Skip to main content
Log in

Faba bean–wheat intercropping reconstructed the microbial community structure in the rhizosphere soil of faba bean under F. commune and benzoic acid stress to alleviate Fusarium wilt in faba bean

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This study analyzed the effect of faba bean–wheat intercropping on alleviating Fusarium wilt in faba bean under benzoic acid and F. commune stress and identified the underlying changes in the microbial community structure and amino acid content in the rhizosphere soil of faba bean.

Methods

The treatments included faba bean monocropping and faba bean–wheat intercropping with and without F. commune inoculation and with combined stress of F. commune and benzoic acid. The effects of these treatments were assessed on the occurrence of Fusarium wilt, faba bean seedling growth, and microbial community structure and amino acid content in the rhizosphere soil of faba bean.

Results

Under the stress of benzoic acid and F. commune, compared with faba bean monocropping, faba bean–wheat intercropping reduced the content of most amino acids, increased the bacterial community diversity, changed the fungal and bacterial community structures and composition, increased the relative abundance of beneficial bacteria Sphingomonas and Bradyrhizobium, and reduced the relative abundance of a pathogen Fusarium in the rhizosphere soil of faba bean; moreover, it promoted the growth of faba bean and reduced the disease index.

Conclusion

Under the stress of F. commune and benzoic acid, faba bean–wheat intercropping promoted the growth of faba bean and reduced the occurrence of Fusarium wilt possibly via reducing the content of certain amino acids, which possibly strengthened the competitive ability of antagonistic beneficial microorganisms against Fusarium and reconstructed the microbial community structure in the rhizosphere soil of faba bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data and materials generated or analyzed during this study have been included in this article.

References

  • Armstrong G, Armstrong J (1964) Lupinus species-common hosts for wilt Fusaria from alfalfa, bean cassia, cowpea, lupine and U.S. cotton. Phytopathology. 54:1232–1234

    Google Scholar 

  • Armstrong G, Armstrong J (1965) A wilt of soybean caused by a new form of Fusarium oxysporum. Phytopathology 55:237–239

    Google Scholar 

  • Awu JE, Nyaku ST, Amissah JN, Okorley BA, Agyapong PJ, Doku FE, Nkansah GO (2023) Grafting for sustainable management of fusarium wilt disease in tomato production in Ghana. J Agric Food Res 14:100710

    Google Scholar 

  • Batista R, Silva L, Moura L, Souza M, Carneiro P, Filho J, de Souza Carneiro J (2017) Inheritance of resistance to Fusarium wilt in common bean. Euphytica. 213:1–12

    Article  CAS  Google Scholar 

  • Bhar A, Jain A, Das S (2021) Soil pathogen, Fusarium oxysporum induced wilt disease in chickpea: a review on its dynamicity and possible control strategies. Proc Indian Natl Sci Acad 87:260–274

    Article  Google Scholar 

  • Bokulich NA, Mills DA (2013) Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microb 79:2519–2526

    Article  CAS  Google Scholar 

  • Brauc S, De Vooght E, Claeys M, Höfte M, Angenon G (2011) Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defense responses against Botrytis cinerea infection in Arabidopsis thaliana. J Plant Physiol 168:1813–1819

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Ou F, Staehelin C, Dai W (2020) Bradyrhizobium sp. strain ORS278 promotes rice growth and its quorum sensing system is required for optimal root colonization. Environ Microbiol Rep 12:656–666

    Article  CAS  PubMed  Google Scholar 

  • Campanella V, Miceli C (2021) Biological control of Fusarium wilt of Ustica landrace lentil. Crop Prot 145:105635

    Article  CAS  Google Scholar 

  • Chang X, Wei D, Zeng Y, Zhao X, Hu Y, Wu X, Song C, Gong G, Chen H, Yang C, Zhang M, Liu T, Chen W, Yang W (2022) Maize-soybean relay strip intercropping reshapes the rhizosphere bacterial community and recruits beneficial bacteria to suppress Fusarium root rot of soybean. Front Microbiol 13:1009689

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapon A, Guillerm AY, Delalande L, Lebreton L, Sarniguet A (2002) Dominant colonisation of wheat roots by Pseudomonas fluorescens Pf29A and selection of the indigenous microflora in the presence of the take-all fungus. Eur J Plant Pathol 108:449–459

    Article  CAS  Google Scholar 

  • Cheng H, Zhang D, Ren L, Song Z, Li Q, Wu J, Fang W, Huang B, Yan D, Li R, Wang Q, Cao A (2021) Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield. Environ Pollut 283:117160

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Yuan M, Tang L, Shen Y, Yu Q, Li S (2022) Integrated microbiology and metabolomics analysis reveal responses of soil microorganisms and metabolic functions to phosphorus fertilizer on semiarid farm. Sci Total Environ 817:152878

    Article  CAS  PubMed  Google Scholar 

  • Chiarello M, McCauley M, Villéger S, Jackson CR (2022) Ranking the biases: the choice of OTUs vs. ASVs in 16S rRNA amplicon data analysis has stronger effects on diversity measures than rarefaction and OTU identity threshold. PLoS One 17:e0264443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis AR, Perkins-Veazie P, Sakata Y, López-Galarza S, Maroto JV, Lee SG, Huh YC, Sun ZY, Miguel A, King S, Cohen R, Lee JM (2008) Cucurbit Grafting. Crit Rev Plant Sci 27:50–74

    Article  Google Scholar 

  • De Borbat MC, Garcés-Fiallos FR, Stadnik MJ (2017) Reactions of black bean seedlings and adult plants to infection by Fusarium oxysporum f. sp. phaseoli. Crop Prot 96:221–227

    Article  Google Scholar 

  • Derakhshani H, Tun HM, Khafipour E (2016) An extended single-index multiplexed 16S rRNA sequencing for microbial community analysis on MiSeq illumina platforms. J Basic Microb 56:321–326

    Article  CAS  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • FAOSTAT (2019) Data base. https://www.fao.org/faostat/en/

  • Gao X, Wu M, Xu R, Wang X, Pan R, Kim HJ, Liao H (2014) Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS One 9:e95031

    Article  PubMed  PubMed Central  Google Scholar 

  • Goicoechea N (2009) To what extent are soil amendments useful to control Verticillium wilt? Pest Manag Sci 65:831–839

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Hou Y, Huang D, Hao Z, Wang X, Wei Z, Jousset A, Tan S, Xu D, Shen Q, Xu Y, Friman VP (2017) Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant Soil 415:269–281

    Article  CAS  Google Scholar 

  • He D, Zhan J, Xie L (2016) Problems, challenges and future of plant disease management: from an ecological point of view. J Integr Agr 15:705–715

    Article  Google Scholar 

  • He W, Zhang L, Yi S, Tang X, Yuan Q, Guo M, Wu A, Qu B, Li H, Liao YC (2017) An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain. Sci Rep 7:9549

    Article  PubMed  PubMed Central  Google Scholar 

  • He X, Xie H, Gao D, Khashi U, Rahman M, Zhou X, Wu F (2021) Biochar and intercropping with potato–onion enhanced the growth and yield advantages of tomato by regulating the soil rroperties, nutrient uptake, and soil microbial community. Front Microbiol 12:695447

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu S, Chapin Iii FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature. 409:188–191

    Article  CAS  PubMed  Google Scholar 

  • Jia T, Liang X, Guo T, Wu T, Chai B (2022) Bacterial community succession and influencing factors for imperata cylindrica litter decomposition in a copper tailings area of China. Sci Total Environ 815:152908

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Díaz R, Castillo P, del Mar Jiménez-Gasco M, Landa B, Navas-Cortés A (2015) Fusarium wilt of chickpeas: biology, ecology and management. Crop Prot 73:16–27

    Article  Google Scholar 

  • Jin X, Wu F, Zhou X (2020) Different toxic effects of ferulic and p-hydroxybenzoic acids on cucumber seedling growth were related to their different influences on rhizosphere microbial composition. Biol Fert Soils 56:125–136

    Article  CAS  Google Scholar 

  • Khalifa O (1965) Biological control of Fusarium wilt of peas by organic soil amendments. Ann Appl Biol 56:129–137

    Article  CAS  Google Scholar 

  • Li XG, Liu B, Heia S, Liu DD, Han ZM, Zhou KX, Cui JJ, Luo JY, Zheng YP (2009) The effect of root exudates from two transgenic insect-resistant cotton lines on the growth of Fusarium oxysporum. Transgenic Res 18:757–767

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ding C, Hua K, Zhang T, Zhang Y, Zhao L, Yang YR, Liu J, Wang X (2014a) Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biol Biochem 78:149–159

    Article  CAS  Google Scholar 

  • Li X, Wang X, Dai C, Zhang T, Xie X, Ding C, Wang H (2014b) Effects of intercropping with Atractylodes lancea and application of bio-organic fertiliser on soil invertebrates, disease control and peanut productivity in continuous peanut cropping field in subtropical China. Agrofor Syst 88:41–52

    Article  Google Scholar 

  • Li X, Wang Z, Bao X, Sun J, Yang S, Wang P, Wang C, Wu J, Liu X, Tian X, Wang Y, Li J, Wang Y, Xia H, Mei P, Wang X, Zhao J, Yu R, Zhang W et al (2021a) Long-term increased grain yield and soil fertility from intercropping. Nat Sustain 4:943–950

    Article  Google Scholar 

  • Li Z, Bai X, Jiao S, Li Y, Li P, Yang Y, Li P, Yang Y, Zhang H, Wei G (2021b) A simplified synthetic community rescues astragalus mongholicus from root rot disease by activating plant-induced systemic resistance. Microbiome. 9:1–20

    Article  CAS  Google Scholar 

  • Li X, Chen D, Carrión VJ, Revillini D, Yin S, Dong Y, Zhang T, Wang X, Delgado-Baquerizo M (2023) Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections. Nat Commun 14:5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Wan Y, Chen E, Huang M, Chen X, Ni H, He J (2023) Sphingomonas caeni sp. nov., a phenolic acid-degrading bacterium isolated from activated sludge. Anton Leeuw 116:687–695

    Article  CAS  Google Scholar 

  • López-Escudero F, Blanco-López M (2001) Effect of a single or double soil solarization to control Verticillium wilt in established olive orchards in Spain. Plant Dis 85:489–496

    Article  PubMed  Google Scholar 

  • Lv H, Cao H, Nawaz MA, Sohail H, Huang Y, Cheng F, Kong Q, Bie Z (2018) Wheat intercropping enhances the resistance of watermelon to fusarium wilt. Front Plant Sci 9:696

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv JX, Dong Y, Dong K, Zhao Q, Yang ZX, Chen L (2020) Intercropping with wheat suppressed Fusarium wilt in faba bean and modulated the composition of root exudates. Plant Soil 448:153–164

    Article  CAS  Google Scholar 

  • Ma Z, Guan Z, Liu Q, Hu Y, Liu L, Wang B, Huang L, Li H, Yang Y, Han M, Gao Z, Saleem M (2023) Obstacles in continuous cropping: mechanisms and control measures. Adv Agron 179:205–256

    Article  Google Scholar 

  • Mahé I, Chauvel B, Colbach N, Cordeau S, Gfeller A, Moreau D (2022) Deciphering field-based evidences for crop allelopathy in weed regulation. A review. Agron Sustain Dev 42:50

    Article  Google Scholar 

  • Mao LG, Wang QX, Yan DD, Xie HW, Li Y, Guo MX, Cao AC (2012) Evaluation of the combination of 1, 3-dichloropropene and dazomet as an efficient alternative to methyl bromide for cucumber production in China. Pest Manag Sci 68:602–609

    Article  CAS  PubMed  Google Scholar 

  • Meng T, Wang Q, Abbasi P, Ma Y (2019) Deciphering differences in the chemical and microbial characteristics of healthy and Fusarium wilt-infected watermelon rhizosphere soils. Appl Microbiol Biotechnol 103:1497–1509

    Article  CAS  PubMed  Google Scholar 

  • More SS, Shinde SE, Kasture MC (2020) Root exudates a key factor for soil and plant: an overview. Pharma Innov J 8:449–459

    Google Scholar 

  • Naim MS, Sharoubeem HH (1964) Carbon and nitrogen requirements of fusarium oxysporum causing cotton wilt. Mycopathol Mycol Appl 22:59–64

    Article  CAS  PubMed  Google Scholar 

  • Ofek M, Voronov-Goldman M, Hadar Y, Minz D (2014) Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environ Microbiol 16:2157–2167

    Article  CAS  PubMed  Google Scholar 

  • Prischl M, Hackl E, Pastar M, Pfeiffer S, Sessitsch A (2012) Genetically modified Bt maize lines containing cry3Bb1, cry1A105 or cry1Ab2 do not affect the structure and functioning of root-associated endophyte communities. Appl Soil Ecol 54:39–48

    Article  Google Scholar 

  • Qin J, Bian C, Duan S, Wang W, Li G, Jin L (2022) Effects of different rotation cropping systems on potato yield, rhizosphere microbial community and soil biochemical properties. Front Plant Sci 13:999730

    Article  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Mazzola M (2016) Soil immune responses. Science. 352:1392–1393

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2008) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  Google Scholar 

  • Radhakrishnan R, Pae SB, Shim KB, Baek IY (2013) Penicillium sp. mitigates Fusarium-induced biotic stress in sesame plants. Biotechnol Lett 35:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Rahate KA, Madhumita M, Prabhakar PK (2021) Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): a comprehensive review. LWT 138:110796

    Article  CAS  Google Scholar 

  • Ramírez-Suero M, Khanshour A, Martinez Y, Rickauer M (2010) A study on the susceptibility of the model legume plant Medicago truncatula to the soil-borne pathogen Fusarium oxysporum. Eur J Plant Pathol 126:517–530

    Article  Google Scholar 

  • Ren L, Su S, Yang X, Xu Y, Huang Q, Shen Q (2008) Intercropping with aerobic rice suppressed fusarium wilt in watermelon. Soil Biol Biochem 40:834–844

    Article  CAS  Google Scholar 

  • Rolfe SA, Griffiths J, Ton J (2019) Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr Opin Microbiol 49:73–82

    Article  CAS  PubMed  Google Scholar 

  • Rousk J, Baath E, Brookes P, Lauber C, Lozupone C, Caporaso J, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Sharma K, Chen W, Muehlbauer F (2005) Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Dis 89:385–390

    Article  PubMed  Google Scholar 

  • Siddiqui I, Shaukat S (2002) Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol Fertil Soils 36:260–268

    Article  Google Scholar 

  • Silveira JAG, Melo ARB, Viégas RA, Oliveira JTA (2001) Salinity-induced effects on nitrogen assimilation related to growth in cowpea plants. Environ Exp Bot 46:171–179

    Article  CAS  Google Scholar 

  • Singh NB (2015) Alleviation of allelopathic stress of benzoic acid by indole acetic acid in Solanum lycopersicum. Sci Hortic 192:211–217

    Article  Google Scholar 

  • Smith S, Helms D, Temple S, Frate C (1999) The distribution of fusarium wilt of blackeyed cowpeas within California caused by Fusarium oxysporum f. sp. tracheiphilum race 4. Plant Dis 83:694

    Article  CAS  PubMed  Google Scholar 

  • Tewari S, Sharma S (2020) Rhizobial-metabolite based biocontrol of fusarium wilt in pigeon pea. Microb Pathogenesis 147:104278

    Article  CAS  Google Scholar 

  • Tian GL, Bi YM, Cheng JD (2019a) High concentration of ferulic acid in rhizosphere soil accounts for the occurrence of Fusarium wilt during the seedling stages of strawberry plants. Physiol Mol Plant Pathol 108:101–435

    Article  Google Scholar 

  • Tian X, Wang C, Bao X, Wang P, Li X, Yang S, Ding G, Christie P, Li L (2019b) Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant Soil 436:173–192

    Article  CAS  Google Scholar 

  • Tjamos E, Biris D, Paplomatas E (1991) Recovery of olive trees from Verticillium wilt after individual application of soil solarisation in established olive orchards. Plant Dis 75:557–562

    Article  Google Scholar 

  • Wang Z, Luo W, Cheng S, Zhang H, Zong J, Zhang Z (2023) Ralstonia solanacearum-A soil borne hidden enemy of plants: research development in management strategies, their action mechanism and challenges. Front Plant Sci 14:1141902

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Yang T, Friman VP, Xu Y, Shen Q, Jousset A (2015) Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun 6:8413

    Article  CAS  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Wen T, Yu G, Hong W, Yuan J, Niu G, Xie P, Sun F, Guo L, Kuzyakov Y, Shen QR (2022) Root exudate chemistry affects soil carbon mobilization via microbial community reassembly. Fundam Res 2:697–707

    Article  CAS  Google Scholar 

  • Wu H, Wang Y, Zhang C, Gu M, Liu Y, Chen G, Wang J, Tang Z, Mao Q, Shen QR (2009) Physiological and biochemical responses of in vitro fusarium oxysporum f. sp. niveum to benzoic acid. Folia Microbiol 54:115–122

    Article  CAS  Google Scholar 

  • Wu Z, Hao Z, Sun Y, Guo L, Huang L, Zeng Y, Wang Y, Yang L, Chen B (2016) Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Appl Soil Ecol 107:99–107

    Article  Google Scholar 

  • Xie E, Wei X, Ding A, Zheng L, Wu X, Anderson B (2020) Short-term effects of salt stress on the amino acids of Phragmites australis root exudates in constructed wetlands. Water. 12:569

    Article  CAS  Google Scholar 

  • Xu W, Wang Z, Wu F (2015a) Companion cropping with wheat increases resistance to fusarium wilt in watermelon and the roles of root exudates in watermelon root growth. Physiol Mol Plant Pathol 90:12–20

    Article  Google Scholar 

  • Xu Y, Wu YG, Chen Y, Zhang JF, Song XQ, Zhu GP (2015b) Autotoxicity in Pogostemon cablin and their allelochemicals. Rev Bras Farmacogn 252:117–123

    Article  Google Scholar 

  • Xu T, Chen X, Hou Y, Zhu B (2021) Changes in microbial biomass, community composition and diversity, and functioning with soil depth in two alpine ecosystems on the Tibetan plateau. Plant Soil 459:137–153

    Article  CAS  Google Scholar 

  • Yang J, Duan Y, Liu X, Sun M, Wang Y, Liu M, Zhu Z, Shen Z, Gao W, Wang B, Chang C, Li R (2022a) Reduction of banana fusarium wilt associated with soil microbiome reconstruction through green manure intercropping. Agric Ecosyst Environ 337:108065

    Article  CAS  Google Scholar 

  • Yang W, Guo Y, Li Y, Zheng Y, Dong K, Dong Y (2022b) Cinnamic acid toxicity on the structural resistance and photosynthetic physiology of faba bean promoted the occurrence of Fusarium wilt of faba bean, which was alleviated through wheat and faba bean intercropping. Front Plant Sci 13:857780

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Li Y, Zhao Q, Guo Y, Dong Y (2022c) Intercropping alleviated the phytotoxic effects of cinnamic acid on the root cell wall structural resistance of faba bean and reduced the occurrence of fusarium wilt. Physiol Plantarum 174:e13827

    Article  CAS  Google Scholar 

  • Yang W, Guo Y, Li Y, Lv J, Dong Y (2023) Benzoic acid promotes Fusarium wilt incidence by enhancing susceptibility and reducing photosynthesis of faba bean. Ann Appl Biol 1–12. https://doi.org/10.1111/aab.12863

  • Yu H, Chen S, Zhang X, Zhou X, Wu F (2019) Rhizosphere bacterial community in watermelon-wheat intercropping was more stable than in watermelon monoculture system under Fusarium oxysporum f. sp. niveum invasion. Plant Soil 445:369–381

    Article  CAS  Google Scholar 

  • Zhang G, Chu X, Zhu H, Zou D, Li L, Du L (2021) The response of soil nutrients and microbial community structures in long-term tea plantations and diverse agroforestry intercropping systems. Sustainability 13(14):7799

    Article  CAS  Google Scholar 

  • Zhang Z, Wu J, Xi Y, Zhang L, Gao Q, Wang-Pruski G (2022) Effects of autotoxicity on seed germination, gas exchange attributes and chlorophyll fluorescence in melon seedlings. J Plant Growth Regul 41:993–1003

    Article  CAS  Google Scholar 

  • Zhang Y, Yang Y, Lu X, Wang A, Xue C, Zhao M, Zhang J (2023a) The effects and interrelationships of intercropping on cotton Verticillium wilt and soil microbial communities. BMC Microbiol 23:1–15

    Article  Google Scholar 

  • Zhang Z, Yang W, Li Y, Zhao Q, Dong Y (2023b) Wheat-faba bean intercropping can control fusarium wilt in faba bean under F. commune and ferulic acid stress as revealed by histopathological analysis. Physiol Mol Plant Pathol 124:101–965

    Article  Google Scholar 

  • Zhao X, Liu X, Zhao H, Ni Y, Lian Q, Qian H, He B, Ma Q (2021) Biological control of fusarium wilt of sesame by Penicillium bilaiae 47M-1. Biol Control 158:104601

    Article  CAS  Google Scholar 

  • Zhou X, Wu F (2012) Dynamics of the diversity of fungal and fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol Ecol 80:469–478

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Chen J, Xing Y, Xie X, Wang L (2019) Influence of intercropping Chinese milk vetch on the soil microbial community in rhizosphere of rape. Plant Soil 440:85–96

    Article  CAS  Google Scholar 

  • Zhou X, Zhang J, Khashi u Rahman M, Gao D, Wei Z, Wu F, Dini-Andreote F (2023) Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Mol Plant 16:849–864

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32260802, 31860596).

Funding

This work was supported by the National Natural Science Foundation of China (32260802, 31860596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Dong.

Ethics declarations

Conflict of interest

There is no conflict of interest in this article.

Additional information

Responsible Editor: Long Li.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yang, W. & Dong, Y. Faba bean–wheat intercropping reconstructed the microbial community structure in the rhizosphere soil of faba bean under F. commune and benzoic acid stress to alleviate Fusarium wilt in faba bean. Plant Soil (2023). https://doi.org/10.1007/s11104-023-06393-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-023-06393-w

Keywords

Navigation