Skip to main content
Log in

Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Endolichenic fungi are diverse groups of predominantly filamentous fungi that reside asymptomatically in the interior of lichen thalli. Natural products from endolichenic fungi, isolated from a variety of different lichen species, have been attracting increased attention for their potential to produce bioactive metabolites possessing new structures and representing different structural classes. This is evident from the steady increase of publications devoted to endolichenic fungal metabolites over the past decade, since the first report of endolichenic secondary metabolites. The bioactive metabolites produced by endolichenic fungi originate from multiple biosynthetic pathways and occupy different chemical structure classes, including steroids, quinones, terpenoids, peptides, xanthones, sulfur-containing chromenones, etc. Endolichenic fungal metabolites possess a diverse array of bioactivities, such as anticancer, antiviral, antibacterial, antifungal, and anti-Alzheimer’s disease. This review provides the first thorough assessment of endolichenic fungi, their biodiversity, secondary metabolites, and associated bioactivity. This review will highlight the bioactive metabolites reported in recent years from endolichenic fungi, as well as discussing the potential of these symbiotic fungi as sources of new, diverse natural products with varying bioactivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

FIC:

Fractional inhibitory concentration

GPS:

Global positioning system

IC50 :

50 % inhibitory concentration

ITS:

Internal transcribed spacer

MEA:

Malt extract agar

MIC:

Minimum inhibitory concentration

OSMAC:

One-strain, many compounds

PDB:

Potato dextrose broth

References

  • Arnold AE (2001) Fungal endophytes in neotropical trees: abundance, diversity, and ecological implications. In: Ganeshaiah KN, Shaanker RU, Bawa KS (eds) In tropical ecosystems: structure, diversity and human welfare. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 739–743

    Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21(2–3):51–66

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 88(3):541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Miadlikowska J, Higgins KL et al (2009) A phylogenetic estimation of trophic transition networks for ascomycetous Fungi: Are lichens cradles of symbiotrophic Fungal diversification? Syst Biol 58(3):283–297

    Article  PubMed  Google Scholar 

  • Arnone A, Cardillo R, Nasini G et al (1993) Two cinnamic allenic ethers from the fungus Clitocybe eucalyptorum. Phytochemistry 32:1279–1281

    Article  CAS  Google Scholar 

  • Bode BD, Bethe B, Höfs R et al (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3(7):619–627

    Article  CAS  PubMed  Google Scholar 

  • Boustie J, Tomasi S, Grube M (2011) Bioactive lichen metabolites: alpine habitats as an untapped source. Phytochem Rev 10:287–307

    Article  CAS  Google Scholar 

  • Chagnon P-L, U’Ren JM, Miadlikowska J et al (2016) Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale. Oecologia 180(1):181–191

    Article  PubMed  Google Scholar 

  • Chen GD, Chen Y, Gao H et al (2013) Xanthoquinodins from the endolichenic fungal strain Chaetomium elatum. J Nat Prod 76(4):702–709

    Article  CAS  PubMed  Google Scholar 

  • Chen KH, Miadlikowska J, Molnár K et al (2015) Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order—Phaeomoniellales. Mol Phylogenet Evol 85:117–130

    Article  CAS  PubMed  Google Scholar 

  • Cheon DM, Jang DS, Kim HY et al (2013) Detection of antifungal endolichenic fungi and antifungal compound. Korean J Microbiol 49(2):165–171

    Article  Google Scholar 

  • Crittenden P, David J, Hawksworth D et al (1995) Attempted isolation and success in the culturing of a broad spectrum of lichen-forming and lichenicolous fungi. New Phytol 130(2):267–297

    Article  Google Scholar 

  • De Rosa S, Milonea A, Popovb S et al (1999) Sterol composition of the Black Sea Hydrozoan, Obelia longissima (Pallas 1766). Comp Biochem Phys B Biochem Mol Biol 123(2):229–233

    Article  Google Scholar 

  • Ding G, Li Y, Fu S et al (2009) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72(1):182–186

    Article  CAS  PubMed  Google Scholar 

  • Dou Y, Wang X, Jiang D et al (2014) Metabolites from Aspergillus versicolor, an endolichenic fungus from the lichen Lobaria retigera. Drug Discov Ther 8(2):84–88

    Article  CAS  PubMed  Google Scholar 

  • El-Elimat T, Figueroa M, Ehrmann BM et al (2013) High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. J Nat Prod 76:1709–1716

    Article  CAS  PubMed  Google Scholar 

  • Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s Xoristic regions. Biodivers Conserv 16:85–98

    Article  Google Scholar 

  • Garcia PA, Oliveira AGd, Batista R (2007) Occurrence, biological activities and synthesis of kaurane diterpenes and their glycosides. Molecules 12(3):455–483

    Article  CAS  PubMed  Google Scholar 

  • Girlanda M, Isocrono D, Bianco C et al (1997) Two foliose lichens as microfungal ecological niches. Mycologia 89:531–536

    Article  Google Scholar 

  • Hansen JR (1995) The viridin family of steroidal antibiotics. Nat Prod Rep 12(4):381–384

    Article  Google Scholar 

  • He JW, Chen GD, Gao H et al (2012) Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia 83(6):1087–1091

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416

    Article  CAS  PubMed  Google Scholar 

  • Hwang HG, Kim YN, Baik KS et al (2011) Isolation and characteristics of endolichenic fungi producing antifungal compound. Korean J Microbiol 47(1):97–101

    Google Scholar 

  • Jiao Y, Li G, Wang HY et al (2015) New metabolites from endolichenic fungus Pleosporales sp. Chem Biodivers 12(7):1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Kannangara BTSDP, Rajapaksha RSCG, Paranagama PA et al (2009) Nature and bioactivities of endolichenic fungi in Pseudocyphellaria sp., Parmotrema sp. and Usnea sp. at Hakgala montane forest in Sri Lanka. Lett Appl Microbiol 48(2):203–209

    Article  CAS  PubMed  Google Scholar 

  • Kaul S, Gupta S, Ahmed M et al (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11(4):487–505

    Article  CAS  Google Scholar 

  • Kawaide H (2006) Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci Biotechnol Biochem 70(3):583–590

    Article  CAS  PubMed  Google Scholar 

  • Kellogg JJ, Todd DA, Egan JM et al (2016) Biochemometrics for natural products research: comparison of data analysis approaches and application to identification of bioactive compounds. J Nat Prod 79(2):376–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK et al (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7):1208–1228

    Article  CAS  PubMed  Google Scholar 

  • Kim ES, Choi KS, Choi SK (2012) Detection of endolichenic fungi producing antifungal compound. Korean J Microbiol Biotechnol 40(1):23–29

    Article  CAS  Google Scholar 

  • Kim KH, Beemelmanns C, Murillo C et al (2014) Naphthalenones and isocoumarins from a Costa Rican fungus Xylariaceae sp. CR1546C. J Chem Res 38(12):722–725

    Article  CAS  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798

    Article  CAS  PubMed  Google Scholar 

  • Leal MC, Hilário A, Munro MHG et al. (2016) Natural products discovery needs improved taxonomic and geographic information. Nat Prod Rep 33(6):747–750

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Harper JK, Grant DM et al (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 56(5):463–468

    Article  CAS  PubMed  Google Scholar 

  • Li W-C, Zhou J, Guo S-Y et al (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80

    Google Scholar 

  • Li G, Wang H, Zhu R et al (2012) Phaeosphaerins A-F, cytotoxic perylenequinones from an endolichenic fungus, Phaeosphaeria sp. J Nat Prod 75(2):142–147

    Article  CAS  PubMed  Google Scholar 

  • Li W, Li XB, Li L et al (2015a) α-Pyrone derivatives from the endolichenic fungus Nectria sp. Phytochem Lett 12:22–26

    Article  CAS  Google Scholar 

  • Li X-B, Li L, Zhu R-X et al (2015b) Tetramic acids and pyridone alkaloids from the endolichenic fungus Tolypocladium cylindrosporum. J Nat Prod 78(9):2155–2160

    Article  CAS  PubMed  Google Scholar 

  • Li XB, Zhou YH, Zhu RX et al (2015c) Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor. Chem Biodivers 12:575–592

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Wu X, Feng S et al (2001) A novel N-cinnamoylcyclopeptide containing an allenic ether from the fungus Xylaria sp. (strain #2508) from the South China Sea. Tetrahedron Lett 42(3):449–451

    Article  CAS  Google Scholar 

  • Lutzoni F, Miadlikowska J (2009) Lichens. Quick guide. Curr Biol 19:R502–R503

    Article  CAS  PubMed  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411(6840):937–940

    Article  CAS  PubMed  Google Scholar 

  • Majumdar KC, Jana GH (2001) Synthesis of linear heterocycles: thermal sigmatropic rearrangement of 4-(4-Aryloxybut-2-ynyloxy) [1]benzopyran-2-thiones. Synthesis 6:924–928

    Article  Google Scholar 

  • McDonald TR, Gaya E, Lutzoni F (2013) Twenty-five cultures of lichenizing fungi available for experimental studies on symbiotic systems. Symbiosis 59(3):165–171

    Article  Google Scholar 

  • Miadlikowska J, Arnold AE, Lutzoni F (2004) Diversity of cryptic fungi inhabiting healthy lichen thalli in a temperate and tropical forest. Ecol Soc Am Annu Meet 89:349–350

    Google Scholar 

  • Morgan BJ, Dey S, Johnson SW et al (2009) Design, synthesis, and investigation of protein kinase C inhibitors: total syntheses of (+)-calphostin D, (+)-phleichrome, Cercosporin, and new photoactive perylenequinones. J Am Chem Soc 131(26):9413–9425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama J, Uemura Y, Nishiguchi K et al (2009) Ambuic acid inbhitis the biosynthesis of cyclic pentide quormones in Gram-positive bacteria. Antimicrob Agents Ch 53(2):580–586

    Article  CAS  Google Scholar 

  • Nichols D, Cahoon N, Trakhtenberg EM et al (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microb 76(8):2445–2450

    Article  CAS  Google Scholar 

  • Nisa H, Kamili AN, Nawchoo IA et al (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59

    Article  CAS  PubMed  Google Scholar 

  • Oberlies NH, Rineer JI, Alalic FQ et al (2009) Mapping of sample collection data: GIS tools for the natural product researcher. Phytochem Lett 2(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Padhi S, Tayung K (2015) In vitro antimicrobial potentials of endolichenic fungi isolated from thalli of Parmelia lichen against some human pathogens. Beni Suef Univ J Basic Appl Sci 4(4):299–306

    Article  Google Scholar 

  • Palmisano G, Toma L, Annunziata R et al (2007) Pericyclic reactions of coumarin derivatives: regiochemical effects of isosteric replacement of oxygen with sulphur. J Hetercyclic Chem 44:411–418

    Article  CAS  Google Scholar 

  • Paranagama PA, Wijeratne EMK, Burns AM et al (2007) Heptaketides from Corynespora sp. inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. J Nat Prod 70(11):1700–1705

    Article  CAS  PubMed  Google Scholar 

  • Petrini O (1991) Fungal Endophytes in tree leaves. In: Hirano SS (ed) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Petrini O, Hake U, Dreyfuss M (1990) An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444–451

    Article  Google Scholar 

  • Proksch P, Putz A, Ortlepp S et al (2010) Bioactive natural products from marine sponges and fungal endophytes. Phytochem Rev 9(4):475–489

    Article  CAS  Google Scholar 

  • Raistrick H (1949) Bakerian lecture. A region of biosynthesis. Proc R Soc London A Math Phys Sci 199(1057):141

    Article  CAS  Google Scholar 

  • Romagni JG, Dayan FE (2002) Structural diversity of lichen metabolites and their potential use. In: Upadhyay RK (ed) Advances in microbial toxin research and its biotechnological exploitation. Springer, Boston, pp 151–169

    Chapter  Google Scholar 

  • Samanthi KAU, Wickramaarachchi S, Wijeratne EMK et al (2015) Two new antioxidant active polyketides from Penicillium citrinum, an endolichenic fungus isolated from Parmotrema species in Sri Lanka. J Natl Sci Found Sri Lanka 43(2):119–126

    Article  CAS  Google Scholar 

  • Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303–314

    Article  CAS  Google Scholar 

  • Stierle AA, Stierle DB (2015) Bioactive secondary metabolites produced by the fungal endophytes of conifers. Nat Prod Commun 10(10):1671–1682

    PubMed  PubMed Central  Google Scholar 

  • Stierle A, Strobel GA, Stierle D (1993) Taxol and Taxane production by Taxomyces andreanae an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  • Stone JK, Bacon CW, White J (2000) An overview of endophytic microbes: endophytism defined. Microb Endophytes 3:29–33

    Google Scholar 

  • Stone JK, Polishook JD, White JF (2004) Endophytic fungi. Biodiversity of Fungi. Elsevier Academic Press, Burlington, 241–270

    Google Scholar 

  • Strobel GA, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayanan T, Thirunavukkarasu N, Hariharan G et al (2005) Occurrence of non-obligate microfungi inside lichen thalli. Sydowia 57(1):120

    Google Scholar 

  • Tabata N, Tomoda H, Matsuzaki K et al (1993) Structure and biosynthesis of xanthoquinodins, anticoccidial antibiotics. J Am Chem Soc 115(19):8558–8564

    Article  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Tripathi M, Joshi Y (2015) Endolichenic fungi in Kumaun himalaya: a case study. Recent advances in lichenology. Springer, Berlin, pp 111–120

    Book  Google Scholar 

  • U’Ren JM, Lutzoni F, Miadlikowska J et al (2010) Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb Ecol 60(2):340–353

    Article  PubMed  Google Scholar 

  • U’Ren JM, Lutzoni F, Miadlikowska J et al (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99(5):898–914

    Article  PubMed  Google Scholar 

  • U’Ren JM, Miadlikowska J, Zimmerman NB et al (2016) Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Mol Phylogenet Evol 98:210–232

    Article  PubMed  Google Scholar 

  • Wang Y, Niu S, Liu S et al (2010a) The first naturally occurring thiepinols and thienol from an endolichenic fungus Coniochaeta sp. Org Lett 12(21):5081–5083

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zheng Z, Liu S et al (2010b) Oxepinochromenones, furochromenone, and their putative precursors from the endolichenic fungus Coniochaeta sp. J Nat Prod 73(5):920–924

    Article  CAS  PubMed  Google Scholar 

  • Wang QX, Bao L, Yang XL et al (2012) Polyketides with antimicrobial activity from the solid culture of an endolichenic fungus Ulocladium sp. Fitoterapia 83(1):209–214

    Article  CAS  PubMed  Google Scholar 

  • Wang QX, Bao L, Yang XL et al (2013a) Tricycloalternarenes F–H: three new mixed terpenoids produced by an endolichenic fungus Ulocladium sp. using OSMAC method. Fitoterapia 85(1):8–13

    Article  CAS  PubMed  Google Scholar 

  • Wang QX, Bao L, Yang XL et al (2013b) Ophiobolins P-T, five new cytotoxic and antibacterial sesterterpenes from the endolichenic fungus Ulocladium sp. Fitoterapia 90:220–227

    Article  PubMed  Google Scholar 

  • Wijeratne EMK, Bashyal BP, Gunatilaka MK et al (2010) Maximizing chemical diversity of fungal metabolites: biogenetically related heptaketides of the endolichenic fungus Corynespora sp. J Nat Prod 73(6):1156–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijeratne EMK, Bashyal BP, Liu MX et al (2012) Geopyxins A-E, ent -Kaurane diterpenoids from endolichenic fungal strains Geopyxis aff. majalis and Geopyxis sp. AZ0066: structure-activity relationships of geopyxins and their analogues. J Nat Prod 75(3):361–369

    Article  CAS  PubMed  Google Scholar 

  • Wipf R, Halter RJ (2005) Chemistry and biology of wortmannin. Org Biomol Chem 3(11):2053–2061

    Article  CAS  PubMed  Google Scholar 

  • Wisecaver JH, Slot JC, Rokas A (2014) The evolution of fungal metabolic pathways. PLoS Genet 10(12):e1004816

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu W, Dai H, Bao L et al (2011) Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. J Nat Prod 74(5):1303–1308

    Article  CAS  PubMed  Google Scholar 

  • Wu YH, Chen GD, Wang CX et al (2015) Pericoterpenoid A, a new bioactive cadinane-type sesquiterpene from Periconia sp. J Asian Nat Prod Res 17(6):671–675

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Chen GD, Gao H et al (2012) Two new naphthalene derivatives from an endolichenic fungal strain Scopulariopsis sp. J Asian Nat Prod Res 14(11):1059–1063

    Article  CAS  PubMed  Google Scholar 

  • Ye F, Chen GD, He JW et al (2013) Xinshengin, the first altenusin with tetracyclic skeleton core from Phialophora spp. Tetrahedron Lett 54(34):4551–4554

    Article  CAS  Google Scholar 

  • Young P (1997) Major microbial diversity initiative recommended. ASM News 63:417–421

    Google Scholar 

  • Yuan C, Wang HY, Wu CS et al (2013) Austdiol, fulvic acid and citromycetin derivatives from an endolichenic fungus, Myxotrichum sp. Phytochem Lett 6(4):662–666

    Article  CAS  Google Scholar 

  • Yuan C, Li G, Wu CS et al. (2015) A new fatty acid from the endolichenic fungus Massarina sp. Chem Nat Compd 51(3):415–417

    Article  CAS  Google Scholar 

  • Zhang F, Liu S, Lu X et al (2009) Allenyl and alkynyl phenyl ethers from the endolichenic fungus Neurospora terricola. J Nat Prod 72(10):1782–1785

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Li L, Niu S et al (2012) A thiopyranchromenone and other chromone derivatives from an endolichenic fungus, Preussia africana. J Nat Prod 75(2):230–237

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Ren J, Ge M et al (2014) Mono- and bis-furanone derivatives from the endolichenic fungus Peziza sp. Fitoterapia 92:79–84

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Wang GQ, Tong XP et al (2014) Diphenyl ethers from Aspergillus sp. and their anti-Aβ42 aggregation activities. Fitoterapia 98:77–83

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Chen GD, Feng XL et al (2015a) Nodulisporiviridins A-H, Bioactive Viridins from Nodulisporium sp. J Nat Prod 78(6):1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Wang CX, Yu Y et al. (2015b) Nodulisporipyrones A-D, new bioactive α-pyrone derivatives from Nodulisporium sp. J Asian Nat Prod Res 17(5):567–575

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Wang GQ, Chen GD et al (2015c) Nodulisporisteroids C-L, new 4-methyl-progesteroid derivatives from Nodulisporium sp. Steroids 102:101–109

    Article  CAS  PubMed  Google Scholar 

  • Zheng QC, Chen GD, Kong MZ et al (2013) Nodulisporisteriods A and B, the first 3,4-seco-4-methyl-progesteroids from Nodulisporium sp. Steroids 78(9):896–901

    Article  CAS  PubMed  Google Scholar 

  • Zheng QC, Kong MZ, Zhao Q et al (2014) Chaetoglobosin Y, a new cytochalasan from Chaetomium globosum. Fitoterapia 93:126–131

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZY, Liu JK (2010) Pigments of fungi (macromycetes). Nat Prod Rep 27:1531–1570

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Nicholas H. Oberlies and Nadja B. Cech for their insightful comments and careful editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Kellogg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellogg, J.J., Raja, H.A. Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem Rev 16, 271–293 (2017). https://doi.org/10.1007/s11101-016-9473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-016-9473-1

Keywords

Navigation