Skip to main content
Log in

A scheme for C4 evolution derived from a comparative analysis of the closely related C3, C3–C4 intermediate, C4-like, and C4 species in the genus Flaveria

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

A comparative analysis of the genus Flaveria showed a C4 evolutionary process in which the anatomical and metabolic features of C4 photosynthesis were gradually acquired through C3–C4 intermediate stages.

Abstract

C4 photosynthesis has been acquired in multiple lineages of angiosperms during evolution to suppress photorespiration. Crops that perform C4 photosynthesis exhibit high rates of CO2 assimilation and high grain production even under high-temperature in semiarid environments; therefore, engineering C4 photosynthesis in C3 plants is of great importance in the application field. The genus Flaveria contains a large number of C3, C3–C4 intermediate, C4-like, and C4 species, making it a good model genus to study the evolution of C4 photosynthesis, and these studies indicate the direction for C4 engineering. C4 photosynthesis was acquired gradually through the C3–C4 intermediate stage. First, a two-celled C2 cycle called C2 photosynthesis was acquired by localizing glycine decarboxylase activity in the mitochondria of bundle sheath cells. With the development of two-cell metabolism, anatomical features also changed. Next, the replacement of the two-celled C2 cycle by the two-celled C4 cycle was induced by the acquisition of cell-selective expression in addition to the upregulation of enzymes in the C4 cycle during the C3–C4 intermediate stage. This was supported by an increase in cyclic electron transport activity in response to an increase in the ATP/NADPH demand for metabolism. Suppression of the C3 cycle in mesophyll cells was induced after the functional establishment of the C4 cycle, and optimization of electron transport by suppressing the activity of photosystem II also occurred during the final phase of C4 evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adwy W, Laxa M, Peterhansel C (2015) A simple mechanism for the establishment of C2-specific gene expression in Brassicaceae. Plant J 84:1231–1238

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19

    Article  CAS  PubMed  Google Scholar 

  • Andersen KS, Bain JM, Bishop DG, Smillie RM (1972) Photosystem II activity in agranal bundle sheath chloroplasts from Zea mays. Plant Physiol 49:461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araus JL, Brown RH, Bouton JH, Serret MD (1990) Leaf anatomical characteristics in Flaveria trinervia (C4), Flaveria brownii (C4-like) and their F1 hybrid. Photosynth Res 26:49–57

    Article  CAS  PubMed  Google Scholar 

  • Bauwe H (2011) Chapter 6 photorespiration: the bridge to C4 photosynthesis. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms. Springer, Dordrecht, pp 81–108

    Google Scholar 

  • Brown RH, Hattersley PW (1989) Leaf anatomy of C3–C4 species as related to evolution of C4 photosynthesis. Plant Physiol 91:1543–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng SH, Moore BD, Edwards GE, Ku MS (1988) Photosynthesis in Flaveria brownii, a C4-like species: leaf anatomy, characteristics of CO2 exchange, compartmentation of photosynthetic enzymes, and metabolism of CO2. Plant Physiol 87:867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christin PA, Osborne CP, Sage RF, Arakaki M, Edwards EJ (2011) C4 eudicots are not younger than C4 monocots. J Exp Bot 62:3171–3181

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285

    Article  CAS  PubMed  Google Scholar 

  • Edwards GE, Voznesenskaya EV (2011) Chapter 4 C4 photosynthesis: Kranz forms and single-cell C4 in terrestrial plants. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms. Springer, Dordrecht, pp 29–61

    Google Scholar 

  • Edwards EJ, Osborne CP, Stromberg CA, Smith SA, Consortium CG, Bond WJ, Christin PA, Cousins AB, Duvall MR, Fox DL, Freckleton RP, Ghannoum O, Hartwell J, Huang Y, Janis CM, Keeley JE, Kellogg EA, Knapp AK, Leakey AD, Nelson DM, Saarela JM, Sage RF, Sala OE, Salamin N, Still CJ, Tipple B (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–591

    Article  CAS  PubMed  Google Scholar 

  • Ermakova M, Arrivault S, Giuliani R, Danila F, Alonso-Cantabrana H, Vlad D, Ishihara H, Feil R, Guenther M, Borghi GL, Covshoff S, Ludwig M, Cousins AB, Langdale JA, Kelly S, Lunn JE, Stitt M, von Caemmerer S, Furbank RT (2021) Installation of C4 photosynthetic pathway enzymes in rice using a single construct. Plant Biotechnol J 19:575–588

    Article  CAS  PubMed  Google Scholar 

  • Hall LN, Rossini L, Cribb L, Langdale JA (1998) GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 10:925–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofer MU, Santore UJ, Westhoff P (1992) Differential accumulation of the 10-, 16- and 23-kDa peripheral components of the water-splitting complex of photosystem II in mesophyll and bundle-sheath chloroplasts of the dicotyledonous C4 plant Flaveria trinervia (Spreng.) C. Mohr. Planta 186:304–312

    Article  CAS  PubMed  Google Scholar 

  • Holaday AS, Lee KW, Chollet R (1984) C3–C4 intermediate species in the genus Flaveria: leaf anatomy, ultrastructure, and the effect of O2 on the CO2 compensation concentration. Planta 160:25–32

    Article  CAS  PubMed  Google Scholar 

  • Huang CF, Yu CP, Wu YH, Lu MJ, Tu SL, Wu SH, Shiu SH, Ku MSB, Li WH (2017) Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves. Proc Natl Acad Sci USA 114:E6884–E6891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase: dependence on ribulosebisphosphate concentration, pH and temperature. Planta 161:308–313

    Article  CAS  PubMed  Google Scholar 

  • Kanai R, Edwards G (1999) The biochemistry of C4 photosynthesis. In: Sage R, Monson R (eds) C4 plant biology. Academic Press, San Diego, pp 49–87

    Chapter  Google Scholar 

  • Ku MS, Wu J, Dai Z, Scott RA, Chu C, Edwards GE (1991) Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiol 96:518–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubicki A, Steinmüller K, Westhoff P (1994) Differential transcription of plastome-encoded genes in the mesophyll and bundle-sheath chloroplasts of the monocotyledonous NADP-malic enzyme-type C4 plants maize and Sorghum. Plant Mol Biol 25:669–679

    Article  CAS  PubMed  Google Scholar 

  • Lauterbach M, Schmidt H, Billakurthi K, Hankeln T, Westhoff P, Gowik U, Kadereit G (2017) De novo transcriptome assembly and comparison of C3, C3–C4, and C4 species of tribe Salsoleae (Chenopodiaceae). Front Plant Sci 8:1939

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin H, Arrivault S, Coe RA, Karki S, Covshoff S, Bagunu E, Lunn JE, Stitt M, Furbank RT, Hibberd JM, Quick WP (2020) A partial C4 photosynthetic biochemical pathway in rice. Front Plant Sci 11:564463

    Article  PubMed  PubMed Central  Google Scholar 

  • Linh NM, Verna C, Scarpella E (2018) Coordination of cell polarity and the patterning of leaf vein networks. Curr Opin Plant Biol 41:116–124

    Article  PubMed  Google Scholar 

  • Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ 14:729–739

    Article  CAS  Google Scholar 

  • Lundgren MR, Osborne CP, Christin PA (2014) Deconstructing Kranz anatomy to understand C4 evolution. J Exp Bot 65:3357–3369

    Article  PubMed  Google Scholar 

  • Lyu MJ, Gowik U, Kelly S, Covshoff S, Mallmann J, Westhoff P, Hibberd JM, Stata M, Sage RF, Lu H, Wei X, Wong GK, Zhu XG (2015) RNA-Seq based phylogeny recapitulates previous phylogeny of the genus Flaveria (Asteraceae) with some modifications. BMC Evol Biol 15:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ (2008) Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics MCP 7:1609–1638

    Article  CAS  PubMed  Google Scholar 

  • Mallmann J, Heckmann D, Brautigam A, Lercher MJ, Weber AP, Westhoff P, Gowik U (2014) The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. Elife 3:e02478

    Article  PubMed  PubMed Central  Google Scholar 

  • McKown AD, Dengler NG (2007) Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). Am J Bot 94:382–399

    Article  PubMed  Google Scholar 

  • McKown AD, Dengler NG (2009) Shifts in leaf vein density through accelerated vein formation in C4 Flaveria (Asteraceae). Ann Bot 104:1085–1098

    Article  PubMed  PubMed Central  Google Scholar 

  • McKown AD, Moncalvo JM, Dengler NG (2005) Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. Am J Bot 92:1911–1928

    Article  CAS  PubMed  Google Scholar 

  • Meister M, Agostino A, Hatch MD (1996) The roles of malate and aspartate in C4 photosynthetic metabolism of Flaveria bidentis (L.). Planta 199:262–269

    Article  CAS  Google Scholar 

  • Monson RK, Teeri JA, Ku MS, Gurevitch J, Mets LJ, Dudley S (1988) Carbon-isotope discrimination by leaves of Flaveria species exhibiting different amounts of C3-and C4-cycle co-function. Planta 174:145–151

    Article  CAS  PubMed  Google Scholar 

  • Moore BD, Monson RK, Ku MSB, Edwards GE (1988) Activities of principal photosynthetic and photorespiratory enzymes in leaf mesophyll and bundle sheath protoplasts from the C3–C4 intermediate Flaveria ramosissima. Plant Cell Physiol 29:999–1006

    CAS  Google Scholar 

  • Munekage YN (2016) Light harvesting and chloroplast electron transport in NADP-malic enzyme type C4 plants. Curr Opin Plant Biol 31:9–15

    Article  Google Scholar 

  • Munekage YN, Taniguchi YY (2016) Promotion of cyclic electron transport around photosystem I with the development of C4 photosynthesis. Plant Cell Physiol 57:897–903

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  CAS  PubMed  Google Scholar 

  • Munekage YN, Eymery F, Rumeau D, Cuine S, Oguri M, Nakamura N, Yokota A, Genty B, Peltier G (2010) Elevated expression of PGR5 and NDH-H in bundle sheath chloroplasts in C4 Flaveria species. Plant Cell Physiol 51:664–668

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Iwano M, Havaux M, Yokota A, Munekage YN (2013) Promotion of cyclic electron transport around photosystem I during the evolution of NADP-malic enzyme-type C4 photosynthesis in the genus Flaveria. New Phytol 199:832–842

    Article  CAS  PubMed  Google Scholar 

  • Osmond CB (1981) Photorespiration and photoinhibition: some implications for the energetics of photosynthesis. Biochim Biophys Acta (BBA) Rev Bioenerg 639:77–98

    Article  CAS  Google Scholar 

  • Peltier G, Aro EM, Shikanai T (2016) NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis. Annu Rev Plant Biol 67:55–80

    Article  CAS  PubMed  Google Scholar 

  • Powell AM (1978) Systematics of Flaveria (Flaveriinae–Asteraceae). Ann Mo Bot Gard 65:590–636

    Article  Google Scholar 

  • Rossini L, Cribb L, Martin DJ, Langdale JA (2001) The maize golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13:1231–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  CAS  PubMed  Google Scholar 

  • Sage TL, Busch FA, Johnson DC, Friesen PC, Stinson CR, Stata M, Sultmanis S, Rahman BA, Rawsthorne S, Sage RF (2013) Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria. Plant Physiol 163:1266–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF, Khoshravesh R, Sage TL (2014) From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis. J Exp Bot 65:3341–3356

    Article  PubMed  Google Scholar 

  • Sage RF, Monson RK, Ehleringer JR, Adachi S, Pearcy RW (2018) Some like it hot: the physiological ecology of C4 plant evolution. Oecologia 187:941–966

    Article  PubMed  Google Scholar 

  • Schulze S, Mallmann J, Burscheidt J, Koczor M, Streubel M, Bauwe H, Gowik U, Westhoff P (2013) Evolution of C4 photosynthesis in the genus Flaveria: establishment of a photorespiratory CO2 pump. Plant Cell 25:2522–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze S, Westhoff P, Gowik U (2016) Glycine decarboxylase in C3, C4 and C3–C4 intermediate species. Curr Opin Plant Biol 31:29–35

    Article  CAS  PubMed  Google Scholar 

  • Sedelnikova OV, Hughes TE, Langdale JA (2018) Understanding the genetic basis of C4 Kranz anatomy with a view to engineering C3 crops. Annu Rev Genet 52:249–270

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi A, Kishine M, Asada K, Endo T, Sato F (2005) Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proc Natl Acad Sci USA 102:16898–16903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi Y, Ohkawa H, Masumoto C, Fukuda T, Tamai T, Lee K, Sudoh S, Tsuchida H, Sasaki H, Fukayama H, Miyao M (2008) Overproduction of C4 photosynthetic enzymes in transgenic rice plants: an approach to introduce the C4-like photosynthetic pathway into rice. J Exp Bot 59:1799–1809

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi YY, Gowik U, Kinoshita Y, Kishizaki R, Ono N, Yokota A, Westhoff P, Munekage YN (2021) Dynamic changes of genome sizes and gradual gain of cell-specific distribution of C4 enzymes during C4 evolution in genus Flaveria. Plant Genome 14:e20095

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya EV, Koteyeva NK, Edwards GE, Ocampo G (2017) Unique photosynthetic phenotypes in Portulaca (Portulacaceae): C3–C4 intermediates and NAD-ME C4 species with Pilosoid-type Kranz anatomy. J Exp Bot 68:225–239

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Fouracre J, Kelly S, Karki S, Gowik U, Aubry S, Shaw MK, Westhoff P, Slamet-Loedin IH, Quick WP, Hibberd JM, Langdale JA (2013) Evolution of GOLDEN2-LIKE gene function in C3 and C4 plants. Planta 237:481–495

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Khoshravesh R, Karki S, Tapia R, Balahadia CP, Bandyopadhyay A, Quick WP, Furbank R, Sage TL, Langdale JA (2017) Re-creation of a key step in the evolutionary switch from C3 to C4 leaf anatomy. Curr Biol 27:3278-3287.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams BP, Johnston IG, Covshoff S, Hibberd JM (2013) Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis. Elife 2:e00961

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiludda C, Schulze S, Gowik U, Engelmann S, Koczor M, Streubel M, Bauwe H, Westhoff P (2012) Regulation of the photorespiratory GLDPA gene in C4 Flaveria: an intricate interplay of transcriptional and posttranscriptional processes. Plant Cell 24:137–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo KC, Anderson JM, Boardman NK, Downton WJ, Osmond CB, Thorne SW (1970) Deficient photosystem II in agranal bundle sheath chloroplasts of C4 plants. Proc Natl Acad Sci USA 67:18–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81–106

    Article  CAS  PubMed  Google Scholar 

  • Yorimitsu Y, Kadosono A, Hatakeyama Y, Yabiku T, Ueno O (2019) Transition from C3 to proto-Kranz to C3–C4 intermediate type in the genus Chenopodium (Chenopodiaceae). J Plant Res 132:839–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI (Grant Nos. 17K07456, 16H06557 and 21K05520) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

YNM wrote the manuscript. YYT performed the anatomical analysis and measurements of CO2 compensation points and O2 inhibition of photosynthetic activity.

Corresponding author

Correspondence to Yuri N. Munekage.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munekage, Y.N., Taniguchi, Y.Y. A scheme for C4 evolution derived from a comparative analysis of the closely related C3, C3–C4 intermediate, C4-like, and C4 species in the genus Flaveria. Plant Mol Biol 110, 445–454 (2022). https://doi.org/10.1007/s11103-022-01246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-022-01246-z

Keywords

Navigation