic mammals from South America. Ichnos 24:133–145. https://doi.org/10.1080/10420940.2016.1223654

    Article  Google Scholar 

  • Lund PW (1837) Om huler i kalksteen i det indre af Brasilien, der tildeels indeholde fossile knokler. Anden Afhandling. K Dansk Vidensk Selsk Skr Naturvidensk Math Afd 7:307–332

    Google Scholar 

  • Lund PW (1838) Rettelser og Tillaeg til Dr. Lunds tre første afhandlinger i videnskabernes selskabs. K Dansk Vidensk Selsk Skr Naturvidensk Math Afd 8:58–60

    Google Scholar 

  • Lund PW (1839) Blik paa Brasiliens dyreverden för Sidste Jordomvaeltning. Anden Afhandling: Patteedyrene. K Dansk Vidensk Selsk Skr Naturvidensk Math 8:61–144

    Google Scholar 

  • Lydekker R (1889) Palaezoology. Vertebrata. In: Nicholson HA, Lydekker R (eds) A Manual of Paleontology for the Use of Students with a General Introduction on the Principles of Paleontology 2. Edinburgh-London (3rd edition), pp 889–1474

  • Lyon LM, Powell C, McDonald HG, Gaudin TJ (2016) Premaxillae of the extinct megalonychid sloths Acratocnus, Neocnus, and Megalonyx, and their phylogenetic implications (Mammalia, Xenarthra). J Mammal Evol 23:121–132. https://doi.org/10.1007/s10914-015-9308-7

    Article  Google Scholar 

  • MacPhee RDE (1994) Morphology, adaptations, and relationships of Plesiorycteropus, and a diagnosis of a new order of eutherian mammals. Bull Am Mus Nat Hist 220:1–214

  • McDonald HG (2003) Sloth remains from North American caves and associated karst features. In: Schubert BW, Mead JI, Graham RW (eds) Ice Age Cave Faunas of North America. Indiana University Press, Bloomington, pp 1–16

  • McDonald HG, De Iuliis G (2008) Fossil history of sloths. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 39–55

  • McDonald HG, Muizon C de (2002) The cranial anatomy of Thalassocnus (Xenarthra, Mammalia), a derived nothrothere from the Neogene of the Pisco Formation (Peru). J Vertebr Paleontol 22:349–365. https://doi.org/10.1671/0272-4634(2002)022[0349:TCAOTX]2.0.CO;2

    Article  Google Scholar 

  • McDonald HG, Jefferson GT (2008) Distribution of Pleistocene Nothrotheriops (Xenarthra, Nothrotheriidae) in North America. Sci Ser Nat Hist Mus Los Angel Cty 41:313–331

    Google Scholar 

  • McDonald HG, Vizcaíno SF, Bargo MS (2008) Skeletal anatomy and the fossil history of the Vermilingua. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 64–78

  • McFarlane DA, Vale A, Christenson K, Lundberg J, Atilles G, Lauritzen SE (2000) New specimens of late Quaternary extinct mammals from caves in Sanchez Ramirez Province, Dominican Republic. Caribb J Sci 36:163–166

    Google Scholar 

  • Melki LB, De Souza Barbosa FH, Bergqvist LP (2022) On the eating habits of sloths: finite element analysis and niche specialization. J Mammal Evol 29:763–772. https://doi.org/10.1007/s10914-022-09618-4

    Article  Google Scholar 

  • Motani R, Jiang DY, Tintori A, Rieppel O, Chen GB (2014) Terrestrial origin of viviparity in Mesozoic marine reptiles indicated by Early Triassic embryonic fossils. PLoS ONE 9:e88640. https://doi.org/10.1371/journal.pone.0088640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naples VL (1982) Cranial osteology and function in the tree sloths, Bradypus and Choloepus. Am Mus Novit 2739:1–41

    Google Scholar 

  • Naples VL (1990) Morphological changes in the facial region and a model of a dental growth and wear pattern development in Nothrotheriops shastensis. J Vertebr Paleontol 10: 372–389. https://doi.org/10.1080/02724634.1990.10011821

    Article  Google Scholar 

  • O’Keefe FR, Chiappe LM (2011) Viviparity and K-selected life history in a Mesozoic marine plesiosaur (Reptilia, Sauropterygia). Science 333:870–873. https://doi.org/10.1126/science.1205689

    Article  CAS  PubMed  Google Scholar 

  • Omena ÉC, Lopes Da Silva JL, Nóbrega Sial A, Cherkinsky A, Dantas MA (2021) Late Pleistocene meso-megaherbivores from Brazilian intertropical region: isotopic diet (δ13C), niche differentiation, guilds and paleoenvironmental reconstruction (δ13C, δ18O). Hist Biol 33:2299–2304. https://doi.org/10.1080/08912963.2020.1789977

    Article  Google Scholar 

  • Poinar RH, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, Evershed RP, Possbert G, Pääbo S (1998) Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281:402–406. https://doi.org/10.1126/science.281.5375.402

    Article  CAS  PubMed  Google Scholar 

  • Presslee S, Slater GJ, Pujos F, Forasiepi AM, Fischer R, Molloy K, Mackie M, Olsen JV, Kramarz A, Taglioretti M, Scaglia F, Lezcano M, Lanata JL, Southon J, Feranec R, Bloch J, Hajduk A, Martin FM, Salas Gismondi R, Reguero M, Muizon C de, Greenwood A, Chait BT, Penkman K, Collins M, MacPhee RDE (2019) Palaeoproteomics resolves sloth relationships. Nat Ecol Evol 3:1121–1130. https://doi.org/10.1038/s41559-019-0909-z

    Article  PubMed  Google Scholar 

  • Pujos F (2006) Megatherium celendinense from the Pleistocene of Peruvian Andes and the megatheriine phylogenetic relationships. Palaeontology 49:285–306. https://doi.org/10.1111/j.1475-4983.2006.00522.x

    Article  Google Scholar 

  • Pujos F, Salas R (2004) A systematic reassessment and paleogeographic review of fossil Xenarthra from Peru. Bull Inst Fr Et And 33:331–377. https://doi.org/10.4000/bifea.5746

    Article  Google Scholar 

  • Pujos F, Gaudin TJ, De Iuliis G, Cartelle C (2012) Recent advances on variability, morpho-functional adaptations, dental terminology, and evolution of sloths. J Mammal Evol 19:159–169. https://doi.org/10.1007/s10914-012-9189-y

    Article  Google Scholar 

  • Pujos F, De Iuliis G, Mamani Quispe B, Adnet S, Andrade Flores R, Billet G, Fernández-Monescillo M, Marivaux L, Münch P, Prámparo MB, Antoine P-O (2016) A new nothrotheriid xenarthran from the late early Pliocene of Pomata-Ayte (Bolivia): new insights into the caniniform-molariform transition in sloths. Zool J Linn Soc Lond 178:679–712. https://doi.org/10.1111/zoj.12429

    Article  Google Scholar 

  • Pujos F, De Iuliis G, Cartelle C (2017) A paleogeographic overview of tropical fossil sloths: towards an understanding of the origin of extant suspensory sloths? In: Antoine P-O, Pujos F (eds) Cenozoic Evolution of Tropical-Equatorial Mammals. J Mammal Evol 24:19–38. https://doi.org/10.1007/s10914-016-9330-4

  • Pujos F, Ciancio MR, Forasiepi AM, Pujos M, Candela AM, Vera B, Reguero MA, Combina A-M, Cerdeño E (2021) The late Oligocene xenarthran fauna of Quebrada Fiera (Mendoza, Argentina) and its implications for sloth origins and the diversity of Paleogene cingulates. Pap Palaeontol 7:1613–1656. https://doi.org/10.1002/spp2.1356

    Article  Google Scholar 

  • Rankin A, Clauss N (2017) Evolution of live birth in mammals (140 MYA). In: Shackelford TK, Weekes-Shackelford VA (eds) Encyclopedia of Evolutionary Psychological Science. Springer International, Cham, pp 2554–2559. https://doi.org/10.1007/978-3-319-16999-6_711-1

  • Reinhardt J (1878) Kæmpedovendyr-slægten Coelodon. K Dansk Vidensk Selsk Skr Naturvidensk Math 12:255–349

    Google Scholar 

  • Rici Azarias REG, Ambrósio CE, Dos Santos Martins D, De Oliveira VL, Benetti E, Rocha Ferreira J, Miglino MA (2006) Morfologia dos dentes do bicho-preguiça de coleira (Bradypus torquatus), Illiger, 1811. Biotemas 19:73–84

    Google Scholar 

  • Rusconi C (1938) Sobre ejemplares juveniles del género Scelidotherium. An Soc Cient Argent 63:3–40

    Google Scholar 

  • Saarinen J, Karme A (2017) Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra) – applying a new mesowear approach. Palaeogeogr Palaeoclim Palaeoecol 476:42–54. https://doi.org/10.1016/j.palaeo.2017.03.027

    Article  Google Scholar 

  • Semken Jr HA, McDonald HG, Graham RW, Adrain T, Artz JA, Baker RG, Bryk AB, Brenzel DJ, Bettis EA, Clack AA, Grimm BL, Haj A, Horgen SE, Mahoney MC, Ray HA, Theler JL (2022) Paleobiology of Jefferson’s Ground Sloth (Megalonyx jeffersonii) derived from three contemporaneous, ontogenetically distinct individuals recovered from southwestern Iowa, U.S.A. J Vertebr Paleontol 42:e2124115

    Article  Google Scholar 

  • Shockey BJ, Salas-Gismondi R, Baby P, Guyot J-L, Baltazar MC, Huamán L, Stucchi M, Pujos F, Emerson JM, Flynn J (2009) New Pleistocene cave faunas of the Andes of central Peru: radiocarbon ages and the survival of low latitude, Pleistocene DNA. Palaeontol Electron 12:1–15. 10.1.1.584.1422

    Google Scholar 

  • Sinclair WJ (1905) New Mammalia from the Quaternary caves of California. Univ Calif Pub Geol Sci 4(7):145–161

    Google Scholar 

  • Takai F, Mizuno T, Iwasaki K, Tanaka K, Yoshida A (1982) Tarija mammal-bearing Formation in Bolivia. Research Inst Evol Biol 3:1–72

    Google Scholar 

  • Tejada JV, Flynn JJ, MacPhee R, O’Connel TC, Cerling TE, Bermudez L, Capuñay C, Wallsgrove N, Popp BN (2021) Isotope data from amino acids indicate Darwin’s ground sloth was not an herbivore. Sci Rep 11:18944. https://doi.org/10.1038/s41598-021-97996-9

    Article  CAS  Google Scholar 

  • Toledo N, Bargo MS, Vizcaíno SF (2015). Muscular reconstruction and functional morphology of the hind limb of Santacrucian (Early Miocene) sloths (Xenarthra, Folivora) of Patagonia. Anat Rec 298: 842–864. https://doi.org/10.1002/ar.22627

    Article  Google Scholar 

  • Tonni EP, Carlini AA, Scillato-Yané GJ, Figini A (2003) Cronología radiocarbónica y condiciones climáticas en la “Cueva del Milodón” (sur de Chile) durante el Pleistoceno Tardío. Ameghiniana 40:609–615

    Google Scholar 

  • Trindade Dantas MAT, Omena ÉC, Lopes Da Silva JL, Sial A. (2021) Could Eremotherium laurillardi (Lund, 1842) (Megatheriidae, Xenarthra) be an omnivore species? Anu Inst Geocienc 44:36492. https://doi.org/10.11137/1982-3908_2021_44_36492

    Article  Google Scholar 

  • Van Geel B, Van Leeuwen JFN, Den Ouden N, Van Der Knapp PWO, Seersholm FV, Rey-Iglesias A, Lorenzen ED (2022) Diet and environment of Mylodon darwinii based on pollen of a Late-Glacial coprolite from the Mylodon Cave in southern Chile. Rev Palaeobot Palynol 296:104549. https://doi.org/10.1016/j.revpalbo.2021.104549

    Article  Google Scholar 

  • Varela L, Tambusso PS, McDonald HG, Fariña RA (2019) Phylogeny, macroevolutionary trends and historical biogeography of sloths: insights from a Bayesian morphological clock analysis. Syst Biol 68:204–218. https://doi.org/10.1093/sysbio/syy058

    Article  PubMed  Google Scholar 

  • Vezzosi EI, Brandoni D, Brunetto E, Zalazar MC (2019) New remains of Nothrotheriinae (Mammalia, Xenarthra) from Late Pleistocene fluvial deposits of Northern Pampa (Santa Fe Province, Argentina). J South Am Earth Sci 89:47–54. https://doi.org/10.1016/j.jsames.2018.11.004

    Article  Google Scholar 

  • Vizcaíno SF, Zárate M, Bargo MS, Dondas A (2001) Pleistocene burrows in the Mar del Plata area (Argentina) and their probable builders. Acta Palaeontol Pol 46:289–301

    Google Scholar 

  • Wible JR, Gaudin TJ (2004) On the cranial osteology of the yellow armadillo Euphractus sexinctus (Dasypodidae, Xenarthra, Placentalia). Ann Carnegie Mus 73:117–196. https://doi.org/10.5962/p.316081

    Article  Google Scholar 

  • Winge H (1915) Jordfundne og nulevende gumlere (Edentata) fra Lagoa Santa, Minas Geraes, Brasilien: med udsigt over gumlernes indbyrdes slægtskab. E Museo Lundii 3:1–321. https://doi.org/10.5962/bhl.title.14838

    Article  Google Scholar 

  • Zurita AE, Miño-Boilini AR, Soibelzon E, Scillato-Yané GJ, Gasparini GM, Paredes-Ríos F (2009) First record and description of an exceptional unborn specimen of Cingulata Glyptodontidae: Glyptodon Owen (Xenarthra). C R Palevol 8:573–578. https://doi.org/10.1016/j.crpv.2009.04.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to B Garzon (PUC, Belo Horizonte) for making the pictures of the fetus of Nothrotherium and Jorge Gonzalez the hypothetical reconstruction of Nothrotherium fetus in its mother. We thank the Editor FA Perini as well as H. G. McDonald and an anonymous reviewer for their valuable comments.

Funding

The authors received no funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

FP, GDI, and CC wrote the manuscript, FP prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to François Pujos.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pujos, F., De Iuliis, G., Vilaboim Santos, L. et al. Description of a fetal skeleton of the extinct sloth Nothrotherium maquinense (Xenarthra, Folivora): Ontogenetic and palaeoecological interpretations. J Mammal Evol 30, 577–595 (2023). https://doi.org/10.1007/s10914-023-09665-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-023-09665-5

Keywords

Navigation