Skip to main content
Log in

Phytochemistry and bioactivity of Acacia sensu stricto (Fabaceae: Mimosoideae)

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Acacia sensu lato (Fabaceae: Mimosoideae) was recently retypified and divided into five genera worldwide: Acacia, Acaciella, Mariosousa, Senegalia and Vachellia. Acacia sensu stricto is now considered to be a large genus of predominantly Australian origin comprising seven sections: Acacia, Alatae, Botrycephalae, Juliflorae, Lycopodiifoliae, Plurinerves and Pulchellae. This review presents an overview of the current taxonomy of A. sensu stricto and the natural products isolated and identified from it. Further, the traditional uses of different species and known bioactivities of isolated natural products are summarised. The flavonoids and tannins are the best studied classes of natural products from Acacia with characteristic hydroxylation patterns of flavonoids isolated from the heartwood of species positioned in different sections of the genus. These compounds display a range of activities including antioxidant, enzyme inhibitory and antimicrobial effects. Peltogynoid compounds, differing from other flavonoids by the presence of a fourth ring, have been isolated from a small group of species, however, their biological activities remain to be defined. Only a limited number of terpenes and steroids have been identified, but complex triterpenoid saponins with various bioactivities are present across various sections. Despite their economic importance and the traditional use, only a limited number of species have been thoroughly studied for their chemical composition. Further investigation of the sections Alatae and Lycopodiifoliae would be of interest for bioactive compound research as these sections are largely unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

*Lupenyl palmitate (186) was drawn with as C17 instead of C16 for palmitate and lupenyl cinnamate (187) was drawn as 7'-hydroxy cinnamate in Pereira et al. (1996)

Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azino-bis-3-ethylbenzthiazoline-6-sulphonic acid

ACE:

Angiotensin converting enzyme

CP-MAS:

Cross polarization magic angle spinning

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

EC50 :

50% Effective concentration

ESI-MS:

Electrospray ionization mass spectrometry

EtOAc:

Ethyl acetate

IC50 :

50% Inhibitory concentration

MALDI-TOF-MS:

Matrix assisted laser desorption ionization time of flight mass spectrometry

MeOH:

Methanol

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

RP-HPLC:

Reverse-phase high performance liquid chromatography

Sect.:

Section

SSAO:

Semicarbazide-sensitive amine oxidase

Syn.:

Synonym

TEAC:

Trolox equivalent antioxidant capacity

XO:

Xanthine oxidase

References

  • Agüero MB, Gonzalez M, Lima B et al (2010) Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinieae) exudates: phytochemical characterization and antifungal activity. J Agric Food Chem 58:194–201

    Article  CAS  PubMed  Google Scholar 

  • Ahmadu AA, Grougnet R, Tillequin F et al (2014) Phytochemical constituents from Acacia nilotica Delile with kinase inhibitory activity. Planta Med 80:PD13

    Article  Google Scholar 

  • Akter K, Barnes EC, Brophy JJ et al (2016) Phytochemical profile and antibacterial and antioxidant activities of medicinal plants used by Aboriginal people of New South Wales, Australia. Evid Based Complement Altern Med. https://doi.org/10.1155/2016/4683059

    Article  Google Scholar 

  • Alexander R, Croft KD, Kagi RI et al (1978) Saponins of Acacia pulchella. Aust J Chem 31:2741–2744

    Article  CAS  Google Scholar 

  • Ali M, Heaton A, Leach D (1997) Triterpene esters from Australian acacia. J Nat Prod 60:1150–1151

    Article  CAS  Google Scholar 

  • Anderson D (1978) Chemotaxonomic aspects of the chemistry of Acacia gum exudates. Kew Bull 32:529–536

    Article  Google Scholar 

  • Anderson D, Gill M (1975) The composition of Acacia gum exudates from species of the subseries Juliflorae. Phytochemistry 14:739–741

    Article  CAS  Google Scholar 

  • Anto RJ, Sukumaran K, Kuttan G et al (1995) Anticancer and antioxidant activity of synthetic chalcones and related compounds. Cancer Lett 97:33–37

    Article  CAS  PubMed  Google Scholar 

  • Ariati SR, Murphy DJ, Udovicic F et al (2006) Molecular phylogeny of three groups of acacias (Acacia subgenus Phyllodineae) in arid Australia based on the internal and external transcribed spacer regions of nrDNA. Syst Biodivers 4:417–426

    Article  Google Scholar 

  • Asati N, Yadava R (2014) New triterpenoid saponin from Acacia auriculiformis Cunn. Int J Pharm Res BioSci 3:341–349

    CAS  Google Scholar 

  • Asenstorfer RE, Morgan AL, Hayasaka Y et al (2003) Purification of anthocyanins from species of Banksia and Acacia using high-voltage paper electrophoresis. Phytochem Anal 14:150–154

    Article  CAS  PubMed  Google Scholar 

  • Aspinall GO, Hirst EL, Nicolson A (1959) 336. The structure of Acacia pycnantha gum. J Chem Soc 0:1697–1706

    Article  CAS  Google Scholar 

  • Avoseh ON, O-oO O, Aremu K et al (2015) Chemical composition and anti-inflammatory activities of the essential oils from Acacia mearnsii de Wild. Nat Prod Res 29:1184–1188

    Article  CAS  PubMed  Google Scholar 

  • Ayeb-Zakhama E, Sakka-Rouis L, Bergaoui A et al (2015) Chemical composition and allelopathic potential of essential oils obtained from Acacia cyanophylla Lindl. cultivated in Tunisia. Chem Biodivers 12:615–626

    Article  CAS  PubMed  Google Scholar 

  • Babu SPS, Sarkar D, Ghosh NK et al (1997) Enhancement of membrane damage by saponins isolated from Acacia auriculiformis. Jpn J Pharmacol 75:451–454

    Article  CAS  Google Scholar 

  • Bak S, Paquette SM, Morant M et al (2006) Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem Rev 5:309–329

    Article  CAS  Google Scholar 

  • Barr A, Chapman J, Smith N et al (1993) Traditional aboriginal medicines in the Northern Territory of Australia. Conservation Commission of the Northern Territory, Darwin

    Google Scholar 

  • Barry KM, Mihara R, Davies NW et al (2005) Polyphenols in Acacia mangium and Acacia auriculiformis heartwood with reference to heart rot susceptibility. J Wood Sci 51:615–621

    Article  CAS  Google Scholar 

  • Bick I (1996) Alkaloids from Australian Flora. In: Pelletier S (ed) Alkaloids: chemical and biological perspectives, vol 10. Elsevier, Oxford, pp 1–154

    Chapter  Google Scholar 

  • Bjarnholt N, Neilson E, Crocoll C et al (2018) Glutathione transferase catalyzed recycling of auto-toxic cyanogenic glucosides in sorghum. Plant J 94:1109–1125

    Article  CAS  PubMed  Google Scholar 

  • Bonney N (1994) Native plant uses of Southern South Australia. South East Book Promotion Group, Naracoorte

    Google Scholar 

  • Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  CAS  PubMed  Google Scholar 

  • Botha JJ, Ferreira D, Roux DG (1981) Synthesis of condensed tannins. Part 4. A direct biomimetic approach to [4,6]- and[4,8]-biflavanoids. J Chem Soc Perkin Trans 1:1235–1245

    Article  Google Scholar 

  • Boughton BA, Reddy P, Boland MP et al (2015) Non-protein amino acids in Australian Acacia seed: implications for food security and recommended processing methods to reduce djenkolic acid. Food Chem 179:109–115

    Article  CAS  PubMed  Google Scholar 

  • Bouhlel I, Skandrani I, Nefatti A et al (2009) Antigenotoxic and antioxidant activities of isorhamnetin-3-O-neohesperidoside from Acacia salicina. Drug Chem Toxicol 32:258–267

    Article  CAS  PubMed  Google Scholar 

  • Bouhlel I, Limem I, Skandrani I et al (2010) Assessment of isorhamnetin 3-O-neohesperidoside from Acacia salicina: protective effects toward oxidation damage and genotoxicity induced by aflatoxin B1 and nifuroxazide. J Appl Toxicol 30:551–558

    Article  CAS  PubMed  Google Scholar 

  • Braicu C, Ladomery MR, Chedea VS et al (2013) The relationship between the structure and biological actions of green tea catechins. Food Chem 141:3282–3289

    Article  CAS  PubMed  Google Scholar 

  • Brandt EV, Roux DG (1979) Metabolites from the purple heartwood of Mimosoideae I, Acacia peuce F. Muell: the first natural 2,3-cis-peltogynoids. J Chem Soc Perkin Trans 1:777–780

    Article  Google Scholar 

  • Brandt EV, Ferreira D, Roux DG (1971) Ring expansions of crombeone, a natural 5-hydroxypeltogynone. J Chem Soc D 2:116–117

    Article  Google Scholar 

  • Brandt EV, Ferreira D, Roux DG (1972) Structure and synthesis of crombenin, a natural spirocoumaranone. J Chem Soc Chem Commun 0:392–393

    Article  CAS  Google Scholar 

  • Brandt EV, Ferreira D, Roux DG (1981) Metabolites from the purple heartwood of mimosoideae. Part 3. Acacia crombei C. T. White: structure and partial synthesis of crombenin, a natural spiropeltogynoid. J Chem Soc Perkin Trans 1:1879–1883

    Article  Google Scholar 

  • Brophy JJ, Goldsack RJ, Fookes CJR (2007) The volatiles of Acacia howittii F. Muell. J Essent Oil Res 19:457–459

    Article  CAS  Google Scholar 

  • Buchanan MS, Carroll AR, Pass D et al (2007) NMR spectral assignments of a new chlorotryptamine alkaloid and its analogues from Acacia confusa. Magn Reson Chem 45:359–361

    Article  CAS  PubMed  Google Scholar 

  • Cambie R, Ash J (1994) Fijian medicinal plants. CSIRO, Australia

    Book  Google Scholar 

  • Campbell TD, Cleland JB, Hessfeld PS (1946) Aborigines of the South-East of South Australia. Rec South Aust Mus 8:445–500

    Google Scholar 

  • Chai W-M, Huang Q, Lin M-Z et al (2018) Condensed tannins from Longan Bark as inhibitor of tyrosinase: structure, activity, and mechanism. J Agric Food Chem 66:908–917

    Article  CAS  PubMed  Google Scholar 

  • Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138:2099–2107

    Article  CAS  PubMed  Google Scholar 

  • Chen P-S, Chen Y-H, Yeh T-F et al (2014) Mechanism of decay resistance of heartwood extracts from Acacia confusa against the brown-rot fungus Laetiporus sulphureus. Wood Sci Technol 48:451–465

    Article  CAS  Google Scholar 

  • Chen R, Qi Q-L, Wang M-T et al (2016) Therapeutic potential of naringin: an overview. Pharm Biol 54:3203–3210

    Article  CAS  PubMed  Google Scholar 

  • Chou C-H, Fu C-Y, Li S-Y et al (1998) Allelopathic potential of Acacia confusa and related species in Taiwan. J Chem Ecol 24:2131–2150

    Article  CAS  Google Scholar 

  • Clarke PA (2011) Aboriginal people and their plants. Rosenberg, Dural

    Google Scholar 

  • Clarke PA (2013) The Aboriginal ethnobotany of the Adelaide region, South Australia. Trans R Soc S Aust 137:97–126

    Google Scholar 

  • Clarke PA (2015) The aboriginal ethnobotany of the South East of South Australia region. Part 2: foods, medicines and narcotics. Trans R Soc S Aust 139:247–272

    Google Scholar 

  • Clark-Lewis J, Dainis I (1967) Flavan derivatives. XIX. Teracacidin and isoteracacidin from Acacia obtusifolia and Acacia maidenii heartwoods; phenolic hydroxylation patterns of heartwood flavonoids characteristic of sections and subsections of the genus Acacia. Aust J Chem 20:2191–2198

    Article  CAS  Google Scholar 

  • Clark-Lewis J, Dainis I (1968) Flavan derivatives. XX. A new glycoside and other extractives from Acacia ixiophylla: Rhamnitrin (rhamnetin 3-alpha-l-rhamnoside). Aust J Chem 21:425–437

    Article  CAS  Google Scholar 

  • Clark-Lewis JW, Mortimer PI (1960) 803. Flavan derivatives. Part III. Melacacidin and isomelacacidin from Acacia species. J Chem Soc 0:4106–4111

    Article  CAS  Google Scholar 

  • Clark-Lewis J, Nair V (1964) Flavan derivatives. X. 7,8,3′,4′-Tetrahydroxyflavanone and 7,8,3′,4′-Tetrahydroxydihydroflavonol from Acacia species. Aust J Chem 17:1164–1169

    Article  CAS  Google Scholar 

  • Clark-Lewis J, Porter L (1972) Phytochemical survey of the heartwood flavonoids of Acacia species from arid zones of Australia. Aust J Chem 25:1943–1955

    Article  CAS  Google Scholar 

  • Cleland JB, Johnston TH (1933) The ecology of the aborigines of central Australia; botanical notes. Trans R Soc S Aust 57:113–124

    Google Scholar 

  • Cleland JB, Johnston TH (1937–1938) Notes on native names and uses of plants in the Musgrave Ranges region. Oceania 8:328–342

  • Cleland J, Johnston T (1939) Aboriginal names and uses of plants in the northern Flinders Ranges. Trans R Soc S Aust 63:172–179

    Google Scholar 

  • Cleland J, Tindale N (1954) The ecological surroundings of the Ngalia natives in Central Australian and native names and uses of plants. Trans R Soc S Aust 77:81–86

    Google Scholar 

  • Cleland J, Tindale N (1959) The native names and uses of plants at Haast Bluff, Central Australia. Trans R Soc S Aust 82:123–140

    Google Scholar 

  • Cock IE (2017) Australian Acacia spp. extracts as natural food preservatives: growth inhibition of food spoilage and food poisoning bacteria. Pharmacogn Commun 7:4–15

    Article  CAS  Google Scholar 

  • Collins DJ, Culvenor CCJ, Lamberton JA et al (1990) Plants for medicines: a chemical and pharmacological survey of plants in the Australian region. CSIRO publishing, Melbourne

    Book  Google Scholar 

  • Cos P, Vlietinck AJ, Berghe DV et al (2006) Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol 106:290–302

    Article  CAS  PubMed  Google Scholar 

  • Council of Heads of Australasian Herbaria (2017) Australian Plant Census. www.anbg.gov.au/citation.html

  • Cribb A, Cribb J (1981) Wild medicine in Australia. Collins, Sydney

    Google Scholar 

  • Cronje A, Steynberg JP, Brandt EV et al (1993) Oligomeric flavanoids. Part 16. Novel prorobinetinidins and the first A-type proanthocyanidin with a 5-deoxy A-and a 3,4-cis C-ring from the maiden investigation of commercial wattle bark extract. J Chem Soc Perkin Trans 1:2467–2477

    Article  Google Scholar 

  • Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silvia VC, Keber VA (2003) Analise dos flavonoides da Acacia longifolia (Andr.) Willd. Leguminosae-mimosoideae. Visão Acadêmica Curitiba 4:58

  • de Andrade C, de Souza CJ, CunicoI M et al (2010) Antioxidant and antibacterial activity of extracts, fractions and isolated substances from the flowers of Acacia podalyriifolia A. Cunn. ex G. Don. Braz J Pharm Sci 46:715–721

    Article  Google Scholar 

  • Devi KP, Malar DS, Nabavi SF et al (2015) Kaempferol and inflammation: from chemistry to medicine. Pharmacol Res 99:1–10

    Article  CAS  PubMed  Google Scholar 

  • Dou W, Zhang J, Sun A et al (2013) Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-kappaB signalling. Br J Nutr 110:599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drewes SE, Ilsley AH (1968) Isolation of 3-methoxyfisetin from Acacia mearnsii. Chem Commun (London) 0:1246–1247

    Article  CAS  Google Scholar 

  • Drewes SE, Ilsley AH (1969) Isomeric leucofisetinidins from Acacia mearnsii. Phytochemistry 8:1039–1042

    Article  CAS  Google Scholar 

  • Drewes SE, Roux DG (1966) A new flavan-3,4-diol from Acacia auriculiformis by paper ionophoresis. Biochem J 98:493–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • du Preez IC, Roux DG (1970) Novel flavan-3,4-diols from Acacia cultriformis. J Chem Soc C 0:1800–1804

    Google Scholar 

  • Eade R, McDonald F, Simes J (1973) Extractives of Australian timbers. XIV. Triterpene glycosides of Acacia myrtifolia. Aust J Chem 26:839–844

    Article  CAS  Google Scholar 

  • Ee KY, Agboola S, Rehman A et al (2011) Characterisation of phenolic components present in raw and roasted wattle (Acacia victoriae Bentham) seeds. Food Chem 129:816–821

    Article  CAS  PubMed  Google Scholar 

  • El Sissi HI, El Sherbeiny AEA (1967) Flavonoid components of the leaves of Acacia saligna. Qual Plant Mater Veg 14:257–266

    Article  Google Scholar 

  • Elevitch CR, Wilkinson KM, Friday JB (2006) Acacia koa (koa) and Acacia koaia (koai’a). In: Elevitch CR (ed) Traditional trees of Pacific Islands: their culture, environment and use. Permanent Agriculture Resources, Holualoa, pp 1–28

    Google Scholar 

  • El-Sawi SA (2001) A new rare 8-C-glucosylflavonoid and other eight flavonoids from the molluscicidal plant Acacia saligna Wendl. Pharm Pharmacol Lett 11:30–33

    CAS  Google Scholar 

  • El-Toumy SA, Salib JY, Mohamed WM et al (2010) Phytochemical and antimicrobial studies on Acacia saligna leaves. Egypt J Chem 53:705–717

    Article  CAS  Google Scholar 

  • Evans CS, Qureshi MY, Bell EA (1977) Free amino acids in the seeds of Acacia species. Phytochemistry 16:565–570

    Article  CAS  Google Scholar 

  • Falco MR, de Vries JX (1964) Isolation of hyperoside (quercetin-3-d-galactoside) from the flowers of Acacia melanoxylon. Naturwissenschaften 51:462–463

    Article  CAS  Google Scholar 

  • Ferreira D, Brandt E, Coetzee J et al (1999) Condensed tannins. In: Herz W, Falk H, Kirby G, Moore R, Tamm C (eds) Progress in the chemistry of organic natural products, vol 77. Springer, Wein, pp 21–67

    Google Scholar 

  • Figueira I, Garcia G, Pimpão RC et al (2017) Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep 7:11456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foo LY (1984) Condensed tannins: co-occurrence of procyanidins, prodelphinidins and profisetinidins in the heartwood of Acacia baileyana. Phytochemistry 23:2915–2918

    Article  CAS  Google Scholar 

  • Foo LY (1986) A novel pyrogallol A-ring proanthocyanidin dimer from Acacia melanoxylon. J Chem Soc Chem Commun 0:236–237

    Article  CAS  Google Scholar 

  • Foo LY (1987) Configuration and conformation of dihydroflavonols from Acacia melanoxylon. Phytochemistry 26:813–817

    Article  CAS  Google Scholar 

  • Foo LY (1989) Isolation of [4-O-4]-linked biflavanoids from Acacia melanoxylon: first examples of a new class of single ether-linked proanthocyanidin dimers. J Chem Soc Chem Commun 0:1505–1506

    Article  CAS  Google Scholar 

  • Foo LY, Wong H (1986) Diastereoisomeric leucoanthocyanidins from the heartwood of Acacia melanoxylon. Phytochemistry 25:1961–1965

    Article  CAS  Google Scholar 

  • Forster PG, Ghisalberti EL, Jefferies PR (1985) Labdane diterpenes from an Acacia species. Phytochemistry 24:2991–2993

    Article  CAS  Google Scholar 

  • Freire CS, Coelho DS, Santos NM et al (2005) Identification of Δ7 phytosterols and phytosteryl glucosides in the wood and bark of several Acacia species. Lipids 40:317–322

    Article  CAS  PubMed  Google Scholar 

  • Garai S, Mahato SB (1997) Isolation and structure elucidation of three triterpenoid saponins from Acacia auriculiformis. Phytochemistry 44:137–140

    Article  CAS  PubMed  Google Scholar 

  • Gedara SR, Galala AA (2014) New cytotoxic spirostane saponin and biflavonoid glycoside from the leaves of Acacia saligna (Labill.) HL Wendl. Nat Prod Res 28:324–329

    Article  CAS  PubMed  Google Scholar 

  • Gertsch J (2009) How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. J Ethnopharmacol 122:177–183

    Article  PubMed  Google Scholar 

  • Ghosh M, Babu S, Sukul N et al (1993) Antifilarial effect of two triterpenoid saponins isolated from Acacia auriculiformis. Indian J Exp Biol 31:604–606

    CAS  PubMed  Google Scholar 

  • Ghosh N, Babu SS, Sukul N et al (1996) Cestocidal activity of Acacia auriculiformis. J Helminthol 70:172

    Article  Google Scholar 

  • Ghouila H, Meksi N, Haddar W et al (2012) Extraction, identification and dyeing studies of Isosalipurposide, a natural chalcone dye from Acacia cyanophylla flowers on wool. Ind Crops Prod 35:31–36

    Article  CAS  Google Scholar 

  • Ghribia L, Ghouilaa H, Omrib A et al (2014) Antioxidant and anti-acetylcholinesterase activities of extracts and secondary metabolites from Acacia cyanophylla. Asian Pac J Trop Biomed 4(Suppl 1):S417–S423

    Article  PubMed  PubMed Central  Google Scholar 

  • Gleadow RM, Møller BL (2014) Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu Rev Plant Biol 65:155–185

    Article  CAS  PubMed  Google Scholar 

  • Goddard C, Kalotas A (1985) Punu. Yankunytjatjara Plant Use. Institute for Aboriginal Development, Alice Springs

    Google Scholar 

  • González-Orozco CE, Laffan SW, Miller JT (2011) Spatial distribution of species richness and endemism of the genus Acacia in Australia. Aust J Bot 59:601–609

    Article  Google Scholar 

  • Grace MH, Wilson GR, Kandil FE et al (2009) Characteristic flavonoids from Acacia burkittii and A. acuminata heartwoods and their differential cytotoxicity to normal and leukemia cells. Nat Prod Commun 4:69–76

    CAS  PubMed  Google Scholar 

  • Griffin AR, Midgley SJ, Bush D et al (2011) Global uses of Australian acacias—recent trends and future prospects. Divers Distrib 17:837–847

    Article  Google Scholar 

  • Gulati V, Harding IH, Palombo EA (2012) Enzyme inhibitory and antioxidant activities of traditional medicinal plants: potential application in the management of hyperglycemia. BMC Complement Altern Med 12:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Gumgumjee N, Hajar A (2015) Antimicrobial efficacy of Acacia saligna (Labill.) H.L.Wendl and Cordia sinensis Lam. leaves extracts against some pathogenic microorganisms. Int J Microbiol Immunol Res 3:051–057

    Google Scholar 

  • Gupta MB, Bhalla TN, Gupta GP et al (1971) Anti-inflammatory activity of taxifolin. Jpn J Pharmacol 21:377–382

    Article  CAS  PubMed  Google Scholar 

  • Hanausek M, Ganesh P, Walaszek Z et al (2001) Avicins, a family of triterpenoid saponins from Acacia victoriae (Bentham), suppress H-ras mutations and aneuploidy in a murine skin carcinogenesis model. Proc Natl Acad Sci USA 98:11551–11556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harborne JB (ed) (1988) The flavonoids: advances in research since 1980. Chapman and Hall, London

    Google Scholar 

  • Haridas V, Gutterman JU (2004) Triterpene compositions and methods for use thereof. United States Patent US 6,689,398 B2

  • Haridas V, Higuchi M, Jayatilake GS et al (2001) Avicins: triterpenoid saponins from Acacia victoriae (Bentham) induce apoptosis by mitochondrial perturbation. Proc Natl Acad Sci USA 98:5821–5826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haridas V, Hanausek M, Nishimura G et al (2004) Triterpenoid electrophiles (avicins) activate the innate stress response by redox regulation of a gene battery. J Clin Investig 113:65–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haridas V, Li X, Mizumachi T et al (2007) Avicins, a novel plant-derived metabolite lowers energy metabolism in tumor cells by targeting the outer mitochondrial membrane. Mitochondrion 7:234–240

    Article  CAS  PubMed  Google Scholar 

  • Haridas V, Xu Z-X, Kitchen D et al (2011) The anticancer plant triterpenoid, Avicin D, regulates glucocorticoid receptor signaling: implications for cellular metabolism. PLoS ONE 6:e28037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausen BM, Schmalle H (1981) Quinonoid constituents as contact sensitisers in Australian blackwood (Acacia melanoxylon RBR). Br J Ind Med 38:105–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hausen BM, Bruhn G, Tilsley DA (1990) Contact allergy to Australian blackwood (Acacia melanoxylon R.Br.): isolation and identification of new hydroxyflavan sensitizers. Contact Derm 23:33–39

    Article  CAS  Google Scholar 

  • Hermenean A, Ardelean A, Stan M et al (2013) Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chem Biol Interact 205:138–147

    Article  CAS  PubMed  Google Scholar 

  • Ho S, Tung Y-T, Wu Y-J et al (2015) Immune-regulatory activity of methanolic extract of Acacia confusa heartwood and melanoxetin isolated from the extract. Holzforschung 69:645–652

    Article  CAS  Google Scholar 

  • Hoong YB, Pizzi A, Md. Tahir P et al (2010) Characterization of Acacia mangium polyflavonoid tannins by MALDI-TOF mass spectrometry and CP-MAS 13C NMR. Eur Polym J 46:1268–1277

    Article  CAS  Google Scholar 

  • Horváth Á, Menghis A, Botz B et al (2017) Analgesic and anti-inflammatory effects of the novel semicarbazide-sensitive amine-oxidase inhibitor SzV-1287 in chronic arthritis models of the mouse. Sci Rep 7:39863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh C-Y, Chang S-T (2010) Antioxidant activities and xanthine oxidase inhibitory effects of phenolic phytochemicals from Acacia confusa twigs and branches. J Agric Food Chem 58:1578–1583

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Niu H, Xue X et al (2010) Robinetinidol-(4beta → 8)-epigallocatechin 3-O-gallate, a galloyl dimer prorobinetinidin from Acacia mearnsii De Wild, effectively protects human neuroblastoma SH-SY5Y cells against acrolein-induced oxidative damage. J Alzheimers Dis 21:493–506

    Article  CAS  PubMed  Google Scholar 

  • Hussain MI, González L, Souto C et al (2011) Ecophysiological responses of three native herbs to phytotoxic potential of invasive Acacia melanoxylon R. Br. Agrofor Syst 83:149–166

    Article  Google Scholar 

  • Ikarashi N, Takeda R, Ito K et al (2011a) The inhibition of lipase and glucosidase activities by Acacia polyphenol. Evid Based Complement Alternat Med 2011:27205

    Google Scholar 

  • Ikarashi N, Toda T, Okaniwa T et al (2011b) Anti-obesity and anti-diabetic effects of Acacia polyphenol in obese diabetic KKAy mice fed high-fat diet. Evid Based Complement Alternat Med 2011:952031

    PubMed  PubMed Central  Google Scholar 

  • Ikarashi N, Sato W, Toda T et al (2012) Inhibitory effect of polyphenol-rich fraction from the bark of Acacia mearnsii on itching associated with allergic dermatitis. Evid Based Complement Alternat Med 2012:12039

    Article  Google Scholar 

  • Imperato F (1978) A new chalcone glucoside and isosalipurposide from Acacia cyanophylla. Phytochemistry 17:822–823

    Article  CAS  Google Scholar 

  • Imperato F (1982) A chalcone glycoside from Acacia dealbata. Phytochemistry 21:480–481

    Article  CAS  Google Scholar 

  • Jaeger D, Ndi CP, Crocoll C et al (2017a) Isolation and structural characterization of echinocystic acid triterpenoid saponins from the Australian medicinal and food plant Acacia ligulata. J Nat Prod 80:2692–2698

    Article  CAS  PubMed  Google Scholar 

  • Jaeger D, Simpson BS, Ndi CP et al (2017b) Biological activity and LC-MS/MS profiling of extracts from the Australian medicinal plant Acacia ligulata (Fabaceae). Nat Prod Res 21:1–6

    Google Scholar 

  • Jayatilake GS, Freeberg DR, Liu Z et al (2003) Isolation and structures of Avicins D and G: in vitro tumor-inhibitory saponins derived from Acacia victoriae. J Nat Prod 66:779–783

    Article  CAS  PubMed  Google Scholar 

  • Jelassi A, Cheraief I, Hamza M et al (2014a) Chemical composition and characteristic profiles of seed oils from three Tunisian Acacia species. J Food Compos Anal 33:49–54

    Article  CAS  Google Scholar 

  • Jelassi A, Zardi-Bergaoui A, Nejma AB et al (2014b) Two new unusual monoterpene acid glycosides from Acacia cyclops with potential cytotoxic activity. Bioorg Med Chem Lett 24:3777–3781

    Article  CAS  PubMed  Google Scholar 

  • Jelassi A, El Ayeb-Zakhama A, Nejma AB et al (2016) Phytochemical composition and allelopathic potential of three Tunisian Acacia species. Ind Crops Prod 83:339–345

    Article  CAS  Google Scholar 

  • Jelassi A, Hassine M, Besbes Hlila M et al (2017) Chemical composition, antioxidant properties, α-glucosidase inhibitory, and antimicrobial activity of essential oils from Acacia mollissima and Acacia cyclops cultivated in Tunisia. Chem Biodivers 14:e1700252

    Article  CAS  Google Scholar 

  • Kashyap D, Mittal S, Sak K et al (2016) Molecular mechanisms of action of quercetin in cancer: recent advances. Tumour Biol 37:12927–12939

    Article  CAS  PubMed  Google Scholar 

  • Kepler AK (1983) Hawaiian heritage plants. Oriental Publishing Co., Honolulu

    Google Scholar 

  • Khan N, Syed DN, Ahmad N et al (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19:151–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King FE, Bottomley W (1954) The chemistry of extractives from hardwoods. Part XVII. The occurrence of a flavan-3: 4-diol (melacacidin) in Acacia melanoxylon. J Chem Soc 0:1399–1403

    Article  CAS  Google Scholar 

  • Kurekci C, Bishop-Hurley SL, Vercoe PE et al (2012) Screening of Australian plants for antimicrobial activity against Campylobacter jejuni. Phytother Res 26:186–190

    Article  PubMed  Google Scholar 

  • Kusano R, Ogawa S, Matsuo Y et al (2011) α-amylase and lipase inhibitory activity and structural characterization of Acacia bark proanthocyanidins. J Nat Prod 74:119–128

    Article  CAS  PubMed  Google Scholar 

  • Lacaille-Dubois MA, Pegnyemb DE, Noté OP et al (2011) A review of acacic acid-type saponins from Leguminosae-Mimosoideae as potent cytotoxic and apoptosis inducing agents. Phytochem Rev 10:565–584

    Article  CAS  Google Scholar 

  • Lassak EV, McCarthy T (2011) Australian medicinal plants, 2nd edn. Reed New Holland, Chatswood

    Google Scholar 

  • Latz P (1995) Bushfires and Bushtucker. Aboriginal plant Use in Central Australia. IAD Press, Alice Springs

    Google Scholar 

  • Lee TH, Chou C-H (2000) Flavonoid aglycones and indole alkaloids from the roots of Acacia confusa. J Chin Chem Soc 47:1287–1290

    Article  CAS  Google Scholar 

  • Lee TH, Qiu F, Waller GR et al (2000) Three new flavonol galloylglycosides from leaves of Acacia confusa. J Nat Prod 63:710–712

    Article  CAS  PubMed  Google Scholar 

  • Lee T, Liu D-Z, Hsu F-L et al (2006) Structure-activity relationships of five myricetin galloylglycosides from leaves of Acacia confusa. Bot Stud 47:37–43

    CAS  Google Scholar 

  • Lefranc F, Nuzzo G, Hamdy NA et al (2013) In vitro pharmacological and toxicological effects of norterpene peroxides isolated from the Red Sea sponge Diacarnus erythraeanus on normal and cancer Cells. J Nat Prod 76:1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Lemeshko VV, Haridas V, Quijano Pérez JC et al (2006) Avicins, natural anticancer saponins, permeabilize mitochondrial membranes. Arch Biochem Biophys 454:114–122

    Article  CAS  PubMed  Google Scholar 

  • Li T (2006) Taiwanese native medicinal plants: phytopharmacology and therapeutic values. CRC Press, Baton Rouge

    Book  Google Scholar 

  • Li RW, Myers SP, Leach DN et al (2003) A cross-cultural study: anti-inflammatory activity of Australian and Chinese plants. J Ethnopharmacol 85:25–32

    Article  PubMed  Google Scholar 

  • Lin HY, Chang ST (2013) Antioxidant potency of phenolic phytochemicals from the root extract of Acacia confusa. Ind Crops Prod 49:871–878

    Article  CAS  Google Scholar 

  • Lin S, Shiau I, Chang S (2009) Antioxidant activity of constituents from the methanolic extract of Acacia confusa leaves. Taiwan J For Sci 24:61–68

    CAS  Google Scholar 

  • Lin S, Zhang G, Liao Y et al (2015) Dietary flavonoids as xanthine oxidase inhibitors: structure-affinity and structure-activity relationships. J Agric Food Chem 63:7784–7794

    Article  CAS  PubMed  Google Scholar 

  • Lister P, Holford P, Haigh T et al (1996) Acacia in Australia: ethnobotany and potential food crop. In: Janick J (ed) Progress IN New crops. ASHS Press, Alexandria

    Google Scholar 

  • Liu J, Ando R, Shimizu K et al (2008) Steroid 5α-reductase inhibitory activity of condensed tannins from woody plants. J Wood Sci 54:68–75

    Article  CAS  Google Scholar 

  • Liu X, Wang N, Fan S et al (2016) The citrus flavonoid naringenin confers protection in a murine endotoxaemia model through AMPK-ATF3-dependent negative regulation of the TLR4 signalling pathway. Sci Rep. https://doi.org/10.1038/srep39735

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorente FT, Ferreres F, Barberan FAT (1982) 6-C-glucosylnaringenin from flowers of Acacia retinoide. Phytochemistry 21:1461–1462

    Article  CAS  Google Scholar 

  • Low T (1988) Wild food plants of Australia. Angus and Robertson, North Ryde

    Google Scholar 

  • Low T (1990) Bush medicine. Harper Collins, North Ryde

    Google Scholar 

  • Luis A, Gil N, Amaral E et al (2012) Antioxidant activities of extracts from Acacia melanoxylon, Acacia dealbata and Olea europaea and alkaloids estimation. Int J Pharm Pharm Sci 4:225–231

    CAS  Google Scholar 

  • MacKenzie AM (1969) The flavonoids of the leaves of Acacia mearnsii. Phytochemistry 8:1813–1815

    Article  CAS  Google Scholar 

  • Mahato SB, Pal BC, Price KR (1989) Structure of acaciaside, a triterpenoid trisaccharide from Acacia auriculiformis. Phytochemistry 28:207–210

    Article  CAS  Google Scholar 

  • Mahato SB, Pal BC, Nandy AK (1992) Structure elucidation of two acylated triterpenoid bisglycosides from Acacia auriculiformis Cunn. Tetrahedron 48:6717–6728

    Article  CAS  Google Scholar 

  • Maiden J (1889) The useful plants of Australia (including Tasmania). Facsimile edition, Compendium Pty Ltd, 1975. Turner and Henderson, Sydney

    Google Scholar 

  • Malan E, Roux DG (1975) Flavonoids and tannins of Acacia species. Phytochemistry 14:1835–1841

    Article  CAS  Google Scholar 

  • Mandal P, Babu SS, Mandal N (2005) Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia 76:462–465

    Article  CAS  PubMed  Google Scholar 

  • Marini A, Shanmugavelu S, Hassan-Fikri S et al (2014) Phenolic compound profile of domesticated Acacia mangium. Malays J Vet Res 5(Supplement 1):312–314

    Google Scholar 

  • Maslin B (2015) Synoptic overview of Acacia sensu lato (Leguminosae: Mimosoideae) in East and Southeast Asia. Gard Bull (Singapore) 67:231–250

    Article  Google Scholar 

  • Maslin B (2016) Classification and phylogeny of Acacia: a synopsis. WorldWideWattle ver. 2. Published on the Internet at, vol 6. http://worldwidewattle.com/infogallery/taxonomy/classification.php. Feb 2017

  • Maslin BR, Dunn JE, Conn EE (1988) Cyanogenesis in Australian species of Acacia. Phytochemistry 27:421–428

    Article  CAS  Google Scholar 

  • Maslin B, Thomson L, McDonald M et al (1998) Edible wattle seeds of Southern Australia. A review of species for use in semi-arid regions. CSIRO, Collingwood

    Book  Google Scholar 

  • McNeill J, Turland N (2011) Major changes to the code of nomenclature—Melbourne, July 2011. Taxon 60:1495–1497

    Article  Google Scholar 

  • Mihara R, Barry KM, Mohammed CL et al (2005) Comparison of antifungal and antioxidant activities of Acacia mangium and A. auriculiformis heartwood extracts. J Chem Ecol 31:789–804

    Article  CAS  PubMed  Google Scholar 

  • Mujoo K, Haridas V, Hoffmann JJ et al (2001) Triterpenoid saponins from Acacia victoriae (Bentham) decrease tumor cell proliferation and induce apoptosis. Cancer Res 61:5486–5490

    CAS  PubMed  Google Scholar 

  • Murphy DJ, Miller JT, Bayer RJ et al (2003) Molecular phylogeny of Acacia subgenus Phyllodineae (Mimosoideae : Leguminosae) based on DNA sequences of the internal transcribed spacer region. Aust Syst Bot 16:19–26

    Article  CAS  Google Scholar 

  • Murphy DJ, Brown GK, Miller JT et al (2010) Molecular phylogeny of Acacia Mill. (Mimosoideae: Leguminosae): evidence for major clades and informal classification. Taxon 59:7–19

    Article  Google Scholar 

  • Nabavi SF, Braidy N, Gortzi O et al (2015) Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res Bull 119(Part A):1–11

    Article  CAS  PubMed  Google Scholar 

  • Nandi B, Roy S, Bhattacharya S et al (2004) Free radicals mediated membrane damage by the saponins acaciaside A and acaciaside B. Phytother Res 18:191–194

    Article  CAS  PubMed  Google Scholar 

  • National Cancer Institute (2017) Laetrile/Amygdalin (PDQ®)—Health Professional Version accessed online at. https://www.cancer.gov/about-cancer/treatment/cam/hp/laetrile-pdq

  • Noferi M, Masson E, Merlin A et al (1997) Antioxidant characteristics of hydrolysable and polyflavonoid tannins: AN ESR kinetics study. J Appl Polym Sci 63:475–482

    Article  CAS  Google Scholar 

  • O’Connell JF, Latz PK, Barnett P (1983) Traditional and modern plant use among the Alyawara of central Australia. Econ Bot 37:80–109

    Article  Google Scholar 

  • Ogawa S, Matsumae T, Kataoka T et al (2013) Effect of Acacia polyphenol on glucose homeostasis in subjects with impaired glucose tolerance: a randomized multicenter feeding trial. Exp Ther Med 5:1566–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Leary M (2007) Review of Acacia retinodes and closely related species, A. uncifolia and A. provincialis (Leguminosae: Mimosoideae: sect. Phyllodineae). J Adel Bot Gard 25:95–109

    Google Scholar 

  • Pal D, Chakraborty P, Ray H et al (2009) Acaciaside-B-enriched fraction of Acacia auriculiformis is a prospective spermicide with no mutagenic property. Reproduction 138:453–462

    Article  CAS  PubMed  Google Scholar 

  • Palmer E (1883) On plants used by the natives of North Queensland, Flinders and Mitchell Rivers, for food, medicine, & c. & c. J Proc R Soc N S W 17:93–113

    Google Scholar 

  • Palombo EA, Semple SJ (2001) Antibacterial activity of traditional Australian medicinal plants. J Ethnopharmacol 77:151–157

    Article  CAS  PubMed  Google Scholar 

  • Park K-S, Chong Y, Kim MK (2016) Myricetin: biological activity related to human health. Appl Biol Chem 59:259–269

    Article  CAS  Google Scholar 

  • Pasch H, Pizzi A, Rode K (2001) MALDI-TOF mass spectrometry of polyflavonoid tannins. Polymer 42:7531–7539

    Article  CAS  Google Scholar 

  • Pearn J (1993) Acacias and aesculapius. Australian native wattles and the doctors they commemorate. Med J Aust 159:729–738

    Article  CAS  PubMed  Google Scholar 

  • Pedley L (1978) A revision of Acacia Mill. in Queensland. Austrobaileya 1:75–234

    Google Scholar 

  • Peile A (1980) Preliminary notes on the ethno-botany of the Gugadja Aborigines at Balgo, Western Australia. West Aust Herb Res Notes 3:59–64

    Google Scholar 

  • Peile A (1997) Body and soul. An aboriginal view. Carlisle and Pallottines in Australia, Rossmoyne

    Google Scholar 

  • Peile A, Bindon P (1997) Body and soul. An Aboriginal View. Hesperian Press, Victoria Park

    Google Scholar 

  • Pereira FB, Domingues FM, Silva AM (1996) Triterpenes from Acacia dealbata. Nat Prod Lett 8:97–103

    Article  CAS  Google Scholar 

  • Pičmanová M, Neilson Elizabeth H, Motawia Mohammed S et al (2015) A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochem J 469:375–389

    Article  CAS  PubMed  Google Scholar 

  • Pietarinen S, Willför S, Sjöholm R et al (2005) Bioactive phenolic substances in important tree species. Part 3: knots and stemwood of Acacia crassicarpa and A. mangium. Holzforschung 59:94–101

    Article  CAS  Google Scholar 

  • Pillaiyar T, Manickam M, Namasivayam V (2017) Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 32:403–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polya GM, Foo LY (1994) Inhibition of eukaryote signal-regulated protein kinases by plant-derived catechin-related compounds. Phytochemistry 35:1399–1405

    Article  CAS  PubMed  Google Scholar 

  • Rajendran P, Rengarajan T, Nandakumar N et al (2014) Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem 86:103–112

    Article  CAS  PubMed  Google Scholar 

  • Ravindranath NH, Ravindranath MH (2011) Green tea catechins suppress NF-kappaB-mediated inflammatory responses: relevance to nutritional management of inflammation. Br J Nutr 105:1715–1717

    Article  CAS  PubMed  Google Scholar 

  • Reid EJ, Betts TJ (1979) Records of Western Australian plants used by Aboriginals as medicinal agents. Planta Med 36:164–173

    Article  CAS  PubMed  Google Scholar 

  • Reid DG, Bonnet SL, Kemp G et al (2013) Analysis of commercial proanthocyanidins. Part 4: solid state 13C NMR as a tool for in situ analysis of proanthocyanidin tannins, in heartwood and bark of quebracho and acacia, and related species. Phytochemistry 94:243–248

    Article  CAS  PubMed  Google Scholar 

  • Rengarajan T, Yaacob NS (2016) The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur J Pharmacol 789:8–16

    Article  CAS  PubMed  Google Scholar 

  • Repke DB, Mandell DM, Thomas JH (1973) Alkaloids of Acacia baileyana. Lloydia 36:211–213

    CAS  PubMed  Google Scholar 

  • Richardson DM, Carruthers J, Hui C et al (2011) Human-mediated introductions of Australian acacias—a global experiment in biogeography. Divers Distrib 17:771–787

    Article  Google Scholar 

  • Sadgrove NJ, Jones GL, Greatrex BW (2014) Isolation and characterisation of (–)-genifuranal: the principal antimicrobial component in traditional smoking applications of Eremophila longifolia (Scrophulariaceae) by Australian aboriginal peoples. J Ethnopharmacol 154:758–766

    Article  CAS  PubMed  Google Scholar 

  • Sahai R, Agarwal SK, Rastogi RP (1980) Auriculoside, a new flavan glycoside from Acacia auriculiformis. Phytochemistry 19:1560–1562

    Article  CAS  Google Scholar 

  • Salah N, Miller NJ, Paganga G et al (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322:339–346

    Article  CAS  PubMed  Google Scholar 

  • Saleem M, Ahmad M, Ahmad A et al (1992a) Phytochemical evaluation of Acacia cyanophylla. Sci Int (Lahore) 4:383–384

    CAS  Google Scholar 

  • Saleem M, Ahmad M, Ahmad A et al (1992b) Phytochemical evaluation of Acacia aneura. Sci Int (Lahore) 4:385–386

    CAS  Google Scholar 

  • Santos AC, Uyemura SA, Lopes JLC et al (1998) Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Free Radic Biol Med 24:1455–1461

    Article  CAS  PubMed  Google Scholar 

  • Schmidt F, Cho S, Olsen C et al (2018) Diurnal regulation of cyanogenic glucoside biosynthesis and endogenous turnover in cassava. Plant Direct 2:e00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seigler DS (2002) Economic potential from Western Australian Acacia species: secondary plant products. Conserv Sci West Aust 4:109–116

    Google Scholar 

  • Seigler DS (2003) Phytochemistry of Acaciasensu lato. Biochem Syst Ecol 31:845–873

    Article  CAS  Google Scholar 

  • Seigler DS, Dunn JE, Conn E et al (1983) Cyanogenic glycosides from four Latin American species of Acacia. Biochem Syst Ecol 11:15–16

    Article  CAS  Google Scholar 

  • Seneviratne A, Fowden L (1968) The amino acids of the genus Acacia. Phytochemistry 7:1039–1045

    Article  CAS  Google Scholar 

  • Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27:962–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silberbauer G (1971) Ecology of the Ernabella aboriginal community. Anthropol Forum 3:21–36

    Article  Google Scholar 

  • Smith N (1991) Ethnobotanical field notes from the Northern Territory, Australia. J Adel Bot Gard 14:1–65

    Google Scholar 

  • Southwell IA (2000) Acacia nuperrima ssp. cassitera, a new source of kessane. J Essent Oil Res 12:566–568

    Article  CAS  Google Scholar 

  • Takagi K, Mitsunaga T (2003) Tyrosinase inhibitory activity of proanthocyanidins from woody plants. J Wood Sci 49:461–465

    Article  CAS  Google Scholar 

  • Talia JM, Debattista NB, Pappano NB (2011) New antimicrobial combinations: substituted chalcones-oxacillin against methicillin resistant Staphylococcus aureus. Braz J Microbiol 42:470–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tattersall DB, Bak S, Jones PR et al (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826–1828

    Article  CAS  PubMed  Google Scholar 

  • The Legume Phylogeny Working Group (LPWG) (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77

    Article  Google Scholar 

  • Thieme H, Khogali A (1975) The occurrence of flavonoids and tannins in the leaves of some African Acacia species. Pharmazie 30:736–743

    CAS  PubMed  Google Scholar 

  • Tindale N (1941) A list of plants collected in the Musgrave and Mann Ranges, South Australia, 1933. S Aust Nat 21:8–12

    Google Scholar 

  • Tindale MD, Roux DG (1969) A phytochemical survey of the Australian species of Acacia. Phytochemistry 8:1713–1727

    Article  CAS  Google Scholar 

  • Tindale MD, Roux DG (1974) An extended phytochemical survey of Australian species of Acacia: chemotaxonomic and phylogenetic aspects. Phytochemistry 13:829–839

    Article  CAS  Google Scholar 

  • Tran VH, Duke RK, Abu-Mellal A et al (2012) Propolis with high flavonoid content collected by honey bees from Acacia paradoxa. Phytochemistry 81:126–132

    Article  CAS  PubMed  Google Scholar 

  • Tung Y-T, Chang S-T (2010) Inhibition of xanthine oxidase by Acacia confusa extracts and their phytochemicals. J Agric Food Chem 58:781–786

    Article  CAS  PubMed  Google Scholar 

  • Tung YT, Wu JH, Kuo YH et al (2007) Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresour Technol 98:1120–1123

    Article  CAS  PubMed  Google Scholar 

  • Tung YT, Wu JH, Hsieh CY et al (2009a) Free radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves detected by an on-line screening method. Food Chem 115:1019–1024

    Article  CAS  Google Scholar 

  • Tung YT, Wu JH, Huang CC et al (2009b) Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food Chem Toxicol 47:1385–1392

    Article  CAS  PubMed  Google Scholar 

  • Tung YT, Wu JH, Huang CY et al (2009c) Antioxidant activities and phytochemical characteristics of extracts from Acacia confusa bark. Bioresour Technol 100:509–514

    Article  CAS  PubMed  Google Scholar 

  • Tung YT, Hsu CA, Chen CS et al (2010) Phytochemicals from Acacia confusa heartwood extracts reduce serum uric acid levels in oxonate-induced mice: their potential use as xanthine oxidase inhibitors. J Agric Food Chem 58:9936–9941

    Article  CAS  PubMed  Google Scholar 

  • Tung YT, Chang WC, Chen PS et al (2011) Ultrasound-assisted extraction of phenolic antioxidants from Acacia confusa flowers and buds. J Sep Sci 34:844–851

    Article  CAS  PubMed  Google Scholar 

  • Tuorkey MJ (2016) Molecular targets of luteolin in cancer. Eur J Cancer Prev 25:65–76

    Article  CAS  PubMed  Google Scholar 

  • Uniyal S, Badoni V, Sati O (1992) A new triterpenoidal saponin from Acacia auriculiformis. J Nat Prod 55:500–502

    Article  CAS  PubMed  Google Scholar 

  • van Heerden FR, Brandt EV, Ferreira D et al (1981) Metabolites from the purple heartwoods of the mimosoideae. Part 4. Acacia fasciculifera F. Muell ex. Benth: fasciculiferin, fasciculiferol, and the synthesis of 7-aryl- and 7-flavanyl-peltogynoids. J Chem Soc Perkin Trans 1:2483–2490

    Article  Google Scholar 

  • Venter PB, Senekal ND, Kemp G et al (2012) Analysis of commercial proanthocyanidins. Part 3: the chemical composition of wattle (Acacia mearnsii) bark extract. Phytochemistry 83:153–167

    Article  CAS  PubMed  Google Scholar 

  • Vincken J-P, Heng L, de Groot A et al (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:275–297

    Article  CAS  PubMed  Google Scholar 

  • Viviers PM, Botha JJ, Ferreira D et al (1983) Synthesis of condensed tannins. Part 7. Angular [4,6: 4,8]-prorobinetinidin triflavanoids from black wattle (‘Mimosa’) bark extract. J Chem Soc Perkin Trans 1:17–22

    Article  Google Scholar 

  • Voirin B, Bayet C, Favre-Bonvin J et al (1986) Flavonoids from the flowers of Acacia latifolia. J Nat Prod 49:943

    Article  CAS  Google Scholar 

  • Wang BH, Foo LY, Polya GM (1996) Differential inhibition of eukaryote protein kinases by condensed tannins. Phytochemistry 43:359–365

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Klinginsmith J, Dong X et al (2007) Chemical data mining of the NCI human tumor cell line database. J Chem Inf Model 47:2063–2076

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Sun C, Mao L et al (2016) The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technol 56:21–38

    Article  CAS  Google Scholar 

  • Webb LJ (1969) The use of plant medicines and poisons by Australian aborigines. Mankind 7:137–146

    Google Scholar 

  • Wei S-D, Zhou H-C, Lin Y-M et al (2010) MALDI-TOF MS analysis of condensed tannins with potent antioxidant activity from the leaf, stem bark and root bark of Acacia confusa. Molecules 15:4369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei SD, Zhou HC, Lin YM (2011) Antioxidant activities of fractions of polymeric procyanidins from stem bark of Acacia confusa. Int J Mol Sci 12:1146–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidmann AE (2012) Dihydroquercetin: more than just an impurity? Eur J Pharmacol 684:19–26

    Article  CAS  PubMed  Google Scholar 

  • Wickens K, Pennacchio M (2002) A search for novel biologically active compounds in the phyllodes of Acacia species. Conserv Sci West Aust 4:139–144

    Google Scholar 

  • Williams C (2011) Medicinal plants in Australia. Gums, resins, tannin and essential oils, vol 2. Rosenberg Publishing, Dural

    Google Scholar 

  • Williams C (2012) Medicinal plants in Australia: volume 3, plants, potions and poisons. Rosenberg Publishing, Dural

    Google Scholar 

  • Williams C (2013) Medicinal plants in Australia. Volume 4, an antipodean apothecary. Rosenberg Publishing, Dural

    Google Scholar 

  • Williams AV, Miller JT, Small I et al (2016) Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia. Mol Phylogenet Evol 96:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wools W (1887) Plants of New South Wales having medicinal properties. Vic Nat 4:103–105

    Google Scholar 

  • Wu J-H, Tung Y-T, Wang S-Y et al (2005) Phenolic antioxidants from the heartwood of Acacia confusa. J Agric Food Chem 53:5917–5921

    Article  CAS  PubMed  Google Scholar 

  • Wu J-H, Huang C-Y, Tung Y-T et al (2008a) Online RP-HPLC-DPPH screening method for detection of radical-scavenging phytochemicals from flowers of Acacia confusa. J Agric Food Chem 56:328–332

    Article  CAS  PubMed  Google Scholar 

  • Wu J-H, Tung Y-T, Chien S-C et al (2008b) Effect of phytocompounds from the heartwood of Acacia confusa on inflammatory mediator production. J Agric Food Chem 56:1567–1573

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Grace MH, Esposito D et al (2017) Polyphenols isolated from Acacia mearnsii bark with anti-inflammatory and carbolytic enzyme inhibitory activities. Chin J Nat Med 15:816–824

    PubMed  Google Scholar 

  • Yates PA (2014) Australian Acacias for food security in semi-arid Africa: A multidisciplinary assessment. Dissertation. Charles Darwin University, Darwin

  • Young DA, Ferreira D, Roux DG (1983) Synthesis of condensed tannins. Part 10. ‘Dioxane-linked’ profisetinidins. J Chem Soc Perkin Trans 1:2031–2035

    Article  Google Scholar 

  • Zeijlemaker FCJ (1969) Distribution of mearnsitrin in Acacia populations. Phytochemistry 8:435–436

    Article  CAS  Google Scholar 

  • Zhang L, Chen J, Wang Y et al (2010) Phenolic extracts from Acacia mangium bark and their antioxidant activities. Molecules 15:3567–3577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Chae S, Lee JH et al (2012) The cytoprotective effect of butin against oxidative stress is mediated by the up-regulation of manganese superoxide dismutase expression through a PI3 K/Akt/Nrf2-dependent pathway. J Cell Biochem 113:1987–1997

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhang J, Yin Z et al (2017) Volatiles in stems and leaves of Acacia confusa. Chem Nat Compd 53:1148–1149

    Article  CAS  Google Scholar 

  • Zhou B-N, Johnson RK, Mattern MR et al (2001) The first naturally occurring Tie2 kinase inhibitor. Org Lett 3:4047–4049

    Article  CAS  PubMed  Google Scholar 

  • Zola N, Gott B (1992) Koorie plants Koorie people. Traditional aboriginal food, fibre and healing plants of Victoria. Koorie Heritage Trust, Melbourne

    Google Scholar 

Download references

Acknowledgements

Diana Jæger was supported by a Ph.D. stipend provided by the University of South Australia as part of the Dual Ph.D. Programme with the University of Copenhagen. Financial support from the VILLUM Foundation to the VILLUM Center for “Plant Plasticity” (BLM) and from the Novo Nordisk Foundation to Center for “Desert loving therapeutics” (BLM, SJS) is greatly acknowledged. Denzel Murfet is thanked for allowing us to use his photographs of A. adoxa and A. pulchella.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Semple.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jæger, D., O’Leary, M.C., Weinstein, P. et al. Phytochemistry and bioactivity of Acacia sensu stricto (Fabaceae: Mimosoideae). Phytochem Rev 18, 129–172 (2019). https://doi.org/10.1007/s11101-018-9583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9583-z

Keywords

Navigation