Skip to main content

Advertisement

Log in

Polyphenols as fungal phytotoxins, seed germination stimulants and phytoalexins

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

This review deals with the sources and chemical and biological characterization of phytotoxic polyphenols produced essentially by pathogenic fungi of forest and crop plants and of weeds. Their potential use as natural herbicides and fungicides is discussed. The use of some polyphenols which could be applied as an alternative method to control parasitic weeds, the so called “suicidal germination”, will be covered. The sources and the isolation and identification of polyphenols produced by some crop plants in consequence of the attack of pathogenic fungi as plant defence compounds (phytoalexins), are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aldridge DC, Galt S, Giles D, Turner WB (1971) Metabolites of Lasiodiplodia theobromae. J Chem Soc C 1623–1627

  • Alfatafta AA, Glover JB, Scott JA, Malloch D (1994) Apiosporamide, a new antifungal agent from the coprophilus fungus Apoispora montegnei. J Nat Prod 57:1696–1702

    PubMed  CAS  Google Scholar 

  • Amalfitano C, Agrelli D, Arrigo A et al (2011) Stilbene polyphenols in the brown red wood of Vitis vinifera cv. Sangiovese affected by “esca proper”. Phytopathol Mediterr 50:S224–S235

    Google Scholar 

  • Andolfi A, Mugnai L, Luque J et al (2011) Phytotoxins produced by fungi associated with grapevine trunk disease. Toxins 3:1569–1605

    PubMed  CAS  Google Scholar 

  • Andolfi A, Maddau L, Cimmino A et al (2012a) Cyclobotryoxide, a phytotoxic metabolite produced by the plurivorous pathogen Neofusicoccum australe. J Nat Prod 75(10):1785–1791

    PubMed  CAS  Google Scholar 

  • Andolfi A, Cimmino A, Vurro M et al (2012b) Agropyrenol and agropyrenal, phytotoxins from Ascochyta agropyrina var. nana, a fungal pathogen of Elitrigia repens. Phytochemistry 79:102–108

    PubMed  CAS  Google Scholar 

  • Arai K, Rawlings BJ, Yoshizawa Y, Vederas C (1989) Biosyntheis of antibiotic A26771B by Penicillium turbatum and dehydrocurvularin by Alternaria cinerariae: comparison of stereochemistry of polyketide and fatty acid enoyl thiol ester reductase. J Am Chem Soc 111:3391–3399

    CAS  Google Scholar 

  • Ayer WA, Trifonov LS, Hutchison LJ, Chakravarty P (2000) Metabolites from a wood-inhabiting cup fungus, Ursula craterium. Nat Prod Lett 14:405–410

    CAS  Google Scholar 

  • Ballio A, Graniti A (1991) Phytotoxins and their involvement in plant disease. Experientia 47:751–826

    Google Scholar 

  • Batoko H, Flamand MC, Boutry M et al (1997) Biological effects of Pseudomonas fuscovaginae toxins on rice cells. Dev Plant Pathol 9:215–229

    CAS  Google Scholar 

  • Bazzi C, Calzolari A (1983) Bacterial blister spot of ‘Mutsu’ apples in Italy. Phytopathol Mediterr 22:19–21

    Google Scholar 

  • Becker AM, Rickards RW, Schmalzl KJ, Yick HC (1978) Metabolites of Dactylaria lutea. The structures of dactylariol and the antiprotozoal antibiotic dactylarin. J Antibiot 31:324–329

    PubMed  CAS  Google Scholar 

  • Betina V (1992) Biological effects of the antibiotic brefeldin A (decumbin, cyanein, synerigisidin): a retrospective. Folia Microbiol 37:3–11

    CAS  Google Scholar 

  • Bottalico A, Frisullo S, Lerario P et al (1982) Identification of phomenone as wilt toxin of Phoma destructiva Plowr. Phytopathol Mediterr 21:39–40

    CAS  Google Scholar 

  • Bottalico A, Frisullo S, Iacobellis NS et al (1983) Preliminary investigation on the production of phomenone by phytopathogenic Phoma species. Phytopathol Mediterr 22:120–122

    CAS  Google Scholar 

  • Burgess TI, Sakalidis ML, Hardy GS (2006) Gene flow of the canker pathogen Botryosphaeria australis between Eucalyptus globulus plantations and native eucalypt forests in Western Australia. Aust J Ecol 31:559–566

    Google Scholar 

  • Bürki N, Michel A, Tabacchi R (2003) Naphthalenones and isocoumarins of the fungus Ceratocystis fimbriata f. sp. platani. Phytopathol Mediterr 42:191–198

    Google Scholar 

  • Burr TJ, Hurwitz B (1979) The etiology of blister spot of ‘Mutsu’ apple in New York State. Plant Dis Rep 63:157–160

    Google Scholar 

  • Cabras A, Mannoni MA, Serra S et al (2006) Occurrence, isolation, and biological activity of phytotoxic metabolites produced in vitro by Sphaeropsis sapinea, pathogenic fungus of Pinus radiata. Eur J Plant Pathol 115:187–193

    CAS  Google Scholar 

  • Camarda L, Merlini L, Nasini G (1976) Metabolites of Cercospora. Taiwapyrone, an a-pyrone of unusual structure from Cercospora taiwanensis. Phytochemistry 15:537–539

    CAS  Google Scholar 

  • Capasso R, Cristinzio G, Evidente A, Scognamiglio F (1992) Isolation, spectroscopy and selective phytotoxic effects of polyphenols from vegetable waste waters. Phytochemistry 31:4125–4128

    CAS  Google Scholar 

  • Caputo O, Viola F (1977) Isolation of α, β-dehydrocurvularin from Aspergillus aureofulgens. Planta Med 31:31–32

    PubMed  CAS  Google Scholar 

  • Carpinella M, Ferrayoli CG, Palacios SM (2005) Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from Melia azedarach L. fruits. J Agric Food Chem 53:2922–2927

    PubMed  CAS  Google Scholar 

  • Cichewicz RZ, Kouzi SA (2002) Resveratrol oligomers: chemistry, and biological activity. In: Rahman AU (ed) Studies in Natural Products Chemistry, 26. Elsevier Science, Amsterdam, pp 507–580

  • Cimmino A, Villegas-Fernández AM, Andolfi A et al (2011) Botrytone, a new naphthalenone pentaketide produced by Botrytis fabae, the causal agent of chocolate spot disease on Vicia faba. J Agric Food Chem 59:9201–9206

    PubMed  CAS  Google Scholar 

  • Cole RJ, Cox RH (1981) Handbook of toxic fungal metabolites. Academic Press, New York, pp 152–263

    Google Scholar 

  • Cole RJ, Moore JH, Davis ND et al (1971) 4-Hydroxymellein: a new metabolite of Aspergillus ochraceus. J Agric Food Chem 19:909–911

    CAS  Google Scholar 

  • Colombo L, Gennari C, Severini Ricca G et al (1980) Biosynthetic origin and revised structure of ascochitine, a phytotoxic fungal metabolite. Incorporation of [1-13C]- and [1,2–13C]-acetates and [Me-13C]-methionine. J Chem Soc Perkin Trans I:675–676

    Google Scholar 

  • Coombe RG, Jacobs U, Watson TR (1968) Constituents of some Curvularia species. Aust J Chem 21:783–788

    CAS  Google Scholar 

  • Corsaro MM, De Castro C, Evidente A et al (1998) Chemical structure of two phytotoxic exopolysaccharides produced by Phomopsis foeniculi. Carbohydr Res 308:349–357

    PubMed  CAS  Google Scholar 

  • Creppy EE, Chiarappa P, Baudrimont I et al (2004) Synergistic effects of fumonisin B1 and ochratoxin A: are in vitro cytotoxicity data predictive of in vivo acute toxicity? Toxicology 201:115–123

    PubMed  CAS  Google Scholar 

  • Devys M, Barbier M (1992) Isolation of the new (-)-(3R,4S)-4-hydroxymellein from the fungus Septoria nodorum Berk. Z. Naturforsch C 47c:779–881

    Google Scholar 

  • Devys M, Bousquet J, Kollmann A, Barbier M (1980) Dihydroisocoumarines et acide mycophenolique du milieu de culture du champignon phytopathogene Septoria nodorum. Phytochemistry 19:2221–2222

    CAS  Google Scholar 

  • Dewick PM (2009) Medicinal natural products, a biosynthetic approach, 3rd edn. Wiley, Baffins Lane, pp 137–186

    Google Scholar 

  • Dewick PM, Martin M (1979) Biosynthesis of pterocarpan and isoflavan phytoalexins in Medicago sativa: the biochemical interconversion of pterocarpans and 2′-hydroxyisoflavans. Phytochemistry 18:591–596

    CAS  Google Scholar 

  • Dhavanthari BN (1969) Bacterial blister spot of apple in Ontario. Can Plant Dis Surv 49:36–37

    Google Scholar 

  • Echeverri F, Torres F, Quiñones W et al (2012) Phenylphenalenone phytoalexins, will be a new type of fungicide? Phytochem Rev 11:1–12

    CAS  Google Scholar 

  • Edwards RL, Maitland DJ, Oliver CL et al (1999) Metabolites of the higher fungi. Part 31. Longianone, a C7H6O4 spiro bicyclic lactone from the fungus Xylaria longiana (Rehm.). J Chem Soc Perkin Trans 1:715–719

    Google Scholar 

  • Evidente A (2006) Chemical and biological characterization of toxins produced by weed pathogenic fungi as potential natural herbicides. In: Rimando AM, Duke OD (eds) Natural products for pest managements. Oxford University Press, Washington DC, ACS Symposium Series 927, pp 62–75

  • Evidente A, Abouzeid M (2006) Characterization of phytotoxins from phytopathogenic fungi and their potential use as herbicides in integrated crop management. In: Singh HP, Batish DR, Kholi RK (eds) Handbook of sustainable weed management. The Haworth Press Inc, New York, pp 507–532

    Google Scholar 

  • Evidente A, Motta A (2001) Phytotoxins from fungi pathogenic for agrarian, forestal and weedy plants. In: Tringali C (ed) Bioactive compounds from natural sources. Taylor & Francis, London, pp 473–525

    Google Scholar 

  • Evidente A, Motta A (2002) Bioactive metabolites from phytopathogenic bacteria and plants. In: Rahman AU (ed) Studies in natural products chemistry, 26. Elsevier Science, Amsterdam, pp 581–628

  • Evidente A, Randazzo G, Iacobellis NS, Bottalico A (1985a) Preliminary investigations on the phytotoxic metabolites produced by a Phoma isolate from Chestnut. Phytopathol Mediterr 24:302–303

    CAS  Google Scholar 

  • Evidente A, Randazzo G, Iacobellis NS, Bottalico A (1985b) Structure of cavoxin, a new phytotoxin from Phoma cava and cavoxinone, its related chroman-4-one. J Nat Prod 48:916–923

    CAS  Google Scholar 

  • Evidente A, Iacobellis NS, Scopa A, Surico G (1990) Isolation of β-phenyllactic acid related compounds from Pseudomonas syringae. Phytochemistry 29:1491–1497

    CAS  Google Scholar 

  • Evidente A, Iacobellis NS, Impellizzeri A, Surico G (1992) Methyl(2,5-dihydroxy-3-nitrophenyl) acetate from Pseudomonas syringae pv. papulans. Phytochemistry 31:4105–4107

    CAS  Google Scholar 

  • Evidente A, Capasso R, Vurro M, Bottalico A (1993) Ascosalitoxin, a phytotoxic trisubstituted salicyclic aldehyde from Ascochyta pisi. Phytochemistry 34:995–998

    CAS  Google Scholar 

  • Evidente A, Lanzetta R, Abouzeid MA et al (1994) Foeniculoxin, a new phytotoxic geranylhydroquinone from Phomopsis foeniculi. Tetrahedron 50:10371–10378

    CAS  Google Scholar 

  • Evidente A, Capasso R, Motta A, Bottalico A (1996) Toxic metabolites from phytopathogenic Ascochyta species. Boll Chim Farm 135:552–555

    PubMed  CAS  Google Scholar 

  • Evidente A, Andolfi A, Maddau L et al (2005) Biscopyran, a phytotoxic hexasubstituted pyranpyran produced by Biscognauxia mediterranea, a fungus pathogen of cork oak. J Nat Prod 68:568–571

    PubMed  CAS  Google Scholar 

  • Evidente A, Berestetskiy A, Cimmino A et al (2009a) Papyracillic acid, a phytotoxic 1,6-dioxaspiro(4,4)nonene produced by Ascochyta agropyrina var. nana, a potential mycoherbicide for Elytrigia repens biocontrol. J Agric Food Chem 57:11168–11173

    PubMed  CAS  Google Scholar 

  • Evidente A, Fernández-Aparicio M, Cimmino A et al (2009b) Peagol and peagoldione, two new strigolactone like metabolites isolated from pea root exudates. Tetrahedron Lett 50:6955–6958

    CAS  Google Scholar 

  • Evidente A, Punzo B, Andolfi A et al (2009c) Alternethanoxins A, and B, polycyclic ethanones produced by Alternaria sonchi, potential mycoherbicides for Sonchus arvensis biocontrol. J Agr Food Chem 57:6656–6660

    CAS  Google Scholar 

  • Evidente A, Andolfi A, Cimmino A, Abouzeid AM (2010a) Phytotoxins produced by fungi responsible of forestal plant diseases. In: Salazar A, Rios I (eds) Sustainable agriculture: technology, planning and managment. Nova Science Publishers Inc., New York, pp 177–234

    Google Scholar 

  • Evidente A, Cimmino A, Fernández-Aparicio M et al (2010b) Polyphenols, including the new peapolyphenols A-C, from root exudates stimulate Orobanche foetida seed germination. J Agric Food Chem 58:2902–2907

    PubMed  CAS  Google Scholar 

  • Evidente A, Punzo B, Andolfi A et al (2010c) Lypophilic phytotoxins produced by Neofusicoccum parvum, a grapevine canker agent. Phytopathol Mediterr 49:74–79

    CAS  Google Scholar 

  • Evidente A, Abouzeid AM, Andolfi A, Cimmino A (2011a) Recent achievements in the bio-control of Orobanche infesting important crops in the Mediterranean basin. J Agric Sci Technol A1:461–483

    Google Scholar 

  • Evidente A, Andolfi A, Cimmino A (2011b) Fungal phytotoxins for control of Cirsium arvense and Sonchus arvensis. Pest Technol 5:1–17

    Google Scholar 

  • Evidente A, Rodeva R, Andolfi A et al (2011c) Phytotoxic polyketides produced by Phomopsis foeniculi, a strain isolated from diseased Bulgarian fennel. Eur J Plant Pathol 130:173–182

    CAS  Google Scholar 

  • Evidente A, Superchi S, Cimmino A et al (2011d) Regiolone and isosclerone, two enantiomeric phytotoxic naphthalenone pentaketides: computational assignment of absolute configuration and its relationship with phytotoxic activity. Eur J Org Chem 2011:5564–5570

    CAS  Google Scholar 

  • Franceschini A, Maddau L, Serra S, Pulina MA (2002) Methodological approaches to outline control strategies of cork oak decline in Sardinia (Italy). IOBC/WPRS Bull 25(5):17–20

    Google Scholar 

  • Franceschini A, Linaldeddu BT, Marras F (2005) Occurrence and distribution of fungal endophytes in declining cork oak forests in Sardinia (Italy). IOBC/WPRS Bull 28:75–81

    Google Scholar 

  • Fujimoto Y, Satoh M (1986) Studies on the metabolites of Penicillium diversum var. aureum. II. Synthesis and cytotoxic activity of trihydroxytetralones. Chem Pharm Bull 34:4540–4544

    PubMed  CAS  Google Scholar 

  • Fujimoto Y, Yokoyama E, Takahashi T et al (1986) Studies on the metabolites of Penicillium diversum var. aurem. Chem Pharm Bull 34:1497–1500

    PubMed  CAS  Google Scholar 

  • Garson MJ, Staunton J, Jones PG (1984) New polyketide metabolites from Aspergillus melleus: structural and stereochemical studies. J Chem Soc Perkin Trans1 1021–1026

    Google Scholar 

  • Hachiro O (1988) Role of phytotoxins in pine wilt disease. J Nematol 20:245–251

    Google Scholar 

  • Harrison JG (1988) The biology of Botrytis spp. on Vicia beans and chocolate spot disease—a review. Plant Pathol 37:168–201

    Google Scholar 

  • Hershernhorn J, Park SH, Stierle A, Strobel GA (1992) Fusarium avenaceum as a novel pathogen of spotted knapweed and its phytotoxins, acetamido-butenolide and enniatin B. Plant Sci 86:155–160

    Google Scholar 

  • Hoeller U, Koening GM, Wright AD (1999) Three new metabolites from marine-derived fungi of the genera Coniothyrium and Microsphaeropsis. J Nat Prod 62:114–118

    CAS  Google Scholar 

  • Holker JSE, Simpson TJ (1981) Carbon-13 nuclear magnetic resonance biosynthetic studies on pentaketide metabolites of Aspergillus melleus: (3-(1′,2′-Epoxypropyl)-5,6-dihydro-5-hydroxy-6-methylpyran-2-one and mellein. J Chem Soc Perkin Trans 1:1397–1400

    Google Scholar 

  • Holler U, Gloer JB, Wicklow DT (2002) Biologically active polyketide metabolites from an undetermined fungicolous hyphomycete resembling Cladosporium. J Nat Prod 65:876–882

    PubMed  Google Scholar 

  • Hoss R, Helbig J, Bochow H (2000) Function of host fungal metabolites in resistance response of banana and plantain in the Black sigatoka disease pathosystem (Musa spp.- Mycosphaerella fijiensis). J Phytopathol 148:387–394

    CAS  Google Scholar 

  • Iacobellis NS, De Vay JE (1987) Studies on pathogenesis of Rhizoctonia solani in beans: an evaluation of the possible roles of phenylacetic acid and its hydroxy derivatives as phytotoxins. Physiol Mol Plant Pathol 30:421–432

    CAS  Google Scholar 

  • Inderbitzin P, Bostock RM, Trouillas FP, Michailides TJ (2010) A six locus phylogeny reveals high species diversity in Botryosphaeriaceae from California almond. Mycologia 102:1350–1368

    PubMed  CAS  Google Scholar 

  • Iwai I, Mishina H (1965) Constitution of ascochitine. Chem Ind 1:186–187

    Google Scholar 

  • Joel DM, Hershernhorn Y, Eizenberg H et al (2007) Biology and management of weedy root parasites. In: Janik J (ed) Horticultural review. Wiley, New York, pp 267–350

    Google Scholar 

  • Johnson A, Rosebery G, Parker CA (1976) A novel approach to Striga and Orobanche control using synthetic germination stimulant. Weed Res 16:223–227

    CAS  Google Scholar 

  • Krohn K, Bahramsari R, Florke U et al (1997) Dihydroisocoumarins from fungi: isolation, structure elucidation, circular dichroism and biological activity. Phytochemistry 45:313–320

    PubMed  CAS  Google Scholar 

  • Lai S, Shizuri Y, Yamamura S et al (1989) Novel curvularin-type metabolites of a hybrid strain me 0005 derived from Penicillium citro-viride B. IFO 6200 and 4692. Tetrahedron Lett 30:2241–2244

    CAS  Google Scholar 

  • Lazzizera C, Frisullo S, Alves A, Phillips AJL (2008) Morphology, phylogeny and pathogenicity of Botryosphaeria and Neofusicoccum species associated with drupe rot of olives in Southern Italy. Plant Pathol 57:948–956

    CAS  Google Scholar 

  • Li X, Yao Y-H, Zheng Y-N et al (2007) Chemical study on fermentation product of endophyte fungus. GT6105. Zhongguo Tianran Yaowu 5:20–23

    CAS  Google Scholar 

  • Linaldeddu BT, Franceschini A, Luque J, Phillips AJL (2007) First report of canker disease caused by Botryosphaeria parva on cork oak disease in Italy. Plant Dis 91:324

    Google Scholar 

  • Linaldeddu BT, Franceschini A, Sirca C, Spano D (2009) Physiological responses of cork oak and holm oak to infection by fungal pathogens involved in oak decline. For Path 39:232–238

    Google Scholar 

  • Linaldeddu BT, Scanu B, Schiaffino A, Serra S (2010) First report of Neofusicoccum australe associated with grapevine cordon dieback in Italy. Phytopathol Mediterr 49:417–420

    Google Scholar 

  • Liu L, Li W, Koike K et al (2004) New α-tetralonyl glucoside from the fruit of Juglans mandhurica. Chem Pharm Bull 52:566–569

    PubMed  CAS  Google Scholar 

  • Liu Q, Zhao P, Li X-C et al (2010) New-tetralone galloylglucosides from fresh pericarps of Juglans sigillata. Helv Chim Acta 93:265–271

    CAS  Google Scholar 

  • Lu F, Xu X (2007) Studies on flavonoids of Oxytropis falcata. Zhongguo Zhongyao Zazhi 32:318–320

    PubMed  CAS  Google Scholar 

  • Maddau L, Ferracane R, Franceschini A, Cabras A (2002) In: Proceeding book of the National Congress “L’endofitismo di funghi e batteri patogeni in piante arboree e arbustive”, Sassari-Tempio Pausania, Italy, 19–21 May 2002

  • Maddau L, Cabras A, Franceschini A et al (2009) Occurrence and characterization of peptaibols from Trichoderma citrinoviride, an endophytic fungus of cork oak, using electrospray ionization quadrupole time-of-flight mass spectrometry. Microbiology 155:3371–3389

    PubMed  CAS  Google Scholar 

  • Maddau L, Perrone C, Andolfi A et al (2011) Phytotoxins produced by the oak pathogen Discula quercina. For Path 41:85–89

    Google Scholar 

  • Martos S, Andolfi A, Luque J et al (2008) Production of phytotoxic metabolites by five species of Botryosphaeriaceae causing decline on grapevine, with special interest in the species Neofusicoccum luteum and N. parvum. Eur J Plant Pathol 121:451–461 (Microbiology 155:3371–3381)

    CAS  Google Scholar 

  • Miao VPW, Vanetten D (1992) Three genes for metabolism of the phytoalexin maackiain in the plant pathogen Nectria haematococca: meiotic instability and relationship to a new gene for a pisatin demethylase. Appl Environ Microbiol 58:801–808

    PubMed  CAS  Google Scholar 

  • Min BS, Nakamura N, Miyashiro H et al (2000) Inhibition of human immunodeficient virus type 1 reverse transcriptase and ribonuclease H activities by constituents of Juglans mandshurica. Chem Pharm Bull 48:194–200

    PubMed  CAS  Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal metabolites in Mediterranean Oak forests. A lesson from Discula quercina. Phytopathology 98(4):380–386

    PubMed  CAS  Google Scholar 

  • Morin L, Brown JF, Auld BA (1992) Effects of environmental factors on teliospore germination, basidiospore formation and infection of Xanthium occidentale by Puccinia xanthii. Phytopathology 82:1443–1447

    Google Scholar 

  • Mugnai L, Surico G, Esposito A (1996) Micoflora associata al mal dell’esca della vite in Toscana. Inf Fitopatol 46:49–55

    Google Scholar 

  • Mugnai L, Graniti A, Surico G (1999) Esca (black measles) and brown wood-streaking: two old and elusive diseases of grapevines. Plant Dis 83(5):404–418

    Google Scholar 

  • Nair MSR, Carey ST (1975) Metabolites of pyrenomycetes II: nectriapyrone, an antibiotic monoterpenoid. Tetrahedron Lett 19:1655–1658

    Google Scholar 

  • Noyes RD, Hancock JG (1981) Role of oxalic acid in the sclerotinia wilt of sunflower. Physiol Plant Pathol 18:123–132

    CAS  Google Scholar 

  • Osbourn AE, Lanzotti V (2009) Plant-derived natural products: synthesis, function and applications. Springer, Dordrecht, New York, pp 23–32

    Google Scholar 

  • Parisi A, Piattelli M, Tringali C, Di San Magnano, Lio G (1993) Identification of the phytotoxin Mellein in culture fluids of Phoma tracheiphila. Phytochemistry 32:865–867

    CAS  Google Scholar 

  • Pinon J, Manion PD (1991) Hypoxylon mammatum and its toxins-recent advances in understanding their relationships with canker disease of poplar. Eur J For Path 21:202–209

    Google Scholar 

  • Rafi MM, Vastano BC, Zhu N et al (2002) Novel polyphenol molecule isolated from licorice root (Glycyrrhiza glabra) induces apoptosis, G2/M cell cycle arrest, and Bcl-2 phosphorylation in tumor cell lines. J Agric Food Chem 50:677–684

    PubMed  CAS  Google Scholar 

  • Robeson DJ, Strobel GA, Strange RN (1985) The identification of a major phytotoxic component from Alternaria macrospora as α,β-dehydrocurvularin. J Nat Prod 48:139–141

    Google Scholar 

  • Rubiales D, Sadiki M, Román B (2005) First report of Orobanche foetida on common vetch (Vicia sativa) in Morocco. Plant Dis 89:528

    Google Scholar 

  • Rubiales D, Fernández-Aparicio M, Pérez-de-Luque A et al (2009) Breeding approaches for crenate broomrape (Orobanche crenata) management in pea (Pisum sativum). Pest Manag Sci 65:553–559

    PubMed  CAS  Google Scholar 

  • Sakalidis ML, Hardy GE, St J, Burgess TI (2011) Class III endophytes, clandestine movement amongst hosts and habitats and their potential for disease, a focus on Neofusicoccum australe. Australas Plant Pathol 40:510–521

    Google Scholar 

  • Schneeweiss GM, Colwell A, Park JM et al (2004) Phylogeny of holoparasitic Orobanche (Orobanchaceae) inferred from nuclear ITS-sequences. Mol Phylogenet Evol 30:465–478

    PubMed  CAS  Google Scholar 

  • Slipper B, Fourie G, Crous PW et al (2004) Multiple gene se- quences delimit Botryosphaeria australis sp. nov. from.B. lutea. Mycologia 96:1030–1104

    Google Scholar 

  • Staats M, van Baarlen P, van Kan JAL (2005) Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol 22:333–346

    PubMed  CAS  Google Scholar 

  • Stoessl A (1969) Some metabolites of Alternaria solani. Can J Chem 47:767–776

    CAS  Google Scholar 

  • Stoessl A, Unwin CH, Stothers JB (1983) On the biosynthesis of some polyketide metabolites in Alternaria solani: 13C and 2H nmr studies. Can J Chem 61:372–377

    CAS  Google Scholar 

  • Tietjen KG, Schaller E, Marten U (1983) Phytotoxins from Alternaria cartami Chowdhuri: structural identification and physiological significance. Physiol Plant Pathol 23:387–400

    CAS  Google Scholar 

  • Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic Press, New York, pp 585–598

    Google Scholar 

  • Van Niekerk JM, Fourie PH, Halleen F, Crous PW (2006) Botryosphaeria spp. as grapevine trunk disease pathogens. Phytopathol Mediterr 45(suppl):S43–S54

    Google Scholar 

  • Venkatasubaiah P, Chilton WS (1991) Toxins produced by the dogwood anthracnose fungus Discula sp. J Nat Prod 54:1293–1297

    Google Scholar 

  • Venkatasubbaiah P, Chilton WS (1990) Phytotoxins of Botryosphaeria obtusa. J Nat Prod 53:1628–1630

    CAS  Google Scholar 

  • Venkatasubbaiah P, Sutton TB, Chilton WS (1991) Effect of phytotoxins produced by Botryosphaeria obtusa, the cause of black rot of apple fruit and frogeye leaf spot. Phytopathology 81:243–247

    CAS  Google Scholar 

  • Vurro M, Evidente A, Andolfi A et al (1998) Brefeldin A and α, β-dehydrocurvularin, two phytotoxins from Alternaria zinniae, a biocontrol agent of Xanthium occidentale. Plant Sci 138:67–79

    CAS  Google Scholar 

  • Whalley AJS, Edwards RL (1995) Secondary metabolites and systematic arrangement within the Xylariaceae. Can J Bot 73:5802–5810

    Google Scholar 

  • Xu YX, Lu CH, Zheng ZH, Shen YN (2011) New polyketides isolated from Botryosphaeria australis strain ZJ12-1A. Helv Chim Acta 94:897–902

    CAS  Google Scholar 

  • Yoneyama K, Awad A, Xie X et al (2010) Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol 51:1095–1103

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was in part supported by a grant from Italian Ministry of University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Evidente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimmino, A., Andolfi, A., Abouzeid, M. et al. Polyphenols as fungal phytotoxins, seed germination stimulants and phytoalexins. Phytochem Rev 12, 653–672 (2013). https://doi.org/10.1007/s11101-013-9277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9277-5

Keywords

Navigation