Skip to main content

Advertisement

Log in

The High Diversity and Variable Susceptibility of Clinically Relevant Acremonium-Like Species in China

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Acremonium-like fungi are emerging as important opportunistic pathogens in cutaneous, subcutaneous and serious invasive infections, especially in immunocompromised and debilitated individuals, and Acremonium infections are usually resistant to antifungal therapy. Several molecular studies have demonstrated that many species in the genus Acremonium are polyphyletic, and currently, the genus is restricted to the family Bionectriaceae (Hypocreales). Molecular identification and in vitro antifungal susceptibility tests of Acremonium-like fungi isolated from human clinical specimens in China were performed in this study. Three genetic loci: the large subunit ribosomal RNA gene (LSU), ribosomal internal transcribed spacer and elongation factor 1-α (EF1-α), were used to assess their taxonomic position for correct identification among various species. The multilocus study of twenty-eight strains showed that these strains were distributed in three main lineages: egyptiacum, Cordycipitaceae and Sarocladium; Acremonium egyptiacum and Sarocladium kiliense were the main species of these strains, and three isolates were too phylogenetically distant to be considered undescribed species. Relatively low minimum inhibitory concentrations (MICs) of 0.25–2 and 0.031–0.5 μg/mL were found for voriconazole and terbinafine for most species, respectively. Varied antifungal activities of ciclopirox olamine, amorolfine and posaconazole were found in our study. However, no antifungal effect of sertaconazole, itraconazole or fluconazole was observed against most strains. This is the first study on Acremonium-like species diversity by multilocus sequence analyses and antifungal susceptibility of clinically relevant isolates in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Hoog GS, Guarro J, Gené J, Figueras MJ. Atlas of clinical fungi. 2nd ed. Utrecht: Centraalbureau voor Schimmelcultures; 2001.

    Google Scholar 

  2. Guarro J, Gams W, Pujol I, Gene J. Acremonium species: new emerging fungal opportunists—in vitro antifungal susceptibilities and review. Clin Infect Dis. 1997;25(5):1222–9.

    Article  CAS  Google Scholar 

  3. Fernandez-Silva F, Capilla J, Mayayo E, Sutton D, Guarro J. Combination therapy in the treatment of experimental invasive fungal infection by Sarocladium (Acremonium) kiliense. Int J Antimicrob Agents. 2014;44(2):136–9. https://doi.org/10.1016/j.ijantimicag.2014.03.010.

    Article  CAS  PubMed  Google Scholar 

  4. Perdomo H, Sutton DA, Garcia D, Fothergill AW, Cano J, Gene J, et al. Spectrum of clinically relevant Acremonium species in the United States. J Clin Microbiol. 2011;49(1):243–56. https://doi.org/10.1128/jcm.00793-10.

    Article  CAS  PubMed  Google Scholar 

  5. Chabasse D, Pihet M. Onychomycoses due to molds. J Mycol Med. 2014;24(4):261–8. https://doi.org/10.1016/j.mycmed.2014.10.005.

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez ZC, Ramos MG. Acremonium species associated fungemia: a novel pathogen in the immunosuppressed patient. Bol Asoc Med PR. 2014;106(3):29–31.

    Google Scholar 

  7. Keynan Y, Sprecher H, Weber G. Acremonium vertebral osteomyelitis: molecular diagnosis and response to voriconazole. Clin Infect Dis. 2007;45(1):e5–6. https://doi.org/10.1086/518700.

    Article  PubMed  Google Scholar 

  8. Twaruzek M, Soszczynska E, Winiarski P, Zwierz A, Grajewski J. The occurrence of molds in patients with chronic sinusitis. Eur Arch Otorhinolaryngol. 2014;271(5):1143–8. https://doi.org/10.1007/s00405-013-2737-0.

    Article  PubMed  Google Scholar 

  9. Sener AG, Yucesoy M, Senturkun S, Afsar I, Yurtsever SG, Turk M. A case of Acremonium strictum peritonitis. Med Mycol. 2008;46(5):495–7. https://doi.org/10.1080/13693780701851729.

    Article  PubMed  Google Scholar 

  10. Junior MC, de Moraes Arantes A, Silva HM, Costa CR, Silva Mdo R. Acremonium kiliense: case report and review of published studies. Mycopathologia. 2013;176(5–6):417–21. https://doi.org/10.1007/s11046-013-9700-x.

    Article  CAS  PubMed  Google Scholar 

  11. Hitoto H, Pihet M, Weil B, Chabasse D, Bouchara JP, Rachieru-Sourisseau P. Acremonium strictum fungaemia in a paediatric immunocompromised patient: diagnosis and treatment difficulties. Mycopathologia. 2010;170(3):161–4. https://doi.org/10.1007/s11046-010-9306-5.

    Article  PubMed  Google Scholar 

  12. Summerbell RC, Gueidan C, Schroers HJ, de Hoog GS, Starink M, Rosete YA, et al. Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Stud Mycol. 2011;68:139–62. https://doi.org/10.3114/sim.2011.68.06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Summerbell RC, Gueidan C, Guarro J, Eskalen A, Crous PW, Gupta AK, et al. The protean Acremonium. A. sclerotigenum/egyptiacum: revision, food contaminant, and human disease. Microorganisms. 2018. https://doi.org/10.3390/microorganisms6030088.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Giraldo A, Gené J, Sutton DA, Wiederhold N, Guarro J. New acremonium-like species in the Bionectriaceae and Plectosphaerellaceae. Mycol Prog. 2017;16(4):1–20.

    Google Scholar 

  15. Saldarreaga A, Garcia Martos P, Ruiz Aragon J, Garcia Agudo L, Montes de Oca M, Puerto JL, et al. Antifungal susceptibility of Acremonium species using E-test and sensititre. Revista espanola de quimioterapia: publicacion oficial de la Sociedad Espanola de Quimioterapia. 2004;17(1):44–7.

    CAS  Google Scholar 

  16. Trovato L, Rapisarda MF, Greco AM, Galata F, Oliveri S. In vitro susceptibility of nondermatophyte molds isolated from onycomycosis to antifungal drugs. J Chemother (Florence). 2009;21(4):403–7. https://doi.org/10.1179/joc.2009.21.4.403.

    Article  CAS  Google Scholar 

  17. Wang TK, Chiu W, Chim S, Chan TM, Wong SS, Ho PL. Disseminated ochroconis gallopavum infection in a renal transplant recipient: the first reported case and a review of the literature. Clin Nephrol. 2003;60(6):415–23.

    Article  CAS  Google Scholar 

  18. Lombard L, van der Merwe NA, Groenewald JZ, Crous PW. Generic concepts in Nectriaceae. Stud Mycol. 2015;80:189–245. https://doi.org/10.1016/j.simyco.2014.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giraldo A, Gene J, Sutton DA, Madrid H, de Hoog GS, Cano J, et al. Phylogeny of Sarocladium (Hypocreales). Persoonia. 2015;34:10–24. https://doi.org/10.3767/003158515x685364.

    Article  CAS  PubMed  Google Scholar 

  20. Zare R, Gams W, Starink-Willemse M, Summerbell RC. Gibellulopsis, a suitable genus for Verticillium nigrescens, and Musicillium, a new genus for V. theobromae. Nova Hedwigia. 2007;85:463–89.

    Article  Google Scholar 

  21. Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN. On the diversity of fungi from soda soils. Fungal Divers. 2016;76(1):27–74.

    Article  Google Scholar 

  22. Grum-Grzhimaylo AA, Debets AJ, van Diepeningen AD, Georgieva ML, Bilanenko EN. Sodiomyces alkalinus, a new holomorphic alkaliphilic ascomycete within the Plectosphaerellaceae. Persoonia. 2013;31:147–58. https://doi.org/10.3767/003158513x673080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hijikawa Y, Matsuzaki M, Suzuki S, Inaoka DK, Tatsumi R, Kido Y, et al. Re-identification of the ascofuranone-producing fungus Ascochyta viciae as Acremonium sclerotigenum. J Antibiot. 2016;70(3):304.

    Article  Google Scholar 

  24. Sigler L, Zuccaro A, Summerbell RC, Mitchell J, Paré JA. Acremonium exuviarum sp. nov., a lizard-associated fungus with affinity to Emericellopsis. Stud Mycol. 2004;50(2):409–13.

    Google Scholar 

  25. Zare R, Gams W. More white verticillium-like anamorphs with erect conidiophores. Mycol Prog. 2016;15:1–38.

    Article  Google Scholar 

  26. Castlebury LA, Rossman AY, Hyten AS. Phylogenetic relationships of Neonectria/Cylindrocarpon on Fagus in North America. Can J Bot. 2006;84(9):1417–33.

    Article  CAS  Google Scholar 

  27. Giraldo A, Crous PW. Inside plectosphaerellaceae. Stud Mycol. 2019;92:227–86. https://doi.org/10.1016/j.simyco.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  28. Perdomo H, Garcia D, Gene J, Cano J, Sutton DA, Summerbell R, et al. Phialemoniopsis, a new genus of Sordariomycetes, and new species of Phialemonium and Lecythophora. Mycologia. 2013;105(2):398–421. https://doi.org/10.3852/12-137.

    Article  PubMed  Google Scholar 

  29. Giraldo A, Gene J, Cano J, de Hoog S, Guarro J. Two new species of Acremonium from Spanish soils. Mycologia. 2012;104(6):1456–65. https://doi.org/10.3852/11-402.

    Article  CAS  PubMed  Google Scholar 

  30. Maharachchikumbura SSN, Hyde KD, Jones EBG, Mckenzie EHC, Bhat JD, Dayarathne MC, et al. Families of sordariomycetes. Fungal Divers. 2016;79(1):1–317.

    Article  Google Scholar 

  31. Schoch CL, Robbertse B, Robert V, Vu D, Cardinali G, Irinyi L, et al. Finding needles in haystacks: linking scientific names, reference specimens and molecular data for fungi. Database J Biol Databases Curation. 2014. https://doi.org/10.1093/database/bau061.

    Article  Google Scholar 

  32. Zare R, Gams WJNH. A revision of Verticillium sect. Prostrata. VI. Genus Haptocillium. 2001;73(1):1–50.

    Google Scholar 

  33. Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol. 2007;57:5–59. https://doi.org/10.3114/sim.2007.57.01.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Carlucci A, Raimondo ML, Santos J, Phillips AJ. Plectosphaerella species associated with root and collar rots of horticultural crops in southern Italy. Persoonia. 2012;28:34–48. https://doi.org/10.3767/003158512x638251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF Jr. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol. 2007;16(8):1701–11. https://doi.org/10.1111/j.1365-294X.2007.03225.x.

    Article  CAS  PubMed  Google Scholar 

  36. White TJ, Bruns TD, Lee SB, Taylor JW, Innis MA, Gelfand DH, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for Phylogenetics. PCR Protoc A Guide Methods Appl. 1990;18:315–22.

    Google Scholar 

  37. Vilgalys R, Sun BL. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc Natl Acad Sci USA. 1994;91(10):4599–603.

    Article  CAS  Google Scholar 

  38. de Hoog GS, van den Ende Gerrits AH. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses. 1998;41(5–6):183–9.

    Article  Google Scholar 

  39. Rehner SA, Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 2005;97(1):84–98.

    CAS  PubMed  Google Scholar 

  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

    Article  CAS  Google Scholar 

  41. Ronquist F, Teslenko M, Paul VDM, Ayres DL, Darling A, Höhna S, et al. MrBayes 32: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.

    Article  Google Scholar 

  42. Nylander J. MrModeltest version 2. Program distributed by the author. Uppsala University: Evolutionary Biology Centre; 2004.

    Google Scholar 

  43. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, 2nd ed; approved standard. CLSI document M38-A2. Clinical and Laboratory Standards Institute, Wayne, PA.

  44. González CD, Chaverri P. Corinectria, a new genus to accommodate Neonectria fuckeliana and C. constricta sp. nov. from Pinus radiata in Chile. Mycol Prog. 2017;16(11–12):1015–27.

    Article  Google Scholar 

  45. Tortorano AM, Richardson M, Roilides E, van Diepeningen A, Caira M, Munoz P, et al. ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp, Scedosporium spp. and others. Clin Microbiol Infect. 2014;20(Suppl. 3):27–46. https://doi.org/10.1111/1469-0691.12465.

    Article  CAS  PubMed  Google Scholar 

  46. Kendirli T, Ciftci E, Ekim M, Galip N, Duzenli F, Ozcakar ZB, et al. Acremonium spp. peritonitis in an infant. Mycoses. 2008;51(5):455–7. https://doi.org/10.1111/j.1439-0507.2008.01496.x.

    Article  PubMed  Google Scholar 

  47. Chang YH, Huang LM, Hsueh PR, Hsiao CH, Peng SF, Yang RS, et al. Acremonium pyomyositis in a pediatric patient with acute leukemia. Pediatr Blood Cancer. 2005;44(5):521–4. https://doi.org/10.1002/pbc.20276.

    Article  PubMed  Google Scholar 

  48. Mattei D, Mordini N, Lo Nigro C, Gallamini A, Osenda M, Pugno F, et al. Successful treatment of Acremonium fungemia with voriconazole. Mycoses. 2003;46(11–12):511–4.

    Article  CAS  Google Scholar 

  49. Li RY, Wan Z, Wang AP, Shen YN, Lu CM, Li M, et al. In vitro susceptibility testing of amorolfine in pathogenic fungi isolated from dermatomycosis patients in China. Mycoses. 2004;47(9–10):402–6. https://doi.org/10.1111/j.1439-0507.2004.01014.x.

    Article  CAS  PubMed  Google Scholar 

  50. Fernandez-Silva F, Capilla J, Mayayo E, Sutton DA, Hernandez P, Guarro J. Evaluation of the efficacies of Amphotericin B, Posaconazole, Voriconazole, and Anidulafungin in a murine disseminated infection by the emerging opportunistic Fungus Sarocladium (Acremonium) kiliense. Antimicrob Agents Chemother. 2013;57(12):6265–9. https://doi.org/10.1128/aac.01484-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Chinese National Natural Science Foundation (Grant No. 31570015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Yu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Human and Animal Rights

No humans were involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Anne D. van Diepeningen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Wang, H., Wan, Z. et al. The High Diversity and Variable Susceptibility of Clinically Relevant Acremonium-Like Species in China. Mycopathologia 184, 759–773 (2019). https://doi.org/10.1007/s11046-019-00399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-019-00399-8

Keywords

Navigation