Skip to main content

Advertisement

Log in

Assessment of alpha glucosidase inhibitors produced from endophytic fungus Alternaria destruens as antimicrobial and antibiofilm agents

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Diabetes is considered as a major health concern worldwide and patients with diabetes are at high risk for infectious diseases. Therefore, α-glucosidase inhibitors possessing antibacterial activity along with the ability to inhibit biofilms would be better therapeutic agents for diabetic patients. In the present study, two fractions (AF1 and AF2) possessing α-glucosidase inhibitory activity were purified from an endophytic fungus Alternaria destruens (AKL-3) isolated from Calotropis gigantea. These were evaluated for their antimicrobial and antibiofilm potential against human pathogens. AF1 exhibited broad spectrum antimicrobial activity against all the tested pathogens. It also significantly inhibited biofilm formation and dispersed the preformed biofilm at sub-optimal concentrations. AF2 possessed lesser activity as compared to AF1. The active compounds were purified using semi preparative HPLC. Some of the active compounds were identified to be phenolic in nature. The active fractions were also determined to be non-mutagenic and non-cytotoxic in safety analysis. The study highlights the role of endophytic fungi as sources of α-glucosidase inhibitors with antimicrobial potential which can have application in management of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AGI:

α-Glucosidase inhibitors

BHI:

Brain heart infusion

CHO:

Chinese hamster ovary

DM:

Diabetes mellitus

DMSO:

Dimethyl sulfoxide

DOX:

Doxorubicin

FTIR:

Fourier transform infrared spectroscopy

HPLC:

High performance liquid chromatography

MTT:

(3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide

OD:

Optical density

pNPG:

ρ-Nitro phenyl-α-d-glucopyranoside

TLC:

Thin layer chromatography

References

  1. Purich DL (2010) Enzyme kinetics: catalysis and control: a reference of theory and best-practice methods. Elsevier, Amsterdam

    Google Scholar 

  2. Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13(10):93R–104R

    Article  CAS  PubMed  Google Scholar 

  3. Kim SK, Nho HJ (2004) Isolation and characterization of α-glucosidase inhibitor from the fungus Ganoderma lucidum. J Microbiol 42(3):223–227

    CAS  PubMed  Google Scholar 

  4. Kajimoto T, Node M (2009) Inhibitors against glycosidases as medicines. Curr Top Med Chem 9(1):13–33

    Article  CAS  PubMed  Google Scholar 

  5. Alonzi DS, Scott KA, Dwek RA, Zitzmann N (2017) Iminosugar antivirals: the therapeutic sweet spot. Biochem Soc Trans 45(2):571–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geerlings SE, Hoepelman AI (1999) Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 26(3–4):256–265

    Google Scholar 

  7. Muller LMAJ, Gorter KJ, Hak E, Goudzwaard WL, Schellevis FG, Hoepelman AIM, Rutten GEHM (2005) Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis 41(3):281–288

    Article  CAS  PubMed  Google Scholar 

  8. Neut D, Tijdens-Creusen EJ, Bulstra SK, Van der Mei HC, Busscher HJ (2011) Biofilms in chronic diabetic foot ulcers—a study of 2 cases. Acta Orthop 82(3):383–385

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jalgaonwala RE, Mohite BV, Mahajan RT (2017) A review: natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1(2):21–32

    Google Scholar 

  10. Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wibowo M, Prachyawarakorn V, Aree T, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2014) Tricyclic and spirobicyclic norsesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Eur J Org Chem 19:3976–3980

    Article  CAS  Google Scholar 

  12. Wibowo M, Prachyawarakorn V, Aree T, Mahidol C, Ruchirawat S, Kittakoop P (2016) Cytotoxic sesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Phytochemistry 122:126–138

    Article  CAS  PubMed  Google Scholar 

  13. Masi M, Maddau L, Linaldeddu BT, Scanu B, Evidente A, Cimmino A (2018) Bioactive metabolites from pathogenic and endophytic fungi of forest trees. Curr Med Chem 25(2):208–252

    Article  CAS  PubMed  Google Scholar 

  14. Singh B, Kaur T, Kaur S, Manhas RK, Kaur A (2016) Insecticidal potential of an endophytic Cladosporium velox against Spodoptera litura mediated through inhibition of alpha glycosidases. Pest Biochem Physiol 131:46–52

    Article  CAS  Google Scholar 

  15. Singh B, Kaur A (2016) Antidiabetic potential of a peptide isolated from an endophytic Aspergillus awamori. J Appl Microbiol 120:301–311

    Article  CAS  PubMed  Google Scholar 

  16. Kaur J, Kaur R, Dutta R, Kaur S, Kaur A (2018) Exploration of insecticidal potential of an alpha glucosidase enzyme inhibitor from an endophytic Exophiala spinifera. J Appl Microbiol 125(5):1455–1465

    Article  CAS  PubMed  Google Scholar 

  17. Kaur J, Sharma A, Sharma M, Manhas RK, Kaur S, Kaur A (2019) Effect of α-glycosidase inhibitors from endophytic fungus Alternaria destruens on survival and development of insect pest Spodoptera litura Fab. and fungal phytopathogens. Sci Rep 9(1):1–13

    Article  CAS  Google Scholar 

  18. Kaur S, Sharma P (2015) Protease-sensitive inhibitory activity of cell-free supernatant of Lactobacillus crispatus 156 synergizes with ciprofloxacin, moxifloxacin and streptomycin against Pseudomonas aeruginosa: an in vitro study. Probiot Antimicro 7(2):172–180

    Article  CAS  Google Scholar 

  19. Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68(6):2950–2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Waksmundzka HM, Sherma J, Kowalska T (2008) Thin layer chromatography in phytochemistry. CRC Press, Boca Raton

    Book  Google Scholar 

  21. Maron DM, Ames BN (1983) Revised method for Salmonella mutagenicity test. Mutat Res 113(3–4):173–215

    Article  CAS  PubMed  Google Scholar 

  22. Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A (1993) In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 14(5):359–364

    Article  CAS  PubMed  Google Scholar 

  23. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8(8):578

    Article  CAS  PubMed  Google Scholar 

  24. Islam B, Khan SN, Haque I, Alam M, Mushfiq M, Khan AU (2008) Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba. J Antimicrob Chemother 62(4):751–757

    Article  CAS  PubMed  Google Scholar 

  25. Lee DS, Lee JM, Kim SU, Chang KT, Lee SH (2007) Ceftezole, a cephem antibiotic, is an α-glucosidase inhibitor with in vivo anti-diabetic activity. Int J Mol Med 20(3):379–383

    CAS  PubMed  Google Scholar 

  26. Rupp ME, Hamer KE (1998) Effect of sub inhibitory concentrations of vancomycin, cefazolin, ofloxacin, L-ofloxacin and D-ofloxacin on adherence to intravascular catheters and biofilm formation by Staphylococcus epidermidis. J Antimicrob Chemother 41(2):155–161

    Article  CAS  PubMed  Google Scholar 

  27. Lou Z, Wang H, Zhu S, Ma C, Wang Z (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76(6):M398–M403

    Article  CAS  PubMed  Google Scholar 

  28. Bakkiyaraj D, Nandhini JR, Malath B, Pandian SK (2013) The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 29(8):929–937

    Article  CAS  PubMed  Google Scholar 

  29. Yamada Y, Yamamoto A, Yoneda N, Nakatani N (1999) Identification of kaempferol from the leaves of Diospyros kaki and its antimicrobial activity against Streptococcus mutans. Biocontrol Sci 4(2):97–100

    Article  CAS  Google Scholar 

  30. Al-Majmaie S, Nahar L, Sharples GP, Wadi K, Sarker SD (2019) Isolation and antimicrobial activity of rutin and its derivatives from Ruta chalepensis (Rutaceae) growing in Iraq. Rec Nat Prod 13(1):64–70

    Article  CAS  Google Scholar 

  31. Friedman M, Jurgens HS (2000) Effect of pH on the stability of plant phenolic compounds. J Agric Food Chem 48(6):2101–2110

    Article  CAS  PubMed  Google Scholar 

  32. Arabshahi DS, Devi DV, Urooj A (2007) Evaluation of antioxidant activity of some plant extract and their heat, pH and storage stability. Food Chem 100(3):1100–1105

    Article  CAS  Google Scholar 

Download references

Funding

Authors acknowledge the grant of fellowship under UPE (University with Potential for Excellence) scheme of University Grants Commission and Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarjeet Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, J., Sharma, P., Kaur, R. et al. Assessment of alpha glucosidase inhibitors produced from endophytic fungus Alternaria destruens as antimicrobial and antibiofilm agents. Mol Biol Rep 47, 423–432 (2020). https://doi.org/10.1007/s11033-019-05145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05145-3

Keywords

Navigation