Skip to main content
Log in

Hormonal interactions during root tropic growth: hydrotropism versus gravitropism

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Terrestrial plants have evolved remarkable morphological plasticity that enables them to adapt to their surroundings. One of the most important traits that plants have acquired is the ability to sense environmental cues and use them as a basis for governing their growth orientation. The directional growth of plant organs relative to the direction of environmental stimuli is a tropism. The Cholodny–Went theory proposes that auxin plays a key role in several tropisms. Recent molecular genetic studies have strongly supported this hypothesis for gravitropism. However, the molecular mechanisms of other tropisms are far less clear. Hydrotropism is the response of roots to a moisture gradient. Since its re-discovery in 1985, root hydrotropism has been shown to be common among higher plant species. Additionally, in some species, gravitropism interferes with hydrotropism, suggesting that both shared and divergent mechanisms mediating the two tropisms exist. This hypothesis has been supported by recent studies, which provide an understanding of how roots sense multiple environmental cues and exhibit different tropic responses. In this review, we focus on the overlapping and unique mechanisms of the hormonal regulation underlying gravitropism and hydrotropism in roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950. doi:10.1126/science.273.5277.948

    PubMed  CAS  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, Sauer M, Makam SN, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer WA, Murphy AS (2007) Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19:131–147. doi:10.1105/tpc.106.040782

    PubMed  CAS  Google Scholar 

  • Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133:1677–1690. doi:10.1104/pp.103.032169

    PubMed  CAS  Google Scholar 

  • Blancaflor EB, Fasano J, Gilroy S (1998) Mapping the functional role of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116:213–222. doi:10.1104/pp.116.1.213

    PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44. doi:10.1038/nature03184

    PubMed  CAS  Google Scholar 

  • Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH (2003) ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15:2612–2625. doi:10.1105/tpc.015560

    PubMed  CAS  Google Scholar 

  • Cassab GI (2008) Other tropisms and their relationship to gravitropism. In: Simon S, Masson PH (eds) Plant tropisms. Blackwell Publishing, Ames, Oxford, Victoria, pp 123–1139

    Google Scholar 

  • Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117. doi:10.1073/pnas.95.25.15112

    PubMed  CAS  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45. doi:10.1146/annurev.arplant.58.032806.103951

    PubMed  CAS  Google Scholar 

  • Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E, Briggs WR (1998) Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282:1698–1701. doi:10.1126/science.282.5394.1698

    PubMed  CAS  Google Scholar 

  • Cole ES, Mahall BE (2006) A test for hydrotropic behavior by roots of two costal dune shrubs. New Phytol 172:358–368. doi:10.1111/j.1469-8137.2006.01822.x

    PubMed  Google Scholar 

  • Conner TW, Goekjian VH, LaFayette PR, Key JL (1990) Structure and expression of two auxin-inducible genes from Arabidopsis. Plant Mol Biol 15:623–632. doi:10.1007/BF00017836

    PubMed  CAS  Google Scholar 

  • Darwin C, Darwin F (1880) The power of movement in plants. William Clowes and Sons, London

    Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445. doi:10.1038/nature03543

    PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119. doi:10.1016/j.devcel.2005.05.014

    PubMed  CAS  Google Scholar 

  • Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrasek J, Seifertova D, Tejos R, Meisel LA, Zazimalova E, Gadella TWJ, Stierhof Y-D Jr, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci USA 105:4489–4494. doi:10.1073/pnas.0711414105

    PubMed  CAS  Google Scholar 

  • Eapen D, Barroso ML, Campos ME, Ponce G, Corkidi G, Dubrovsky JG, Cassab GI (2003) A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol 131:536–546. doi:10.1104/pp.011841

    PubMed  CAS  Google Scholar 

  • Eapen D, Barroso ML, Ponce G, Campos ME, Cassab GI (2005) Hydrotropism: root growth responses to water. Trends Plant Sci 10:44–50. doi:10.1016/j.tplants.2004.11.004

    PubMed  CAS  Google Scholar 

  • Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA 103:236–241. doi:10.1073/pnas.0507127103

    PubMed  CAS  Google Scholar 

  • Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12. doi:10.1016/S1369526602000031

    PubMed  CAS  Google Scholar 

  • Friml J, Wisniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  Google Scholar 

  • Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168. doi:10.1046/j.0960-7412.2001.01201.x

    PubMed  CAS  Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230. doi:10.1126/science.282.5397.2226

    PubMed  Google Scholar 

  • Gee MA, Hagen G, Guilfoyle TJ (1991) Tissue-specific and organ-specific expression of soybean auxin-responsive transcripts GH3 and SAURs. Plant Cell 3:419–430

    PubMed  CAS  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230. doi:10.1016/S0092-8674(03)00003-5

    PubMed  CAS  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428. doi:10.1038/35096571

    PubMed  CAS  Google Scholar 

  • Gilroy S, Masson PH (eds) (2008) Plant tropisms. Blackwell Publishing, Ames, Oxford, Victoria

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276. doi:10.1038/35104500

    PubMed  CAS  Google Scholar 

  • Guan C, Rosen ES, Boonsirichai K, Poff KL, Masson PH (2003) The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. Plant Physiol 133:100–112. doi:10.1104/pp.103.023358

    PubMed  CAS  Google Scholar 

  • Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12:757–770

    PubMed  CAS  Google Scholar 

  • Harrison BR, Masson PH (2008) ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53:380–392. doi:10.1111/j.1365-313X.2007.03351.x

    PubMed  CAS  Google Scholar 

  • Hart JW (1990) Plant tropism and growth movement. Unwin Hyman, London

    Google Scholar 

  • Hasenstein KH, Evans ML (1988) Effect of cations on hormone transport in primary roots of Zea mays. Plant Physiol 86:890–894

    PubMed  CAS  Google Scholar 

  • Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 6:1–11. doi:10.1016/j.cub.2005.11.044

    Google Scholar 

  • Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734. doi:10.1016/j.cub.2008.04.039

    PubMed  CAS  Google Scholar 

  • Hirasawa T, Takahashi H, Suge H, Ishihara K (1997) Water potential, turgor and cell wall properties in elongating tissues of the hydrotropically bending roots of pea, Pisum sativum L. Plant Cell Environ 20:381–386. doi:10.1046/j.1365-3040.1997.d01-70.x

    Google Scholar 

  • Iino M (2006) Toward understanding the ecological functions of tropisms: interactions among and effects of light on tropisms. Curr Opin Plant Biol 9:89–93. doi:10.1016/j.pbi.2005.11.012

    PubMed  Google Scholar 

  • Jaffe MJ, Takahashi H, Biro RL (1985) A pea mutant for the study of hydrotropism in roots. Science 230:445–447. doi:10.1126/science.230.4724.445

    PubMed  Google Scholar 

  • Johnsson A (1997) Circumnutations: results from recent experiments on Earth and in space. Planta 203:S147–S158. doi:10.1007/PL00008103

    PubMed  CAS  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141. doi:10.1126/science.291.5511.2138

    PubMed  CAS  Google Scholar 

  • Kaneyasu T, Kobayashi A, Nakayama M, Fujii N, Takahashi H, Miyazawa Y (2007) Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J Exp Bot 58:1143–1150. doi:10.1093/jxb/erl274

    PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451. doi:10.1038/nature03542

    PubMed  CAS  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein–protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791. doi:10.1073/pnas.94.22.11786

    PubMed  CAS  Google Scholar 

  • Kiss JZ (2000) Mechanisms of the early phases of plant gravitropism. CRC Crit Rev Plant Sci 19:551–573. doi:10.1016/S0735-2689(01)80008-3

    PubMed  CAS  Google Scholar 

  • Kiss JZ, Sack FD (1989) Reduced gravitropic sensitivity in roots of a starch-deficient mutant of Nicotiana sylvestris. Planta 180:123–130. doi:10.1007/BF02411418

    PubMed  CAS  Google Scholar 

  • Kiss JZ, Hertel R, Sack FD (1989) Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 177:198–206. doi:10.1007/BF00392808

    PubMed  CAS  Google Scholar 

  • Kiss JZ, Mullen JL, Correll MJ, Hangarter RP (2003) Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol 131:1411–1417. doi:10.1104/pp.013847

    PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Dhonukshe P, Swarup R, Benett M, Friml J (2006) Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–3181. doi:10.1105/tpc.106.042770

    PubMed  CAS  Google Scholar 

  • Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA 104:4724–4729. doi:10.1073/pnas.0609929104

    PubMed  CAS  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654. doi:10.1038/nature03896

    PubMed  CAS  Google Scholar 

  • Legué V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S (1997) Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol 114:789–800. doi:10.1104/pp.114.3.789

    PubMed  Google Scholar 

  • Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. doi:10.1093/emboj/18.7.1730

    PubMed  CAS  Google Scholar 

  • Lewis DR, Miller ND, Splitt BL, Wu G, Spalding EP (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis Multidrug Resistance-Like ABC transporter genes. Plant Cell 19:1838–1850. doi:10.1105/tpc.107.051599

    PubMed  CAS  Google Scholar 

  • Liscum E, Briggs WR (1995) Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7:473–485

    PubMed  CAS  Google Scholar 

  • Lomax TL, Muday GK, Rubery PH (1995) Auxin transport. In: Davies PJ (ed) Plant hormones: physiology, biochemistry, molecular biology, 2nd edn. Kluwer Academic Publishers, The Netherlands, pp 509–530

    Google Scholar 

  • Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187. doi:10.1101/gad.12.14.2175

    PubMed  CAS  Google Scholar 

  • Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445. doi:10.1046/j.1365-313X.2003.01637.x

    PubMed  Google Scholar 

  • McClure BA, Guilfoyle T (1989) Rapid redistribution of auxin-regulated RNAs during gravitropism. Science 243:91–93. doi:10.1126/science.11540631

    PubMed  CAS  Google Scholar 

  • Migliaccio F, Piconese S (2001) Spiralizations and tropisms in Arabidopsis roots. Trends Plant Sci 6:561–565. doi:10.1016/S1360-1385(01)02152-5

    PubMed  CAS  Google Scholar 

  • Miyamoto N, Ookawa T, Takahashi H, Hirasawa T (2002) Water uptake and hydraulic properties of elongating cells in hydrotropically bending roots of Pisum sativum L. Plant Cell Physiol 43:393–401. doi:10.1093/pcp/pcf046

    PubMed  CAS  Google Scholar 

  • Miyazawa Y, Sakashita T, Funayama T, Hamada N, Negishi H, Kobayashi A, Kaneyasu T, Ooba A, Morohashi K, Kakizaki T, Wada S, Kobayashi Y, Fujii N, Takahashi H (2008) Effects of locally targeted heavy-ion and laser microbeam on root hydrotropism in Arabidopsis thaliana. J Radiat Res (Tokyo) 49:373–379. doi:10.1269/jrr.07131

    Google Scholar 

  • Mizuno H, Kobayashi A, Fujii N, Yamashita M, Takahashi H (2002) Hydrotropic response and expression pattern of auxin-inducible gene, CS-IAA1, in the primary roots of clinorotated cucumber seedlings. Plant Cell Physiol 43:793–801. doi:10.1093/pcp/pcf093

    PubMed  CAS  Google Scholar 

  • Mochizuki S, Harada A, Inada S, Sugimoto-Shirasu K, Stacey N, Wada T, Ishiguro S, Okada K, Sakai T (2005) The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. Plant Cell 17:537–547. doi:10.1105/tpc.104.028530

    PubMed  CAS  Google Scholar 

  • Monshausen GB, Swanson SJ, Gilroy S (2008) Touch sensing and thigmotropism. In: Simon S, Masson PH (eds) Plant tropisms. Blackwell Publishing, Ames, Oxford, Victoria, pp 91–122

    Google Scholar 

  • Morita MT, Tasaka M (2004) Gravity sensing and signaling. Curr Opin Plant Biol 7:712–718. doi:10.1016/j.pbi.2004.09.001

    PubMed  CAS  Google Scholar 

  • Muday GK (2001) Auxins and tropisms. J Plant Growth Regul 20:226–243. doi:10.1007/s003440010027

    PubMed  CAS  Google Scholar 

  • Muday GK, Peer WA, Murphy AS (2003) Vesicular cycling mechanisms that control auxin transport polarity. Trends Plant Sci 8:301–304. doi:10.1016/S1360-1385(03)00132-8

    PubMed  CAS  Google Scholar 

  • Muday GK, Rahman A (2008) Auxin transport and the Integration of gravitropisc growth. In: Simon S, Masson PH (eds) Plant tropisms. Blackwell Publishing, Ames, Oxford, Victoria, pp 47–77

    Google Scholar 

  • Mullen JL, Kiss JZ (2008) Phototropism and its relationship to gravitropism. In: Simon S, Masson PH (eds) Plant tropisms. Blackwell Publishing, Ames, Oxford, Victoria, pp 79–90

    Google Scholar 

  • Müller A, Guan C, Gälweiler L, Tänzler P, Huijiser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911. doi:10.1093/emboj/17.23.6903

    PubMed  Google Scholar 

  • Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–574. doi:10.1104/pp.123.2.563

    PubMed  CAS  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644. doi:10.1073/pnas.0607703104

    PubMed  CAS  Google Scholar 

  • Noh B, Bandyopadhyay A, Peer WA, Spalding EP, Murphy AS (2003) Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423:999–1002. doi:10.1038/nature01716

    PubMed  CAS  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454

    PubMed  CAS  Google Scholar 

  • Ohwaki Y, Tsurumi S (1976) Auxin transport and growth in intact roots of Vicia faba. Plant Cell Physiol 17:1329–1342

    CAS  Google Scholar 

  • Okada K, Shimura Y (1990) Reversible root tip rotation in Arabidopsis thaliana seedlings induced by obstacle-touching stimulus. Science 250:274–276. doi:10.1126/science.250.4978.274

    PubMed  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463. doi:10.1105/tpc.104.028316

    PubMed  CAS  Google Scholar 

  • Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133:1135–1147. doi:10.1104/pp.103.027847

    PubMed  CAS  Google Scholar 

  • Ottenschläger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100:2987–2991. doi:10.1073/pnas.0437936100

    PubMed  Google Scholar 

  • Oyanagi A, Takahashi H, Suge H (1995) Interaction between hydrotropism and gravitropism in the primary seminal roots of Triticum aestivum L. Ann Bot 75:229–235

    Google Scholar 

  • Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406. doi:10.1046/j.1365-313x.2001.00970.x

    PubMed  CAS  Google Scholar 

  • Perrin RM, Young LS, Murthy UMN, Harrison BR, Wang Y, Will JL, Masson PH (2005) Gravity signal transduction in primary roots. Ann Bot (Lond) 96:737–743. doi:10.1093/aob/mci227

    CAS  Google Scholar 

  • Petrásek J, Cerná A, Schwarzerová K, Elckner M, Morris DA, Zazímalová E (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131:254–263. doi:10.1104/pp.012740

    PubMed  Google Scholar 

  • Petrásek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanová M, Dhonukshe P, Skupa P, Benková E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazímalová E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918. doi:10.1126/science.1123542

    PubMed  Google Scholar 

  • Ponce G, Rasgado FA, Cassab GI (2008) Roles of amyloplasts and water dificit in root tropisms. Plant Cell Environ 31:205–217

    PubMed  CAS  Google Scholar 

  • Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13:1683–1697

    PubMed  CAS  Google Scholar 

  • Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371–1373. doi:10.1126/science.279.5355.1371

    PubMed  CAS  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472. doi:10.1016/S0092-8674(00)81535-4

    PubMed  CAS  Google Scholar 

  • Sedbrook JC, Chen R, Masson PH (1999) ARG1 (Altered Response to Gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc Natl Acad Sci USA 96:1140–1145. doi:10.1073/pnas.96.3.1140

    PubMed  CAS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268. doi:10.1038/368265a0

    PubMed  CAS  Google Scholar 

  • Sun F, Zhang W, Hu H, Li B, Wang Y, Zhao Y, Li K, Liu M, Li X (2008) Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol 146:178–188. doi:10.1104/pp.107.109413

    PubMed  CAS  Google Scholar 

  • Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, Haseloff J, Beemster GT, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065. doi:10.1038/ncb1316

    PubMed  CAS  Google Scholar 

  • Takahashi H (1997) Hydrotropism: the current state of our knowledge. J Plant Res 1110:163–169. doi:10.1007/BF02509304

    Google Scholar 

  • Takahashi H, Scott TK (1991) Hydrotropism and its interaction with gravitropism in maize roots. Plant Physiol 96:558–564

    PubMed  CAS  Google Scholar 

  • Takahashi H, Scott TK (1993) Intensity of hydrotropism for the induction of root hydrotropism and sensing of the hydrostimulus by the root cap. Plant Cell Environ 16:99–103. doi:10.1111/j.1365-3040.1993.tb00850.x

    PubMed  CAS  Google Scholar 

  • Takahashi H, Suge H (1991) Root hydrotropism of an agravitropic pea mutant, ageotropum. Physiol Plant 82:24–31. doi:10.1111/j.1399-3054.1991.tb02898.x

    Google Scholar 

  • Takahashi H, Brown CS, Dreschel TW, Scott TK (1992a) Hydrotropism in pea roots in a porous-tube water delivery system. HortScience 27:430–432

    PubMed  CAS  Google Scholar 

  • Takahashi N, Goto N, Okada K, Takahashi H (2002) Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216:203–211. doi:10.1007/s00425-002-0840-3

    PubMed  CAS  Google Scholar 

  • Takahashi H, Mizuno H, Kamada M, Fujii N, Higashitani A, Kamigaichi S, Aizawa S, Mukai C, Shimazu T, Fukui K (1999) A space flight experiment for the study of gravimorphogenesis and hydrotropism in cucumber seedlings. J Plant Res 112:497–505. doi:10.1007/PL00013906

    PubMed  CAS  Google Scholar 

  • Takahashi H, Scott TK, Suge H (1992b) Stimulation of root elongation and curvature by calcium. Plant Physiol 98:246–252

    PubMed  CAS  Google Scholar 

  • Takahashi H, Takano M, Fujii N, Yamashita M, Suge H (1996) Induction of hydrotropism in clinorotated seedling roots of Alaska pea, Pisum sativum L. J Plant Res 109:335–337. doi:10.1007/BF02344481

    PubMed  CAS  Google Scholar 

  • Takahashi N, Yamazaki Y, Kobayashi A, Higashitani A, Takahashi H (2003) Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol 132:805–810. doi:10.1104/pp.018853

    PubMed  CAS  Google Scholar 

  • Takano M (1999) Mechanism of hydrotropic response in seedling roots. Ph D thesis (Tohoku University, Sendai)

  • Takano M, Fujii N, Higashitani A, Nishitani K, Hirasawa T, Takahashi H (1999) Endoxyloglucan transferase cDNA isolated from pea roots and its fluctuating expression in hydrotropically responding roots. Plant Cell Physiol 40:135–142

    PubMed  CAS  Google Scholar 

  • Takano M, Takahashi H, Hirasawa T, Suge H (1995) Hydrotropism in roots: sensing of a gradient in water potential by the root cap. Planta 197:410–413. doi:10.1007/BF00202664

    CAS  Google Scholar 

  • Takano M, Takahashi H, Suge H (1997) Calcium requirement for the induction of hydrotropism and enhancement of calcium-induced curvature by water stress in primary roots of pea, Pisum sativum L. Plant Cell Physiol 38:385–391

    CAS  Google Scholar 

  • Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721

    PubMed  CAS  Google Scholar 

  • Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822

    PubMed  CAS  Google Scholar 

  • Trewavas AJ (1992) What remains of the Cholodny-Went theory? Plant Cell Environ 15:761–794

    PubMed  CAS  Google Scholar 

  • Tsuda S, Miyamoto N, Takahashi H, Ishihara K, Hirasawa T (2003) Roots of Pisum sativum L. exhibit hydrotropism in response to a water potential gradient in vermiculite. Ann Bot (Lond) 92:767. doi:10.1093/aob/mcg200

    Google Scholar 

  • Tsusumi D, Kosugi K, Mizuyama T (2003) Effect of hydrotropism on root system development in soybean (Glycine max): growth experiments and a model simulation. J Plant Growth Regul 21:441–458. doi:10.1007/s00344-003-0006-y

    Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    PubMed  CAS  Google Scholar 

  • Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) Agr, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol 39:1111–1118

    PubMed  CAS  Google Scholar 

  • Vitha S, Zhao L, Sack FD (2000) Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants. Plant Physiol 122:453–462. doi:10.1104/pp.122.2.453

    PubMed  CAS  Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. New York, MacMillan

    Google Scholar 

  • Wu G, Lewis DR, Spalding EP (2007) Mutations in Arabidopsis Multidrug Resistance-Like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell 19:1826–1837. doi:10.1105/tpc.106.048777

    PubMed  CAS  Google Scholar 

  • Yamamoto KT (2003) Happy end in sight after 70 years of controversy. Trends Plant Sci 8:359–360. doi:10.1016/S1360-1385(03)00154-7

    PubMed  CAS  Google Scholar 

  • Yamazoe A, Hayashi K, Kepinski S, Leyser O, Nozaki H (2005) Characterization of terfestatin A, a novel specific inhibitor for auxin signaling. Plant Physiol 139:779–789. doi:10.1104/pp.105.068924

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Prof. TJ Guilfoyle of the University of Missouri for kindly providing us with DR5::uidA transgenic Arabidopsis. The authors gratefully acknowledge support through Grants-in-Aid for Scientific Research (B: No. 20370017, C: No. 19570031) from JSPS, Japan, Grants-in-Aid for Scientific Research on Priority Areas (No. 19039005) from MEXT, Japan, and the Global COE Program J03 (ecosystem management adapting to global change) of the MEXT. The authors dedicate this paper to Dr. Mordecai Jacob Jaffe who died on October 15, 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, H., Miyazawa, Y. & Fujii, N. Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. Plant Mol Biol 69, 489–502 (2009). https://doi.org/10.1007/s11103-008-9438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9438-x

Keywords

Navigation