Skip to main content
Log in

Species-specific ITS primers for the identification of Picoa juniperi and Picoa lefebvrei and using nested-PCR for detection of P. juniperi in planta

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Desert truffles, hypogeous Pezizales (Ascomycota), are difficult to identify due to evolutionary convergence of morphological characters among taxa that share a similar habitat and mode of spore dispersal. Also, during their symbiotic phase, these are barely distinguishable morphologically, and molecular probes are needed for their identification. We have developed a PCR-based method for the identification of Picoa juniperi and Picoa lefebvrei based on internal transcribed spacers of rDNA. Two PCR primers specific for P. lefebvrei (FLE/RLE) and two specific for P. juniperi (FJU/RJU) were designed. A collection of samples from different geographical areas representing diversity of these species were examined for unique regions of internal transcribed spacers 1, 2 and 5.8S gene of rDNA (ITS) compared to other closely related species. Annealing temperatures and extension times were optimized for each set of primers for maximum specificity and efficiency. They proved to be efficient to specifically detect the presence of P. juniperi and P. lefebvrei by PCR and neither set amplified purified DNA from other truffle species as well as some ascomycetous fungi. The partial small subunit of ribosomal DNA genes of P. juniperi were amplified with the genomic DNA extracted from Helianthemum ledifolium var. ledifolium roots by nested polymerase chain reaction (PCR) using the universal fungal primer pair ITS1/ITS4 and specific primer pair FTC/RTC, which was designed based on internal transcribed spacer 1, 2 and 5.8S gene of rDNA sequences of P juniperi. The nested-PCR was sensitive enough to re-amplify the direct-PCR product, resulting in a DNA fragment of 426 bp. The efficacy of nested-PCR showed that it could re-amplify the direct-PCR product and detect 200 fg genomic DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al-Scheikh M, Trappe JM (1983) Taxonomy of Phaeangiurn lefebvrei, a desert truffle eaten by birds. Can J Bot 61:1919–1925

    Article  Google Scholar 

  2. Amicucci A, Zambonelli A, Giomaro G, Potenza L, Stocchi V (1998) Identification of ectomycorrhizal fungi of the genus Tuber by species-specific ITS primers. Mol Ecol 7:273–277

    Article  CAS  Google Scholar 

  3. Amicucci A, Guidi C, Zambonelli A, Potenza L, Stocchi V (2002) Molecular approaches for the detection of truffle species in processed food products. J Sci Food Agric 82:1391–1397

    Article  CAS  Google Scholar 

  4. Andersen MTA, Beever REB, Gilman ACC, Liefting LWAC, Balmori EAC, Beck DLA, Sutherland PWA, Bryan GTA, Gardner RCC, Forster RLSA (1998) Detection of phormium yellow leaf phytoplasma in New Zealand flax (Phormium tenax) using nested PCRs. Plant Pathol 47:188–196

    Article  CAS  Google Scholar 

  5. Bertini L, Potenza L, Zambonelli A, Amicucci A, Stocchi V (1998) Restriction fragment length polymorphism species-specific patterns in the identification of white truffles. FEMS Microbiol Lett 164:397–401

    Article  PubMed  CAS  Google Scholar 

  6. Calonge FD, Garcoa F, Santos JC, Juste P (1995) Contribucion al estudio de los hongos de Valladolid y provincias limotrofes. III. Algunas especies hipogeas interesantes. Boletin de la Sociedad Micologic de Madrid 20:291–299

    Google Scholar 

  7. Cheung WY, Hubert N, Landry BS (1993) A simple and rapid DNA microextraction method for plant, animal, and insect suitable for RAPD and other PCR analyses. Genome Res 3:69–70

    Article  CAS  Google Scholar 

  8. Chevalier G, Martin F, Nicolas P, Gandeboeuf D, Henrion B, Dupre C, Drevet P, Coehlo V, Gentzbittel L (1995) Characterization and identification of Tuber species using molecular criteria. In: Stocchi V, Bonfante P, Nuti M (eds) Biotechnology of ectomycorrhizae. Plenum, New York, pp 151–159

    Google Scholar 

  9. Diez J, Manjon JL, Martin F (2002) Molecular phylogeny of the mycorrhizal desert truffles (Terfezia and Tirmania), host specificity and edaphic tolerance. Mycologia 94:247–259

    Article  PubMed  CAS  Google Scholar 

  10. El Karkouri K, Murat C, Zampieri E, Bonfante P (2007) Identification of internal transcribed spacer sequence motifs in truffles: a first step towards their DNA bar-coding. Appl Environ Microbiol 73:5320–5330

    Article  PubMed  Google Scholar 

  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  12. Ferdman Y, Aviram S, Roth-Bejerano N, Trappe JM, Kagan-Zur V (2005) Phylogenetic studies of Terfezia pfeilli and Choiromyces echinulatus (Pezizales) support new genera for southern African truffles: Kalaharituber and Eremiomyces. Mycol Res 109:237–245

    Article  PubMed  CAS  Google Scholar 

  13. Gandeboeuf D, Dupre C, Roeckel-Drevet P, Nicolas P, Chevalier G (1997) Typing Tuber ectomycorrhizae by polymerase chain amplification of the internal transcribed spacer of rDNA and the sequence characterized amplified region markers. Can J Microbiol 43:723–728

    Article  PubMed  CAS  Google Scholar 

  14. Gardes M, White TJ, Fortin JA, Bruns TD, Taylor JW (1991) Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can J Bot 69:180–190

    Article  CAS  Google Scholar 

  15. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidomycetes: application to identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  16. Gutierrez A, Morte A, Honrubia M (2003) Morphological characterization of the mycorrhiza formed by Helianthemum almeriense Pau with Terfezia claveryi Chatin and Picoa lefebvrei (Pat) Maire. Mycorrhiza 13:299–307

    Article  PubMed  CAS  Google Scholar 

  17. Goodwin PH, Xue BG, Kuske CR, Sears MK (1994) Amplification of plasmid DNA to detect plant pathogenic mycoplasma like organisms. Ann Appl Biol 124:2736

    Article  Google Scholar 

  18. Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Article  Google Scholar 

  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows95/98/NT. Nucl Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  20. Harrington FA, Pfister DH, Potter D, Donoghue MJ (1999) Phylogenetic studies within the Pezizales. I. 18S rDNA sequence data and classification. Mycologia 91:41–50

    Article  CAS  Google Scholar 

  21. Henrion B, Chevalier G, Martin F (1994) Typing truffle species by PCR amplification of the ribosomal DNA spacers. Mycol Res 98:3743

    Article  Google Scholar 

  22. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–447

    Article  PubMed  CAS  Google Scholar 

  23. Iotti M, Amicucci A, Bonito G, Bonuso E, Stocchi V, Zambonelli A (2007) Selection of a set of specific primers for the identification of Tuber rufum: a truffle species with high genetic variability. FEMS Microbiol Lett 277:223–231

    Article  PubMed  CAS  Google Scholar 

  24. Jamali S, Banihashemi Z (2010). Two new species of hypogeous ascomycetes, Tirmania nivea and Picoa lefebvrei from Iran. Proceeding of the 19th Iranian Plant Protection Congress, p 67

  25. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucl Acids Res 35(webserver issue):W43–W46

    Article  PubMed  Google Scholar 

  26. Kovacs G, Jakucs E, Bagi I (2007) Identification of host plants and description of sclerotia of the truffle Mattirolomyces terfezioides. Mycol Prog 6:19–26

    Article  Google Scholar 

  27. Kumar S, Tamura K, Jakobsen IB, Nei M (2004) MEGA4: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  Google Scholar 

  28. Laessoe T, Hansen K (2007) Truffle trouble: what happened to the Tuberales? Mycol Res 111:1075–1099

    Article  PubMed  Google Scholar 

  29. Landvik S, Egger KN, Schumacher T (1997) Towards a subordinal classification of the Pezizales Ascomycota. Phylogenetic analyses of SSU rDNA sequences. Nord J Bot 17:403–418

    Article  CAS  Google Scholar 

  30. Lanfranco L, Wyss P, Marzachi C, Bonfante P (1993) DNA probes for identification of the ectomycorrhizal fungus Tuber magnatum Pico. FEMS Microbiol Lett 114:245–252

    Article  PubMed  CAS  Google Scholar 

  31. Longato S, Bonfante P (1997) Molecular identification of mycorrhizal fungi by direct amplification of microsatellite regions. Mycol Res 101:425–432

    Article  CAS  Google Scholar 

  32. Mello A, Garnero L, Bonfante P (1999) Specific PCR-primers as a reliable tool for the detection of white truffles in mycorrhizal roots. New Phytol 141:511–516

    Article  CAS  Google Scholar 

  33. Moreno G, Diez GJ, Manjon JL (2000) Picoa melospora sp. nov. (Pezizales) from the Iberian Peninsula. Bull Fed Assoc Mycol Mediterr 18:87–92

    Google Scholar 

  34. Moreno G, Diez J, Manjon JL (2000) Picoa lefebvrei and Tirmania nivea, two rare hypogeous fungi from Spain. Mycol Res 104:378–381

    Article  Google Scholar 

  35. Morris MH, Smith ME, Rizzo DM, Rejmanek M, Bledsoe CS (2008) Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytol 178:167–176

    Article  PubMed  Google Scholar 

  36. Paolocci F, Cristofari E, Angelini P, Granetti B, Arciono S (1995) The polymorphism of the rDNA region in typing ascocarps and ectomycorrhizae of truffle species. In: Bonfante P, Nuti M, Stocchi V (eds) Biotechnology of ectomycorrhizae. Plenum Press, New York, pp 171–184

    Chapter  Google Scholar 

  37. Paolocci F, Rubini A, Granetti B, Arcioni S (1997) Typing Tuber melanosporum and Chinese black truffle species by molecular markers. FEMS Microbiol Lett 153:255–260

    Article  PubMed  CAS  Google Scholar 

  38. Paolocci F, Rubini A, Angelini P, Granetti B, Arcioni S (1999) Rapid molecular approach for a reliable identification of Tuber spp. ectomycorrhizae. FEMS Microbiol Ecol 28:23–30

    Article  CAS  Google Scholar 

  39. Percudani R, Trevisi A, Zambonelli A, Ottonello S (1999) Molecular phylogeny of truffles (Pezizales: Terfeziaceae, Tuberaceae) derived from nuclear rDNA sequence analysis. Mol Phylogenet Evol 13:169–180

    Article  PubMed  CAS  Google Scholar 

  40. Perez-Garcia F, Gonzales-Benito ME (2005) Seed germination of five Helianthemum species: effect of temperature and presowing treatments. J Arid Environ 65:688–693

    Article  Google Scholar 

  41. Perry B, Hansen K, Pfister D (2007) A phylogenetic overview of the family Pyronemataceae (Ascomycota, Pezizales). Mycol Res 111:549–571

    Article  PubMed  CAS  Google Scholar 

  42. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  43. Riousset L, Riousset G, Jalade M, Chevalier G (1989) Prima raccolta in Francia di Phaeangium lefebvrei Patouillard. II Fungo 3:9–11

  44. Riousset L, Riousset G, Jalade M, Chevalier G (1996) Prima raccolta in Francia di Picoa lefebvrei (Patouillard) Maire. II Fungo 3:15–17

    Google Scholar 

  45. Roux C, Sejalon-Delmas N, Martins M, Parguey-Leduc A, Dargent R, Be´card G (1999) Phylogenetic relationships between European and Chinese truffles based on parsimony and distance analysis of ITS sequences. FEMS Microbiol Lett 180:147–155

    Article  PubMed  CAS  Google Scholar 

  46. Rubini A, Paolocci F, Granetti B, Arcioni S (1998) Single step molecular characterization of morphologically similar black truffle species. FEMS Microbiol Lett 164:7–12

    CAS  Google Scholar 

  47. Sbissi I, Neffati M, Boudabous A, Murat C, Gtari M (2010) Phylogenetic affiliation of the desert truffles Picoa juniperi and Picoa lefebvrei. Antonie Van Leeuwenhoek 98:429–436

    Article  PubMed  Google Scholar 

  48. Schneider B, Gibb KS (1997) Detection of phytoplasmas in declining pears in southern Australia. Plant Dis 81:2548

    Article  Google Scholar 

  49. Sejalon-Delmas N, Roux C, Martins M, Kulifaj M, Becard G, Dargent R (2000) Molecular tools for the identification of Tuber melanosporum in agroindustry. J Agric Food Chem 48:2608–2613

    Article  PubMed  CAS  Google Scholar 

  50. Slama A, Fortas Z, Neffati M, Khabar L, Boudabbous A (2006) Etude taxonomique de quelques Ascomycota hypoges (Terfeziaceae) de la Tunisie meridionale. Bull Soc Mycol Fr 122:187–195

    Google Scholar 

  51. Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland as inferred from rDNA sequence analysis of bulked ectomycorrhizal roots and sporocarps. New Phytol 174:847–863

    Article  PubMed  CAS  Google Scholar 

  52. Spatafora JW (1995) Ascomal evolution of filamentous ascomycetes. Evidence from molecular data. Can J Bot 73:S811–S815

    Article  CAS  Google Scholar 

  53. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 22:4673–4680

    Article  CAS  Google Scholar 

  54. Tuinen D, Jacquot E, Zhao B, Gallotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  55. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  56. Zampieri E, Mello A, Bonfante P, Murat C (2009) PCR primers specific for the genus Tuber reveal the presence of several truffle species in a truffle-ground. Microbiol Lett 297:67–72

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samad Jamali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamali, S., Banihashemi, Z. Species-specific ITS primers for the identification of Picoa juniperi and Picoa lefebvrei and using nested-PCR for detection of P. juniperi in planta . Mol Biol Rep 40, 5701–5712 (2013). https://doi.org/10.1007/s11033-013-2672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2672-6

Keywords

Navigation