Skip to main content
Log in

Endophytes from Gingko biloba: the current status

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The maidenhair tree (Gingko biloba) over his long period of existence has developed the ability to withstand multiple and diverse environmental stresses and microbial diseases. This species can, therefore, constitute a very good candidate for microbiological research. In fact, besides its outstanding pharmaceutical properties, several studies over the past two decades have also demonstrated that this fossil tree hosts numerous and highly diverse endophytic microorganisms. In this review, we summarized the current trend of knowledge on the different groups of microbial species inhabiting G. biloba including novel microbial species recently identified. Moreover, novel secondary metabolites isolated from these endophytes and their associated biological activities are also discussed. Our investigation is indicating clearly that G. biloba is a very rich source of endophytes because more than 30 genera of fungi and bacteria have already been reported as endophytes of this plant. However, because only a very small fraction of isolated endophytes was fully characterized, this diversity is highly underestimated, besides the paucity of information regarding endophytic bacteria and actinomycetes. We also brought to light the fact that limited is data regarding the bioactive spectrum of these endophytes. From this summary of data from the last two decades, it has become clear that more investigations are needed to fully characterize the endophytic microbial community inhabiting the maidenhair tree for both microbiological and pharmaceutical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed SA, Desbois N, Quist D, Miossec C, Atoche C, Bonifaz A, De Hoog GS (2015) Phaeohyphomycosis caused by a novel species, Pseudochaetosphaeronema martinelli. J Clin Microbiol 53:2927–2934

    PubMed  PubMed Central  CAS  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 88:541–549

    PubMed  Google Scholar 

  • Bacon CW, White J (2000) Microbial endophytes. CRC, New York

    Google Scholar 

  • Banerjee D, Strobel G, Geary B, Sears J, Ezra D, Liarzi O, Coombs J (2010) Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology 1(3):179–186

    CAS  Google Scholar 

  • Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F (2018) Microbial wars: Competition in ecological niches and within the microbiome. Microb Cell 5(5):215–219

    PubMed  PubMed Central  Google Scholar 

  • Borelli D, Zamora R, Senabre G (1976) Chaetosphaeronema Larense nova species agente de micetoma. Gaceta Med Caracas 84:307–318

    Google Scholar 

  • Cao LL, Zhang YY, Liu YJ, Yang TT, Zhang JL, Zhang ZG, Shen L, Liu JY, Ye YH (2016) Anti-phytopathogenic activity of sporothriolide, a metabolite from endophyte Nodulisporium sp. A21 in Ginkgo biloba. Pestic Biochem Physiol 129:7–13

    PubMed  CAS  Google Scholar 

  • Cassileth B (2011) Ginkgo (Ginkgo biloba). Oncology (Williston Park) 25:971

    Google Scholar 

  • Cavalier-Smith T (2006) Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 361(1470):969–1006

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chan WH, Hsuuw YD (2007) Dosage effects of Ginkgolide B on ethanol-induced cell death in human hepatoma G2 cells. N Y Acad Sci USA 1095:388–398

    CAS  Google Scholar 

  • Cheng S, Xu F, Wang Y (2009) Advances in the study of flavonoids in Ginkgo biloba leaves. J Med Plant Res 3:1248–1252

    CAS  Google Scholar 

  • Chung BY, Won LS, Lee BR, Lee CH (1982) A new chemical constituents of green leaves of Ginkgo biloba L. J Korean Chem Soc 26:95–98

    CAS  Google Scholar 

  • Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83(5):913–920

    PubMed  CAS  Google Scholar 

  • De Abreu LM, Almeida AR, Salgado M, Pfenning LH (2010) Fungal endophytes associated with the mistletoe Phoradendron perrottettii and its host tree Tapirira guianensis. Mycol Prog 9:559–566

    Google Scholar 

  • De Feudis FV (1991) Ginkgo biloba Extract (EGb 761): pharmacological activities and clinical applications. Drug News Perspect 5:361–363

    Google Scholar 

  • DeFeudis FV (1998) Ginkgo biloba Extract (EGb 761): from chemistry to the clinic. Ulistein, Weisbaden, pp 119–133

    Google Scholar 

  • Ding C, Chen E, Zhou W, Lindsay RC (2004) A method for extraction and quantification of ginkgo terpene trilactones. Anal Chem 76:4332–4336

    PubMed  CAS  Google Scholar 

  • Drieu K, Jaggy H, van Beek TA (2000) Medicinal and aromatic plants-industrial profiles; Ginkgo biloba. CRC Press, Amsterdam, p 35

    Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Google Scholar 

  • Gross R, Beier D (eds) (2012) Two-component systems in bacteria. Caister Academic Press, Norfolk. ISBN 978-1-908230-08-9

  • Gu JH, Ge JB, Li M, Wu F, Zhang W, Qin ZH (2012) Inhibition of NF-kappaB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci 47:652–660

    PubMed  CAS  Google Scholar 

  • Guo ZK, Yan T, Guo Y, Song YC, Jiao RH, Tan RX, Ge HM (2012) p-Terphenyl and diterpenoid metabolites from endophytic Aspergillus sp. YXf3. J Nat Prod 75(1):15–21

    PubMed  CAS  Google Scholar 

  • Guo ZK, Wang R, Huang W, Li XN, Jiang R, Tan RX, Ge HM (2014) Aspergiloid I, an unprecedented spirolactone norditerpenoid from the plant-derived endophytic fungus Aspergillus sp. YXf3. Beilstein J Org Chem 10:2677–2682

    PubMed  PubMed Central  Google Scholar 

  • Hao G, Du X, Zhao F, Ji H (2010) Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba. Biotechnol Lett 32(2):305–314

    PubMed  CAS  Google Scholar 

  • Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:19/20

    Google Scholar 

  • Helaly SE, Thongbai B, Stadler M (2018) Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the Ascomycete order Xylariales. Nat Prod Rep. https://doi.org/10.1039/c8np00010g

    Article  PubMed  Google Scholar 

  • Huh H, Staba EJ (1992) The botany and chemistry of Ginkgo biloba L. J Herbs Spices Med Plants 1:91–124

    Google Scholar 

  • Isah T (2015) Rethinking Ginkgo biloba L.: Medicinal uses and conservation. Pharmacogn Rev 9(18):140–148. https://doi.org/10.4103/0973-7847.162137

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam MN, Choi J, Baek KH (2019) Control of foodborne pathogenic bacteria by endophytic bacteria isolated from Ginkgo biloba L. Foodborne Pathog Dis. https://doi.org/10.1089/fpd.2018.2496

    Article  PubMed  Google Scholar 

  • Jaracz S, Malik S, Nakanishi K (2004) Isolation of Ginkgolides A, B, C, J and bilobalide from G. biloba extracts. Phytochemistry 65:2897–2902

    PubMed  CAS  Google Scholar 

  • Ji HF, Li XJ, Zhang HY (2009) Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep 10(3):194–200. https://doi.org/10.1038/embor.2009.12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia M, Chen L, Xin H-L, Zheng C-J, Rahman K, Han T, Qin L-P (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906. https://doi.org/10.3389/fmicb.2016.00906

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SU, Strobel G, Ford E (1999) Screening of taxol-producing endophytic fungi from Ginkgo biloba and Taxus cuspidata in Korea. Agric Chem Biotechnol 42:97–99

    CAS  Google Scholar 

  • Köberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol 4:400. https://doi.org/10.3389/fmicb.2013.00400

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong DX, Li XJ, Tang GY, Zhang HY (2008a) How many traditional Chinese medicine components have been recognized by modern Western medicine? A chemoinformatic analysis and implications for finding multicomponent drugs. ChemMedChem 3:233–236

    PubMed  CAS  Google Scholar 

  • Kong DX, Li XJ, Zhang HY (2008b) Where is the hope for drug discovery? Let history tell the future. Drug Discov Today 14:115–119

    PubMed  Google Scholar 

  • Kumar A, Singh S, Pandey A (2009) General microflora, arbuscular mycorrhizal colonization and occurrence of endophytes in the rhizosphere of two age groups of Ginkgo biloba L. of Indian Central Himalaya. Indian J Microbiol 49(2):134–141

    PubMed  PubMed Central  Google Scholar 

  • Kumaran RS, Hur BK (2009) Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol Appl Biochem 54(1):21–30

    PubMed  CAS  Google Scholar 

  • Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigates Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    PubMed  CAS  Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32(6):297–303

    PubMed  CAS  Google Scholar 

  • Li DM, Zhang YH, Ji HX, Wu X, Pei YH, Bai J (2013a) Tricycloalternarene derivatives from endophytic fungus Alternaria tenuissima SY-P-07. Nat Prod Res 27(20):1877–1881

    PubMed  CAS  Google Scholar 

  • Li X, Tian Y, Yang SX, Zhang YM, Qin JC (2013b) Cytotoxic azaphilone alkaloids from Chaetomium globosum TY1. Bioorg Med Chem Lett 23(10):2945–2947

    PubMed  CAS  Google Scholar 

  • Li H, Xiao J, Gao YQ, Tang JJ, Zhang AL, Gao JM (2014) Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. J Agric Food Chem 62(17):3734–3741

    PubMed  CAS  Google Scholar 

  • Liao HJ, Zheng YF, Li HY, Peng GP (2011) Two new Ginkgolides from leaves of Ginkgo biloba. Planta Med 77:1818–1821

    PubMed  CAS  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G (2007) Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem 105:548–554

    CAS  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78(2):241–247

    PubMed  CAS  Google Scholar 

  • Lü W, Liu C, Huang L, Yan X (2017) Genome-wide prediction and analysis of the secretory proteins and ORFs signal peptide of ginkgo endophyte KM-1-2. Wei Sheng Wu Xue Bao 57(3):411–421

    PubMed  Google Scholar 

  • Macalady JL, Hamilton TL, Grettenberger CL, Jones DS, Tsao LE, Burgos WD (2013) Energy, ecology and the distribution of microbial life. Philos Trans R Soc Lond B Biol Sci 368(1622):20120383

    PubMed  PubMed Central  Google Scholar 

  • Mahadevan S, Park Y (2007) Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses. J Food Sci 73(1):R14–R19. https://doi.org/10.1111/j.1750-3841.2007.00597.x

    Google Scholar 

  • McKenna DJ, Jones K, Hughes K (2001) Efficacy, safety, and use of Ginkgo biloba in clinical and preclinical applications. Altern Ther Health Med 7:70–86

    PubMed  CAS  Google Scholar 

  • Mohanta TK (2012) Advances in Ginkgo biloba research: Genomics and metabolomics perspectives. Afr J Biotechnol 11:15936–15944

    Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17::215–234

    Google Scholar 

  • Pan Y, Jin H, Yang S, Liu H (2019a) Changes of volatile organic compounds and bioactivity of Alternaria brassicae GL07 in different ages. J Basic Microbiol 59(7):713–722

    PubMed  CAS  Google Scholar 

  • Pan Y, Zheng W, Yang S (2019b) Chemical and activity investigation on metabolites produced by an endophytic fungi Psathyrella candolleana from the seed of Ginkgo biloba. Nat Prod Res. https://doi.org/10.1080/14786419.2019.1607335

    Article  PubMed  Google Scholar 

  • Pawle G, Singh SK (2014) Antimicrobial, antioxidant activity and phytochemical analysis of an endophytic species of Nigrospora isolated from living fossil Ginkgo biloba. CREAM 4(1):1–9. https://doi.org/10.5943/cream/4/1/1

    Article  Google Scholar 

  • Qian YX, Kang JC, Luo YK, Zhao JJ, He J, Geng K (2016) A bilobalide-producing endophytic fungus, Pestalotiopsis uvicola from medicinal plant Ginkgo biloba. Curr Microbiol 73(2):280–286. https://doi.org/10.1007/s00284-016-1060-6

    Article  PubMed  CAS  Google Scholar 

  • Qin JC, Gao JM, Zhang YM, Yang SX, Bai MS, Ma YT, Laatsch H (2009a) Polyhydroxylated steroids from an endophytic fungus, Chaetomium globosum ZY-22 isolated from Ginkgo biloba. Steroids 74(9):786–790. https://doi.org/10.1016/j.steroids.2009.04.011

    Article  PubMed  CAS  Google Scholar 

  • Qin JC, Zhang YM, Gao JM, Bai MS, Yang SX, Laatsch H, Zhang AL (2009b) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett 19(6):1572–1574

    PubMed  CAS  Google Scholar 

  • Qin JC, Zhang YM, Hu L, Ma YT, Gao JM (2009c) Cytotoxic metabolites produced by Alternaria no.28, an endophytic fungus isolated from Ginkgo biloba. Nat Prod Commun 4(11):1473–1476

    PubMed  CAS  Google Scholar 

  • Qin XF, Lu XJ, Ge JB, Xu HZ, Qin HD, Xu F (2014) Ginkgolide B prevents cathepsin-mediated cell death following cerebral ischemia/reperfusion injury. Neuroreport 25:267–273

    PubMed  CAS  Google Scholar 

  • Qiu M, Xie R, Shi Y, Chen H, Wen Y, Gao Y, Hu X (2009) Isolation and identification of endophytic fungus SX01, a red pigment producer from Ginkgo biloba L. World J Microbiol Biotech 26(6):993–998. https://doi.org/10.1007/s11274-009-0261-6

    Article  CAS  Google Scholar 

  • Qiu M, Xie R, Shi Y, Zhang H, Chen H (2010) Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. Annal Microbiol 60(1):143–150

    CAS  Google Scholar 

  • Rodríguez F, Feist SW, Guillou L, Harkestad LS, Bateman K, Renault T, Mortensen S (2008) Phylogenetic and morphological characterisation of the green algae infesting blue mussel Mytilus edulis in the North and South Atlantic oceans. Dis Aquat Organ 81(3):231–240. https://doi.org/10.3354/dao01956

    Article  PubMed  CAS  Google Scholar 

  • Sánchez Márquez S, Bills GF, Herrero N, Zabalgogeazcoa Í (2012) Non-systemic fungal endophytes of grasses. Fungal Ecol 5(3):289–297. https://doi.org/10.1016/j.funeco.2010.12.001

    Article  Google Scholar 

  • Singh B, Kaur P, Gopichand Singh RD, Ahuja PS (2008) Biology and chemistry of Ginkgo biloba. Fitoterapia 79(6):401–418. https://doi.org/10.1016/j.fitote.2008.05.007

    Article  PubMed  CAS  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. https://doi.org/10.1128/MMBR.67.4.491-502.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun X, Ding Q, Hyde KD, Guo LD (2012) Community structure and preference of endophytic fungi of three woody plants in a mixed forest. Fungal Ecol 5(5):624–632. https://doi.org/10.1016/j.funeco.2012.04.001

    Article  Google Scholar 

  • Thongsandee W, Matsuda Y, Ito S (2012) Temporal variations in endophytic fungal assemblages of Ginkgo biloba L. J Forest Res 17(2):213–218. https://doi.org/10.1007/s10310-011-0292-3

    Article  Google Scholar 

  • Toghueo RMK, Zabalgogeazcoa I, Vázquez de Aldana BR, Boyom FF (2017) Enzymatic activity of endophytic fungi from the medicinal plants Terminalia catappa, Terminalia mantaly and Cananga odorata. South Afr J Bot 109:146–153

    CAS  Google Scholar 

  • Trémouillaux-Guiller J, Rohr T, Rohr R, Huss VA (2002) Discovery of an endophytic alga in Ginkgo biloba. Am J Bot 89(5):727–733. https://doi.org/10.3732/ajb.89.5.727

    Article  PubMed  Google Scholar 

  • Van Beek TA (2002) Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 967:21–55

    PubMed  Google Scholar 

  • Van Beek TA (2005) Ginkgolides and bilobalide: Their physical, chromatographic and spectroscopic properties. Bioorg Med Chem 13(17):5001–5012

    PubMed  Google Scholar 

  • Wang GG, Chen QY, Li W, Lu XH, Zhao X (2015) Ginkgolide B increases hydrogen sulfide and protects against endothelial dysfunction in diabetic rats. Croatian Med J 56:4–13

    CAS  Google Scholar 

  • Wang D, Zhang Y, Li X, Pan H, Chang M, Zheng T, Sun J, Qiu D, Zhang M, Wei D, Qin J (2017) Potential allelopathic azaphilones produced by the endophytic Chaetomium globosum TY1 inhabited in Ginkgo biloba using the one strain-many compounds method. Nat Prod Res 31(6):724–728. https://doi.org/10.1080/14786419.2016.1217208

    Article  PubMed  CAS  Google Scholar 

  • Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN (2010) Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr 10:14

    PubMed  PubMed Central  Google Scholar 

  • Wu X, Zhou C, Du F, Lu Y, Peng B, Chen L et al (2013) Ginkgolide B preconditioning on astrocytes promotes neuronal survival in ischemic injury via up-regulating erythropoietin secretion. Neurochem Int 62:157–164

    PubMed  CAS  Google Scholar 

  • Wu YY, Zhang TY, Zhang MY, Cheng J, Zhang YX (2018) An endophytic Fungi of Ginkgo biloba L. produces antimicrobial metabolites as potential inhibitors of FtsZ of Staphylococcus aureus. Fitoterapia 128:265–271. https://doi.org/10.1016/j.fitote.2018.05.033

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Li HX, Li C, Wang JX, Li J, Wang MH, Ye YH (2013) Antifungal screening of endophytic fungi from Ginkgo biloba for discovery of potent anti-phytopathogenic fungicides. FEMS Microbiol Lett 339(2):130–136. https://doi.org/10.1111/1574-6968.12065

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Zhang S, Cheng J, Asem MD, Zhang MY, Manikprabhu D, Zhang TY, Wu YY, Li WJ, Zhang YX (2016) Nocardioides ginkgobilobae sp. nov., an endophytic actinobacterium isolated from the root of the living fossil Ginkgo biloba L. Int J Syst Evol Microbiol 66(5):2013–2018. https://doi.org/10.1099/ijsem.0.000983

    Article  PubMed  CAS  Google Scholar 

  • Xue M, Zhang Q, Gao JM, Li H, Tian JM, Pescitelli G (2012) Chaetoglobosin Vb from endophytic Chaetomium globosum: absolute configuration of chaetoglobosins. Chirality 24(8):668–674. https://doi.org/10.1002/chir.22068

    Article  PubMed  CAS  Google Scholar 

  • Yan T, Guo ZK, Jiang R, Wei W, Wang T, Guo Y, Song YC, Jiao RH, Tan RX, Ge HM (2013) New flavonol and diterpenoids from the endophytic fungus Aspergillus sp. YXf3. Planta Med 79(5):348–352. https://doi.org/10.1055/s-0032-1328260

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Li Y, Wang N, Chen Y, Huang LL (2018a) Streptomyces ginkgonis sp. nov., an endophyte from Ginkgo biloba. Antonie Van Leeuwenhoek 111(6):891–896

    PubMed  CAS  Google Scholar 

  • Yan W, Cao L-L, Zhang Y-Y, Zhao R, Zhao S-S, Khan B, Ye Y-H (2018b) New metabolites from endophytic fungus Chaetomium globosum CDW7. Molecules 23(11):2873. https://doi.org/10.3390/molecules23112873

    Article  PubMed Central  CAS  Google Scholar 

  • Ye Y, Xiao Y, Ma L, Li H, Xie Z, Wang M, Ma H, Tang H, Liu J (2013) Flavipin in Chaetomium globosum CDW7, an endophytic fungus from Ginkgo biloba, contributes to antioxidant activity. Appl Microbiol Biotechnol 97(16):7131–7139

    PubMed  CAS  Google Scholar 

  • Yoshitake T, Yoshitake S, Kehr J (2010) The Ginkgo biloba extract EGb 761(R) and its main constituent flavonoids and Ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex. Br J Pharmacol 159:659–668

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yu H, Zhang L, Li L, Li W, Han T, Guo L, Qin L (2010) Endophytic fungi from Ginkgo biloba and their biological activities. Zhongguo Zhong Yao Za Zhi 35(16):2133–2137

    PubMed  Google Scholar 

  • Yuan B, Wang Z, Qin S, Zhao GH, Feng YJ, Wei LH, Jiang JH (2012) Study of the anti-sapstain fungus activity of Bacillus amyloliquefaciens CGMCC 5569 associated with Ginkgo biloba and identification of its active components. Bioresour Technol 114:536–541

    PubMed  CAS  Google Scholar 

  • Yuan Y, Tian JM, Xiao J, Shao Q, Gao JM (2014) Bioactive metabolites isolated from Penicillium sp. YY-20, the endophytic fungus from Ginkgo biloba. Nat Prod Res 28(4):278–281. https://doi.org/10.1080/14786419.2013.850686

    Article  PubMed  CAS  Google Scholar 

  • Yuan Z, Tian Y, He F, Zhou H (2019) Endophytes from Ginkgo biloba and their secondary metabolites. Chin Med 14:51

    PubMed  PubMed Central  Google Scholar 

  • Zeng Z, Zhu J, Chen L, Wen W, Yu R (2013) Biosynthesis pathways of Ginkgolides. Pharmacog Rev 7:47–52

    Google Scholar 

  • Zhang S, Chen B, Wu W, Bao L, Qi R (2011) Ginkgolide B reduces inflammatory protein expression in oxidized low-density lipoprotein-stimulated human vascular endothelial cells. J Cardiovasc Pharmacol 57:721–727

    PubMed  CAS  Google Scholar 

  • Zhang G, Zhang Y, Qin J, Qu X, Liu J, Li X, Pan H (2013) Antifungal metabolites produced by Chaetomium globosum No.04, an endophytic fungus isolated from Ginkgo biloba. Indian J Microbiol 53(2):175–180. https://doi.org/10.1007/s12088-013-0362-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Wei W, Shi J, Chen C, Zhao G, Jiao R, Tan R (2015) Natural phenolic metabolites from endophytic Aspergillus sp. IFB-YXS with antimicrobial activity. Bioorg Med Chem Lett 25(13):2698–2701

    PubMed  CAS  Google Scholar 

  • Zhang T, Deng X, Yu Y, Zhang M, Zhang Y (2016) Pseudochaetosphaeronema ginkgonis sp. nov., an endophyte isolated from Ginkgo biloba. Int J Syst Evol Microbiol 66(11):4377–4381

    PubMed  CAS  Google Scholar 

  • Zhao SS, Zhang YY, Yan W, Cao LL, Xiao Y, Ye YH (2017) Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnw287

    Article  PubMed  Google Scholar 

  • Zhou Z, Zheng S (2003) The missing link in Ginkgo evolution. Nature 423(6942):821–822. https://doi.org/10.1038/423821a

    Article  PubMed  CAS  Google Scholar 

  • Zhou SL, Zhou SL, Wang MX, Chen SL (2011) Two compounds from the endophytic Colletotrichum sp. of Ginkgo biloba. Nat Prod Commun 6(8):1131–1132

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Rufin Marie Kouipou Toghueo is grateful to the Wellcome Centre for Anti-Infectives Research (WCAIR), University of Dundee, Dundee, United Kingdom, for the infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rufin Marie Kouipou Toghueo.

Ethics declarations

Conflict of interest

The author declares that they are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toghueo, R.M.K. Endophytes from Gingko biloba: the current status. Phytochem Rev 19, 743–759 (2020). https://doi.org/10.1007/s11101-020-09679-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-020-09679-4

Keywords

Navigation