Skip to main content
Log in

Oxygen and sulfur heterocyclic compounds

Perspectives on the energetic and structural relationships

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

An Erratum to this article was published on 06 October 2015

Abstract

The knowledge of the thermodynamic properties of heterocyclic compounds, particularly the corresponding enthalpies of formation in condensed and gaseous states, enables a better understanding of their chemical behavior and, consequently, leads to an important background for the future development of their practical applications. Following our particular interest along the last decade on the establishment of energetic and structural relationships for heterocycle compounds with one or two benzene rings fused to a five- or six-membered ring containing oxygen or sulfur heteroatoms, we review the thermochemical data for derivatives of the following main structures: benzoxazole/benzothiazole, dibenzofuran/dibenzothiophene, xanthene/thioxanthene, and phenoxazine/phenothiazine. The experimental results, obtained by calorimetric and effusion techniques, namely static and rotating bomb combustion calorimetry, vacuum sublimation/vaporization drop microcalorimetry, and Knudsen effusion methods, were used to derive reliable thermodynamic values for the compounds studied. A complementary analysis of computational results for these molecules is presented. The agreement between the calculated and the experimental gas-phase enthalpies of formation represents a reinforcement on the validation of the established predictive schemes, supporting their use for related compounds whose energetic study is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Herschbach DR. Nobel Lecture: Molecular Dynamics of Elementary Chemical Reactions”. Nobelprize.org. Nobel Media AB 2014. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1986/herschbach-lecture.html. Accessed 14 Dec 2014.

  2. Woo S, Jung J, Lee C, Kwon Y, Na Y. Synthesis of new xanthone analogues and their biological activity test - cytotoxicity, topoisomerase II inhibition, and DNA cross-linking study. Bioorg Med Chem Lett. 2007;17:1163–6.

    Article  CAS  Google Scholar 

  3. Castanheiro RAP, Pinto MMM, Silva AMS, Cravo SMM, Gales L, Damas AM, Nazareth N, Nascimento MS, Eaton G. Dihydroxyxanthones prenylated derivatives: synthesis, structure elucidation, and growth inhibitory activity on human tumor cell lines with improvement of selectivity for MCF-7. Bioorg Med Chem. 2007;15:6080–8.

    Article  CAS  Google Scholar 

  4. Pinto MMM, Sousa ME, Nascimento MSJ. Xanthone derivatives: new insights in biological activities. Curr Med Chem. 2005;12:2517–38.

    Article  CAS  Google Scholar 

  5. Naya A, Sagara Y, Ohwaki K, Saeki T, Ichikawa D, Iwasawa Y, Noguchi K, Ohtake N. Design, synthesis and discovery of a novel CCR1 antagonist. J Med Chem. 2001;44:1429–35.

    Article  CAS  Google Scholar 

  6. Jastrzębska-Więsek M, Librowski T, Czarnecki R, Marona H, Nowak G. Central activity of new xanthone derivatives with chiral center in some pharmacological tests in mice. Pol J Pharmacol. 2003;55:461–5.

    Article  Google Scholar 

  7. Palmeira A, Vasconcelos MH, Paiva A, Fernandes MX, Pinto MMM, Sousa ME. Dual inhibitors of P-glycoprotein and tumor cell growth: (Re)discovering thioxanthones. Biochem Pharmacol. 2012;83:57–68.

  8. Belal F, Hefnawy MM, Aly FA. Analysis of pharmaceutically-important thioxanthene derivatives. J Pharm Biomed Anal. 1997;16:369–76.

    Article  CAS  Google Scholar 

  9. Steele WV, Chirico RD, Knipmeyer SE, Nguyen A. The thermodynamic properties of benzothiazole and benzoxazole. J Chem Thermodyn. 1992;24:499–529.

    Article  CAS  Google Scholar 

  10. Sabbah R, Hevia R. Energetique des liaisons intermoleculaires dans les molecules de benzoxazole et de benzothiazole. Thermochim Acta. 1998;313:131–6.

    Article  CAS  Google Scholar 

  11. Gomes JRB, Liebman JF, Ribeiro da Silva MAV. The thermodynamics of the isomerization of cyanophenol and cyanothiophenol compounds. Struct Chem. 2007;18:15–23.

    Article  CAS  Google Scholar 

  12. Cass RC, Fletcher SE, Mortimer CT, Springall HD, White TR. Heats of combustion and molecular structure. Part V. The mean bond energy term for the C–O bond in ethers, and the structures of some cyclic ethers. J Chem Soc. 1958;1406–10.

  13. Hansen PC, Eckert CA. An improved transpiration method for the measurement of very low vapor pressures. J Chem Eng Data. 1986;31:1–3.

    Article  CAS  Google Scholar 

  14. Sabbah R, Antipine I. Thermodynamic study on four polycycles. Relationship between their energy values and their structure. Bull Soc Chim Fr. 1987;124:392–400.

    Google Scholar 

  15. Chirico RD, Gammon BE, Knipmeyer SE, Nguyen A, Strube MM, Tsonopoulos C, Steele WE. The thermodynamic properties of dibenzofuran. J Chem Thermodyn. 1990;22:1075–96.

    Article  CAS  Google Scholar 

  16. Sabbah R. Thermodynamic study of fluorene and dibenzofuran. Bull Soc Chim Fr. 1991;128:350.

    Google Scholar 

  17. Allinger NL, Yan L. Molecular mechanics (MM3). Calculations of furan, vinyl, ethers and related compounds. J Am Chem Soc. 1993;115:11918–25.

    Article  CAS  Google Scholar 

  18. Bird CW. The application of group additivity parameters to the prediction of the enthalpies of formation of heteroaromatic compounds. Tetrahedron. 1996;52:14335–40.

    Article  CAS  Google Scholar 

  19. Notario R, Roux MV, Castaño O. The enthalpy of formation of dibenzofuran and some related oxygen-containing heterocycles in the gas phase. Phys Chem Chem Phys. 2001;3:3717–21.

    Article  CAS  Google Scholar 

  20. Verevkin SP. Enthalpy of sublimation of dibenzofuran: a redetermination. Phys Chem Chem Phys. 2003;5:710–2.

    Article  CAS  Google Scholar 

  21. Li X-W, Shibata E, Kasai E, Nakamura T. Vapor pressures and enthalpies of sublimation of 17 polychlorinated dibenzo-p-dioxins and five polychlorinated dibenzofuran. Environ Toxicol Chem. 2004;23:348–54.

    Article  CAS  Google Scholar 

  22. Good WD. Enthalpies of combustion of 18 organic sulfur compounds related to petroleum. J Chem Eng Data. 1972;17:158–62.

    Article  CAS  Google Scholar 

  23. Aubry M, Mayoral MN, Villardry P. Détermination de la tension de vapeur de composes peu volatils par chromatographie en phase gazeuse. Application au cas particulier di dibenzothiophène. Bull Soc Chim Fr. 1975;12:500–2.

    Google Scholar 

  24. Sabbah R. Thermodynamique de substances soufrees. I. Etude thermochimique du benzo-2,3 thiophene et du dibenzothiophene. Bull Soc Chim Fr. 1979;116:434–7.

    Google Scholar 

  25. Stein SE, Barton BD. Chemical thermodynamics of polyaromatic compounds containing heteroatoms and five-membered rings. Thermochim Acta. 1981;44:265–81.

    Article  CAS  Google Scholar 

  26. Edwards DR, Prausnitz JM. Vapor pressure of some sulfur-containing, coal-related compounds. J Chem Eng Data. 1981;26:121–4.

    Article  CAS  Google Scholar 

  27. Sivaraman A, Kobayashi R. Investigation of vapor pressures and heats of vaporization of condensed aromatic compounds at elevated temperatures. J Chem Eng Data. 1982;27:264–9.

    Article  CAS  Google Scholar 

  28. Mraw SC, Keweshan CF. Calvet-type calorimeter for the study of high-temperature processes II. New ballistic method for the enthalpy of vaporization of organic materials at high temperatures. J Chem Thermodyn. 1984;16:873–83.

    Article  CAS  Google Scholar 

  29. Chirico RD, Knipmeyer SE, Nguyen A, Steele WV. The thermodynamic properties of dibenzothiophene. J Chem Thermodyn. 1991;3:431–50.

    Article  Google Scholar 

  30. Steele WV, Chirico RD, Cowell AB, Nguyen A, Knipmeyer SE. Possible precursors and products of deep hydrodesulfurization of distillate fuels. J Chem Thermodyn. 1995;27:1407–28.

    Article  CAS  Google Scholar 

  31. Gomes JRB, Ribeiro da Silva MAV. Thermochemistry of small organosulfur compounds from ab initio calculations. J Phys Chem A. 2004;108:11684–90.

    Article  CAS  Google Scholar 

  32. Sabbah R, El Watik L. Etude thermodynamique de la phénoxazine et de la phénothiazine. Thermochim Acta. 1992;197:381–90.

    Article  CAS  Google Scholar 

  33. Goldfarb JL, Suuberg EM. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique. J Chem Thermodyn. 2010;42:781–6.

    Article  CAS  Google Scholar 

  34. Monte MJS. Santos LMNBF, Sousa CAD, Fulem M. Vapor pressures of solid and liquid xanthene and phenoxathiin from effusion and static studies. J Chem Eng Data. 2008;53:1922–6.

    Article  CAS  Google Scholar 

  35. Pedley JB. Thermochemical data and structures of organic compounds. College Station TX: Thermodynamics Research; 1994.

    Google Scholar 

  36. Domalski ES. From the history of combustion calorimetry. In: Sunner S, Månson M, editors. Experimental Chemical Thermodynamics, vol. 1. Oxford: Pergamon Press; 1979. p. 401–20.

  37. Washburn EN. Standard states for bomb calorimetry. J Res Nat Bur Stand (US). 1933;10:525–8.

    Article  CAS  Google Scholar 

  38. Ribeiro da Silva MDMC, Santos LMNBF, Silva ALR, Fernandes O, Acree WE Jr. Energetics of 6-methoxyquinoline and 6-methoxyquinoline N-oxide: the dissociation enthalpy of the (N–O) bond. J Chem Thermodyn. 2003;35:1093–100.

    Article  CAS  Google Scholar 

  39. Ribeiro da Silva MAV, Ferrão MLCCH, Jiye F. Standard enthalpies of combustion of the six dichlorophenols by rotating-bomb calorimetry. J Chem Thermodyn. 1994;26:839–46.

    Article  CAS  Google Scholar 

  40. Calvet E. A new diferencial microcalorimeter with electrical compensation. C R Acad Science (Paris). 1948;26:1702–4.

    Google Scholar 

  41. Adedeji FA, Brown DLS, Connor JA, Leung M, Paz-Andrade MI, Skinner HA. Thermochemistry of arene chromium tricarbonyls and the strengths of arene-chromium bonds. J Organomet Chem. 1975;97:221–8.

    Article  CAS  Google Scholar 

  42. Ribeiro da Silva MAV, Matos MAR, Amaral LMPF. Thermochemical study of 2-, 4-, 6-, and 8-methylquinoline. J Chem Thermodyn. 1995;27:565–74.

    Article  CAS  Google Scholar 

  43. Santos LMNBF, Schröder B, Fernandes OOP, Ribeiro da Silva MAV. Measurement of enthalpies of sublimation by drop method in a Calvet type calorimeter: design and test of a new system. Thermochim Acta. 2004;415:15–20.

    Article  CAS  Google Scholar 

  44. Knudsen M. The laws of molecular and viscous flow through tubes. Ann Phys. 1909;333:75–130.

    Article  Google Scholar 

  45. Harding ME, Vásquez J, Ruscic B, Wilson AK, Gauss J, Stanton JF. High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview. J Chem Phys. 2008;128:114111.

    Article  Google Scholar 

  46. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K. Gaussian-3 theory using density functional geometries and zero-point energies. J Chem Phys. 1999;110:7650–7.

    Article  CAS  Google Scholar 

  47. Silva ALR, Cimas A, Ribeiro da Silva MDMC. Experimental and computational thermochemical studies of benzoxazole and two chlorobenzoxazole derivatives. J Chem Thermodyn. 2013;57:212–9.

    Article  CAS  Google Scholar 

  48. Silva ALR, Cimas A, Ribeiro da Silva MDMC. Energetic study of benzothiazole and two methylbenzothiazole derivatives: Calorimetric and computational approaches. J Chem Thermodyn. 2014;73:3–11.

    Article  CAS  Google Scholar 

  49. Silva ALR, Cimas A, Ribeiro da Silva MDMC. Thermochemistry of 2-methylbenzoxazole and 2,5-dimethylbenzoxazole: an experimental and computational study. Struct Chem. 2013;24:1863–72.

    Article  CAS  Google Scholar 

  50. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC. Dibenzofuran and methyldibenzofuran derivatives: assessment of thermochemical data. Struct Chem. 2013;24:1923–33.

    Article  CAS  Google Scholar 

  51. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC. Revisiting dibenzothiophene thermochemical data: Experimental and computational studies. J Chem Thermodyn. 2009;41:1199–205.

    Article  CAS  Google Scholar 

  52. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC. Energetic effects of ether and ketone functional groups in 9,10-dihydroanthracene compound. J Chem Thermodyn. 2010;42:1248–54.

    Article  CAS  Google Scholar 

  53. Freitas VLS, Monte MJS, Santos LMNBF, Gomes JRB, Ribeiro da Silva MDMC. Energetic studies and phase diagram of thioxanthene. J Phys Chem A. 2009;113:12988–94.

    Article  CAS  Google Scholar 

  54. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC. Structural, energetic and reactivity properties of phenoxazine and phenothiazine. J Chem Thermodyn. 2014;73:110–20.

    Article  CAS  Google Scholar 

  55. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC. A Computational study on the thermochemistry of methylbenzo- and methyldibenzothiophenes. J Mol Struct Theochem. 2010;946:20–5.

    Article  CAS  Google Scholar 

  56. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC. Molecular energetics of 4-methyldibenzothiophene: An experimental study. J Chem Thermodyn. 2010;42:251–5.

    Article  CAS  Google Scholar 

  57. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC. Energetic studies of two oxygen heterocyclic compounds: Xanthone and tetrahydro-γ-pyrone. J Therm Anal Calorim. 2009;97:827–33.

    Article  CAS  Google Scholar 

  58. Freitas VLS, Gomes JRB, Gales L, Damas AM, Ribeiro da Silva MDMC. Experimental and computational studies on the structural and thermodynamic properties of two heterocyclic sulfur compounds. J Chem Eng Data. 2010;55:5009–17.

    Article  CAS  Google Scholar 

  59. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC. Experimental and computational thermochemical studies of 9-R-xanthene derivatives (R=OH, COOH, CONH2). J Chem Thermodyn. 2012;54:108–17.

    Article  CAS  Google Scholar 

  60. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC. A computational study on the energetics and reactivity of some xanthene and thioxanthene derivatives. Struct Chem. 2013;24:661–70.

    Article  CAS  Google Scholar 

  61. Ribeiro da Silva MAV, Amaral LMPF. Standard molar enthalpies of formation of some methylfuran derivatives. J Therm Anal Calorim. 2010;100:375–80.

    Article  CAS  Google Scholar 

  62. Ribeiro da Silva MAV, Amaral LMPF. Standard molar enthalpies of formation of 2-furancarbonitrile, 2-acetylfuran, and 3-furaldehyde. J Chem Thermodyn. 2009;41:26–9.

    Article  CAS  Google Scholar 

  63. Ribeiro da Silva MAV, Santos AFLOM. Energetics of thiophenecarboxaldehydes and some of its alkyl derivatives. J Chem Thermodyn. 2008;40:917–23.

    Article  CAS  Google Scholar 

  64. Roux MV, Temprado M, Jiménez P, Pérez-Parajón J, Notario R. Thermochemistry of Furancarboxylic Acids. J Phys Chem A. 2003;107:11460–7.

    Article  CAS  Google Scholar 

  65. Temprado M, Roux MV, Jiménez P, Dávalos JZ, Notario R. Experimental and computational thermochemistry of 2- and 3-thiophenecarboxylic acids. J Phys Chem A. 2002;106:11173–80.

    Article  CAS  Google Scholar 

  66. Ribeiro da Silva MAV, Amaral LMPF, Santos AFLOM. Thermochemical and thermophysical study of 2-thiophenecarboxylic acid hydrazide and 2-furancarboxylic acid hydrazide. J Chem Thermodyn. 2008;40:1588–93.

    Article  CAS  Google Scholar 

  67. Ribeiro da Silva MAV, Santos AFLOM. Experimental thermochemical study of the three methyl substituted 2-acetylthiophene isomers. J Chem Thermodyn. 2008;40:1309–13.

    Article  CAS  Google Scholar 

  68. Steele WV, Chirico RD. Cooperative Agreement No. FC22-83FE60149 (NIPEP-457), IIT Research Institute, NIPEP, Bartlesville, OK 74005, 1990.

  69. Cox JD, Pilcher G. Thermochemistry of Organic & Organometallic Compounds. London and New York: Academic Press; 1970.

    Google Scholar 

  70. McCormick DG, Hamilton WS. The enthalpies of combustion and formation of oxazole and isoxazole. J Chem Thermodyn. 1978;10:275–8.

    Article  CAS  Google Scholar 

  71. Roux MV, Temprado M, Jiménez P, Foces-Foces C, Notario R, Parameswar AR, Demchenko AV, Chickos JS, Deakyne CA, Ludden AK, Liebman JF. Experimental and theoretical study of the structures and enthalpies of formation of the synthetic reagents 1,3-thiazolidine-2-thione and 1,3-oxazolidine-2-thione. J Phys Chem A. 2009;113:10772–8.

    Article  CAS  Google Scholar 

  72. Roux MV, Temprado M, Jimenez P, Foces-Foces C, Notario R, Parameswar AR, Demchenko AV, Chickos JS, Deakyne CA, Liebman JF. Experimental and theoretical study of the structures and enthalpies of formation of 3H-1,3-benzoxazole-2-thione, 3H-1,3-benzothiazole-2-thione, and their tautomers. J Phys Chem A. 2010;114:6336–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was mainly supported by Fundação para a Ciência e a Tecnologia (FCT), Lisbon, Portugal, and European Social Fund through strategic projects PEst-C/QUI/UI0081/2013 awarded to CIQUP. VLSF thanks FCT for postdoctoral grant SFRH/BPD/78552/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. M. C. Ribeiro da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, V.L.S., Ribeiro da Silva, M.D.M.C. Oxygen and sulfur heterocyclic compounds. J Therm Anal Calorim 121, 1059–1071 (2015). https://doi.org/10.1007/s10973-015-4800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4800-0

Keywords

Navigation