Skip to main content
Log in

Inactivation of a candidate effector gene of Zymoseptoria tritici affects its sporulation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Wheat is one of the most important staple crops produced worldwide. Its susceptibility to plant diseases reduces its production significantly. One of the most important diseases of wheat is septoria tritici blotch, a devastating disease observed in fields with wet and temperate conditions. Z. tritici secretes effector proteins to influence the host’s defense mechanisms, as is typical of plant pathogens. In this investigation, we evaluated the pathogenicity of some Zymoseptoria tritici effector candidate genes having a signal peptide for secretion with no known function.

Methods and results

Three genes named Mycgr3G104383, Mycgr3G104444 and Mycgr3G105826 were knocked out separately through homologous recombination, generating Z. tritici IPO323 mutants lacking the functional copy of the corresponding genes. While KO1 and KO3 mutants did not show any significant differences during phenotypic and virulence investigations, the KO2 mutant generated exclusively macropycnidiospores in artificial media, different from wild-type IPO323 which produce only micropycidiospores. The mycelial growth capability of KO2 was also severely attenuated in all of the investigated growth conditions. These changes were observed independent of growth media and growth temperatures, implying that changes were genetic and inherited through generations. Virulence of knockout mutants in wheat leaves was observed to be similar to the wild-type IPO323.

Conclusion

Understanding the biology of Z. tritici and its interactions with wheat will reveal new strategies to fight septoria tritici blotch, enabling breeding wheat cultivars resistant to a broader spectrum of Z. tritici strains. Furthermore, gene knockout via homologous recombination proved to be a powerful tool for discovering novel gene functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data needed to conduct this study is provided within the manuscript.

References

  1. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3(3):430–439. https://doi.org/10.1038/s41559-018-0793-y

    Article  PubMed  Google Scholar 

  2. FAOSTAT (2020) ; http://www.fao.org/faostat/en. Accesed 03 March 2022

  3. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8(6):e66428. https://doi.org/10.1371/journal.pone.0066428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ficke A, Cowger C, Bergstrom G, Brodal G (2018) Understanding yield loss and pathogen biology to improve disease management: Septoria nodorum blotch-a case study in wheat. Plant Dis 102(4):696–707. https://doi.org/10.1094/PDIS-09-17-1375-FE

    Article  CAS  PubMed  Google Scholar 

  5. Eyal Z, Scharen AL, Prescott JM, van Ginkel M (1987) The Septoria diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico, D.F., p 46

    Google Scholar 

  6. Fones H, Gurr S (2015) The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genet Biol 79:3–7. https://doi.org/10.1016/j.fgb.2015.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shetty NP, Mehrabi R, Lütken H, Haldrup A, Kema GH, Collinge DB, Jørgensen HJL (2007) Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol 174(3):637–647. https://doi.org/10.1111/j.1469-8137.2007.02026.x

    Article  CAS  PubMed  Google Scholar 

  8. Adhikari TB, Balaji B, Breeden J, Goodwin SB (2007) Resistance of wheat to Mycosphaerella graminicola involves early and late peaks of gene expression. Physiol Mol Plant Pathol 71(1–3):55–68. https://doi.org/10.1016/j.pmpp.2007.10.004

    Article  CAS  Google Scholar 

  9. Orton ES, Deller S, Brown JK (2011) Mycosphaerella graminicola: from genomics to disease control. Mol Plant Pathol 12(5):413–424. https://doi.org/10.1111/j.1364-3703.2010.00688.x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mehrabi R, Zwiers LH, de Waard MA, Kema GH (2006) MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Mol Plant Microbe Interact 19(11):1262–1269. https://doi.org/10.1094/MPMI-19-1262

    Article  CAS  PubMed  Google Scholar 

  11. Steinberg G (2015) Cell biology of Zymoseptoria tritici: Pathogen cell organization and wheat infection. Fungal Genet Biol 79:17–23. https://doi.org/10.1016/j.fgb.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mustafa Z (2020) Distribution of Septoria tritici blotch disease agent Zymoseptoria tritici mating type idiomorphs in Turkey. Bitki Koruma Bülteni 60(3):33–38. https://doi.org/10.16955/bitkorb.656918

    Article  Google Scholar 

  13. Ravensdale M, Nemri A, Thrall PH, Ellis JG, Dodds PN (2011) Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease. Mol Plant Pathol 12(1):93–102. https://doi.org/10.1111/j.1364-3703.2010.00657.x

    Article  CAS  PubMed  Google Scholar 

  14. Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324(5928):742–744. https://doi.org/10.1126/science.117164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L, Singh KB et al (2016) EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol 210(2):743–761. https://doi.org/10.1111/nph.13794

    Article  CAS  PubMed  Google Scholar 

  16. Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41–60. https://doi.org/10.1146/annurev.phyto.44.070505.143436

    Article  CAS  PubMed  Google Scholar 

  17. Rovenich H, Boshoven JC, Thomma BP (2014) Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Curr Opin Plant Biol 20:96–103. https://doi.org/10.1016/j.pbi.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  18. Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J, Hammond-Kosack KE et al (2011) Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol 156(2):756–769. https://doi.org/10.1104/pp.111.176347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M’Barek SB, Cordewener JH, Ghaffary SMT, van der Lee TA, Liu Z, Gohari AM et al (2015) FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici. Fungal Genet Biol 79:54–62. https://doi.org/10.1016/j.fgb.2015.03.015

    Article  CAS  PubMed  Google Scholar 

  20. Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M et al (2017) A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytol 214(2):619–631. https://doi.org/10.1111/nph.14434

    Article  CAS  PubMed  Google Scholar 

  21. Morais do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE (2012) Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola. PLoS ONE 7(12):e49904. https://doi.org/10.1371/journal.pone.0049904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goodwin SB, M’Barek SB, Dhillon B, Wittenberg AH, Crane CF, Hane JK et al (2011) Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet 7(6):e1002070. https://doi.org/10.1371/journal.pgen.1002070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J et al (2015) Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiol 167(3):1158–1185. https://doi.org/10.1104/pp.114.255927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holsters M, De Waele D, Depicker A, Messens E, Van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet MGG 163(2):181–187. https://doi.org/10.1007/BF00267408

    Article  CAS  PubMed  Google Scholar 

  25. Zwiers LH, De Waard MA (2001) Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet 39(5):388–393. https://doi.org/10.1007/s002940100216

    Article  CAS  PubMed  Google Scholar 

  26. Turgay EB, Büyük O, Ölmez F, Akan K, Yıldırım AF (2017) The reaction of some Turkish bread and durum wheat cultivars against to Zymoseptoria tritici (Desm. Quaedvlieg & Crous). Works of the Faculty of Agriculture and Food Sciences, University of Sarajevo, Vol. LXII, No. 67/2. Sarajevo, Bosnia and Herzegovina, pp 231–239

  27. Townsend GR, Heuberger JW (1943) Methods for estimating losses caused by diseases in fungicide experiments. The Plant Disease Reporter 27:340–343

    CAS  Google Scholar 

  28. Francisco CS, Ma X, Zwyssig MM, McDonald BA, Palma-Guerrero J (2019) Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Sci Rep 9(1):1–18. https://doi.org/10.1038/s41598-019-45994-3

    Article  CAS  Google Scholar 

  29. Yemelin A, Brauchler A, Jacob S, Laufer J, Heck L, Foster AJ et al (2017) Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici. PLoS ONE 12(8):e0183065. https://doi.org/10.1371/journal.pone.0183065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tiley AM, Foster GD, Bailey AM (2018) Exploring the genetic regulation of asexual sporulation in Zymoseptoria tritici. Front Microbiol 9:1859. https://doi.org/10.3389/fmicb.2018.01859

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tiley AM, White HJ, Foster GD, Bailey AM (2019) The ZtvelB gene is required for vegetative growth and sporulation in the wheat pathogen Zymoseptoria tritici. Front Microbiol 2210. https://doi.org/10.3389/fmicb.2019.02210

  32. Mehrabi R, Van der Lee T, Waalwijk C, Kema GH (2006) MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Mol Plant Microbe Interact 19(4):389–398. https://doi.org/10.1094/MPMI-19-0389

    Article  CAS  PubMed  Google Scholar 

  33. Mehrabi R, M’Barek SB, van der Lee TA, Waalwijk C, de Wit PJ, Kema GH (2009) Gα and Gβ proteins regulate the cyclic AMP pathway that is required for development and pathogenicity of the phytopathogen Mycosphaerella graminicola. Eukaryot Cell 8(7):1001–1013. https://doi.org/10.1128/EC.00258-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lendenmann MH, Croll D, Stewart EL, McDonald BA (2014) Quantitative trait locus mapping of melanization in the plant pathogenic fungus Zymoseptoria tritici. G3: Genes, Genomes. Genetics 4(12):2519–2533. https://doi.org/10.1534/g3.114.015289

    Article  Google Scholar 

  35. Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44(12):1115–1136. https://doi.org/10.1139/w98-119

    Article  CAS  Google Scholar 

  36. Lendenmann MH, Croll D, McDonald BA (2015) QTL mapping of fungicide sensitivity reveals novel genes and pleiotropy with melanization in the pathogen Zymoseptoria tritici. Fungal Genet Biol 80:53–67. https://doi.org/10.1016/j.fgb.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  37. Anderson JB, Sirjusingh C, Parsons AB, Boone C, Wickens C, Cowen LE, Kohn LM (2003) Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 163(4):1287–1298. https://doi.org/10.1093/genetics/163.4.1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kema GH, Yu D, Rijkenberg FH, Shaw MW, Baayen RP (1996) Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology 86(7):777–786. https://doi.org/10.1094/phyto-86-777

    Article  Google Scholar 

Download references

Acknowledgements

Z. tritici IPO323 strain and pCHYG-JK plasmid were kindly provided by Dr. Jason Rudd from Rothamsted Research Institute.

Funding

This project was supported by TÜBİTAK (project number 114O083) under COST action “Pathogen-informed strategies for sustainable broad-spectrum crop resistance”.

Author information

Authors and Affiliations

Authors

Contributions

ZM performed knockout experiments and statistical analysis, and wrote the manuscript, FÖ conceptualized and established the methodology. MA Conceptualized and supervised the experiments and reviewed the manuscript.

Corresponding author

Correspondence to Zemran Mustafa.

Ethics declarations

Disclosure of potential conflicts of interest

All authors confirm that this article content has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All authors read the manuscript and showed their willingness to publish this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, Z., Ölmez, F. & Akkaya, M. Inactivation of a candidate effector gene of Zymoseptoria tritici affects its sporulation. Mol Biol Rep 49, 11563–11571 (2022). https://doi.org/10.1007/s11033-022-07879-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07879-z

Keywords

Navigation