Skip to main content
Log in

Proteomic Analysis of Pea (Pisum sativum L.) Response During Compatible and Incompatible Interactions with the Pea Aphid (Acyrthosiphon pisum H.)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Acyrthosiphon pisum (pea aphid) is considered to be one of the most agronomically damaging pests on pea and alfalfa crops, and is responsible for significant yield losses in agriculture. For the efficient control of the parasite, a better understanding of its interaction and associated resistance mechanisms at the molecular level is required. We used two-dimensional gel electrophoresis (2DE) coupled to mass spectrometry (MSMS) analysis to compare the leaf proteome of two pea accessions displaying different phenotypes to A. pisum infestation. Multivariate statistical analysis identified 203 differential proteins under the experimental conditions, 81 of which were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. Most of the identified proteins corresponded to amino acid and carbohydrate metabolism, photosynthesis, folding/degradation, stress response, signal transduction and transcription/translation. Results suggested the involvement of different metabolic pathways that may be activated in order to overcome pea aphid attack in the resistant accession (P665): reduction of photosynthesis and amino acid biosynthesis that may be helpful in tackling pea aphid attack by limiting access to nutrients, up-accumulation of wound signal molecules such as LOXs and LAPs, and activation of the antioxidant ASC-GSH cycle. In contrast, the susceptible accession (cv. Messire) showed an increase in primary metabolism pathways (especially amino acid biosynthesis), from which a relationship to the successful performance of aphids on this accession could be inferred. Results are also discussed with regard to differences in management of photoassimilates against the strong sinks produced by aphid feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

APX:

Ascorbate peroxidase

ASC-GSH:

Ascorbate-Glutathione cycle

BLAST:

Basic local alignment search tool

CHAPS:

3-(3-cholamidopropyl) dimethylammonio-1propane sulfonate

DTT:

Dithiothreitol

EF-Tu:

Elongation factor Tu

FDR:

False discovery rate

GRPs:

Glycine rich-RNA binding proteins

IEF:

Isoelectric focusing

IPG:

Immobilized pH gradient

JA:

Jasmonic acid

LAPs:

Leucine Aminopeptidases

LOXs:

Lipoxygenases

MALDI-TOF:

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight

MS:

Mass spectrometry

NCBI:

National Center for Biotechnology Information

PCA:

Principal component analysis

PMF:

Peptide mass fingerprinting

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulphate

TCA:

Trichloroacetic acid

TFA:

Trifluoracetic acid

TF:

Transcription factor

2-DE:

Two-dimensional electrophoresis

References

  • Ali K, van den M Louw S, Swart WJ (2005) Components and mechanisms of resistance in selected field pea Pisum sativum lines to the pea aphid Acyrthosiphon pisum (Homoptera: Aphididae). Int J Trop Insect Sci 25:114–121

    Google Scholar 

  • Amey RC, Schleicher T, Slinn J, Lewis M, Macdonald H, Neill SJ, Spencer-Phillips PT (2008) Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. Eur J Plant Pathol 122:41–55

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR (2011) Protein degradation–an alternative respiratory substrate for stressed plants. Trends Plant Sci 16:489–498

    PubMed  Google Scholar 

  • Auclair JL (1965) Feeding and nutrition of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphidae), on chemically defined diets of various pH and nutrient levels. Ann Entomol Soc Am 58:855–875

    CAS  Google Scholar 

  • Auclair JL, Maltais JB, Cartier JJ (1957) Factors in resistance of peas to the pea aphid, Acyrthosiphon pisum (Harr) (Homoptera: Aphididae) II Amino acids. Can Entomol 89:457–464

    CAS  Google Scholar 

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844

    CAS  PubMed  Google Scholar 

  • Barilli E, Rubiales D, Castillejo MA (2012) Comparative proteomic analysis of BTH and BABA-induced resistance in pea (Pisum sativum) toward infection with pea rust (Uromyces pisi). J Proteomics 75:5189–5205

    CAS  PubMed  Google Scholar 

  • Barilli E, Sillero JC, Fernández-Aparicio M, Rubiales D (2009) Identification of resistance to Uromyces pisi (Pers) Wint. in Pisum spp germplasm. Field Crop Res 114:198–203

    Google Scholar 

  • Berger S, Benediktyová Z, Matouš K, Bonfig K, Mueller MJ, Nedbal L, Roitsch T (2007) Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. J Exp Bot 58:797–806

    CAS  PubMed  Google Scholar 

  • Bieri M, Baumgartner J, Bianchi G, Delucchi V, Arx RV (1983) Development and fecundity of pea aphid (Acyrthosiphon pisum Harris) as affected by constant temperatures and by pea varieties. Mitt Schweiz Ent Ges 56:163–171

    Google Scholar 

  • Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–322

    PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    CAS  PubMed  Google Scholar 

  • Caldas T, Laalami S, Richarme G (2000) Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275:855–860

    CAS  PubMed  Google Scholar 

  • Campbell A, Mackauer M (1977) Reproduction and population growth of the pea aphid (Homoptera: Aphididae) under laboratory and field conditions. Can Entomol 109:277–284

    Google Scholar 

  • Castillejo MA, Curto M, Fondevilla S, Rubiales D, Jorrín JV (2010a) Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum sativum) in response to Mycosphaerella pinodes. J Agr Food Chem 58:12822–12832

    CAS  Google Scholar 

  • Castillejo MA, Susín R, Madrid E, Fernández‐Aparicio M, Jorrín JV, Rubiales D (2010b) Two‐dimensional gel electrophoresis‐based proteomic analysis of the Medicago truncatula–rust (Uromyces striatus) interaction. Ann Appl Biol 157:243–257

    CAS  Google Scholar 

  • Chao WS, Pautot V, Holzer FM, Walling LL (2000) Leucine aminopeptidases: the ubiquity of LAP-N and the specificity of LAP-A. Planta 210:563–573

    CAS  PubMed  Google Scholar 

  • Christensen SA, Kolomiets MV (2011) The lipid language of plant–fungal interactions. Fungal Genet Biol 48:4–14

    CAS  PubMed  Google Scholar 

  • Corcuera LJ (1993) Biochemical basis for the resistance of barley to aphids. Phytochemistry 33:741–747

    CAS  Google Scholar 

  • Creighton DJ, Hamilton DS (2001) Brief history of glyoxalase I and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations. Arch Biochem Biophys 387:1–10

    CAS  PubMed  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:1–10

    Google Scholar 

  • Dorschner KW, Ryan JD, Jonhson RC, Eikenbary RD (1987) Modification of host nitrogen levels by the greenbug (Homoptera: Aphididae): its role in resistance of winter wheat to aphids. Environ Entomol 16:1007–1011

    Google Scholar 

  • Ellsbury MM, Pratt RG, Knight WE (1985) Effects of single and combined infection of arrowleaf clover with Bean yellow mosaic virus and a Phytophthora sp on reproduction and colonization by pea aphids (Homoptera: Aphididae). Environ Entomol 14:356–359

    Google Scholar 

  • Ferry N, Stavroulakis S, Guan W, Davison GM, Bell HA, Weaver RJ, Gatehouse AM (2011) Molecular interactions between wheat and cereal aphid (Sitobion avenae): analysis of changes to the wheat proteome. Proteomics 11:1985–2002

    CAS  PubMed  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    CAS  PubMed  Google Scholar 

  • Fondevilla S, Ávila CM, Cubero JI, Rubiales D (2005) Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breed 124:313–315

    Google Scholar 

  • Fondevilla S, Carver TWL, Moreno MT, Rubiales D (2007) Identification and characterisation of sources of resistance to Erysiphe pisi Syd. in Pisum spp. Plant Breed 126:113–119

    Google Scholar 

  • Fowler JH, Narváez-Vásquez J, Aromdee DN, Pautot V, Holzer FM, Walling LL (2009) Leucine aminopeptidase regulates defense and wound signaling in tomato downstream of jasmonic acid. Plant Cell 21:1239–1251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Alfano JR (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284–288

    CAS  PubMed  Google Scholar 

  • Gao LL, Kamphuis LG, Kakar K, Edwards OR, Udvardi MK, Singh KB (2010) Identification of potential early regulators of aphid resistance in Medicago truncatula via transcription factor expression profiling. New Phytol 186:980–994

    CAS  PubMed  Google Scholar 

  • Gao LL, Klingler JP, Anderson JP, Edwards OR, Singh KB (2008) Characterization of pea aphid resistance in Medicago truncatula. Plant Physiol 146:996–1009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    CAS  PubMed  Google Scholar 

  • Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909

    CAS  PubMed  Google Scholar 

  • Girousse C, Moulia B, Silk W, Bonnemain JL (2005) Aphid infestation causes different changes in carbon and nitrogen allocation in alfalfa stems as well as different inhibitions of longitudinal and radial expansion. Plant Physiol 137:1474–1484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo S, Kamphuis LG, Gao L, Edwards OR, Singh KB (2009) Two independent resistance genes in the Medicago truncatula cultivar Jester confer resistance to two different aphid species of the genus Acyrthosiphon. Plant Signal Behav 4:328–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo SM, Kamphuis LG, Gao LL, Klingler JP, Lichtenzveig J, Edwards O, Singh KB (2012) Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula. J Exp Bot 63:3913–3922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gutsche AR, Heng-Moss TM, Higley LG, Sarathe G, Mornhinweg DW (2009) Physiological responses of resistant and susceptible barley, Hordeum vulgare to the Russian wheat aphid, Diuraphis noxia (Mordvilko). Arthropod-Plant Interact 3:233–240

    Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    CAS  PubMed  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Google Scholar 

  • Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata I large-scale changes in the accumulation of growth-and defense-related plant mRNAs. Plant Physiol 125:683–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holt J, Wratten SD (1986) Components of resistance to Aphis fabae in faba bean cultivars. Entomol Exp Appl 40:35–40

    Google Scholar 

  • Hwang IS, Hwang BK (2010) The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152:948–967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue Y, Kimura A (1995) Methylglyoxal and regulation of its metabolism in microorganisms. Adv Microb Physiol 37:177–227

    CAS  PubMed  Google Scholar 

  • Jiang Y, Miles PW (1993) Responses of a compatible lucerne variety to attack by spotted alfalfa aphid: changes in redox balance in affected tissues. Entomol Exp Appl 67:263–274

    Google Scholar 

  • Jiménez A, Hernández JA, Pastori G, del Río LA, Sevilla F (1998) Role of the ascorbate-gluthatione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    PubMed Central  PubMed  Google Scholar 

  • Kamphuis LG, Gao L, Singh KB (2012) Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula. BMC Plant Biol 12:101

    PubMed Central  PubMed  Google Scholar 

  • Kinoshita T, Yamada K, Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I (1999) Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J 19:43–53

    CAS  PubMed  Google Scholar 

  • Klingler J, Creasy R, Gao L, Nair RM, Calix AS, Jacob HS, Singh KB (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137:1445–1455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klingler JP, Edwards OR, Singh KB (2007) Independent action and contrasting phenotypes of resistance genes against spotted alfalfa aphid and bluegreen aphid in Medicago truncatula. New Phytol 173:630–640

    CAS  PubMed  Google Scholar 

  • Klingler JP, Nair RM, Edwards OR, Singh KB (2009) A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. J Exp Bot 60:4115–4127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knaff DB, Hirasawa M (1991) Ferredoxin-dependent chloroplast enzymes. BBA-Bioenergetics 1056:93–125

    CAS  PubMed  Google Scholar 

  • Kuśnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM (2007) Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. J Exp Bot 58:2537–2552

    PubMed  Google Scholar 

  • Kuźniak E, Urbanek H (2000) The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol Plant 22:195–203

    Google Scholar 

  • Larson KC, Whitham TG (1997) Competition between gall aphids and natural plant sinks: plant architecture affects resistance to galling. Oecologia 109:575–582

    Google Scholar 

  • Laughlin R (1965) Capacity for increase: a useful population statistic. J Anim Ecol 34:77–91

    Google Scholar 

  • Leather SR, Dixon AFG (1984) Aphid growth and reproductive rates. Entomol Exp Appl 35:137–140

    Google Scholar 

  • Li Y, Zou J, Li M, Bilgin DD, Vodkin LO, Hartman GL, Clough SJ (2008) Soybean defense responses to the soybean aphid. New Phytol 179:185–195

    CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    CAS  PubMed  Google Scholar 

  • Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8:272–278

    CAS  PubMed  Google Scholar 

  • Lorković ZJ, Barta A (2002) Genomic analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 30:623–635

    PubMed Central  PubMed  Google Scholar 

  • Łukasik I, Goławska S, Wójcicka A (2012) Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in Triticale. Pol J Environ Stud 21:1937–1941

    Google Scholar 

  • Macedo TB, Bastos CS, Higley LG, Ostlie KR, Madhavan S (2003) Photosynthetic responses of soybean to soybean aphid (Homoptera: Aphididae) injury. J Econ Entomol 96:188–193

    CAS  PubMed  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    CAS  PubMed  Google Scholar 

  • Markkula M, Roukka K (1971) Resistance of plants to the pea aphid Acyrthosiphon pisum Harris (Hom, Aphididae) III Fecundity on different pea varieties. Ann Agr Fenn 10:33–37

    Google Scholar 

  • McVean RIK, Dixon AFG (2002) The host plant range of the pea aphid subspecies Acyrthosiphon pisum ssp. destructor (Johnson) (Hom, Aphididae). J Appl Entomol 126:281–286

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  • Moloi MJ, van der Westhuizen AJ (2006) The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J Plant Physiol 163:1118–1125

    CAS  PubMed  Google Scholar 

  • Mosblech A, Feussner I, Heilmann I (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Bioch 47:511–517

    CAS  Google Scholar 

  • Newman W, Pimentel D (1974) Garden peas resistant to the pea aphid. J Econ Entomol 67:365–367

    Google Scholar 

  • Otegui MS, Noh YS, Martínez DE, Vila Petroff MG, Staehelin LA, Amasino RM, Guiamet JJ (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41:831–844

    CAS  PubMed  Google Scholar 

  • Pegadaraju V, Knepper C, Reese J, Shah J (2005) Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol 139:1927–1934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potenza C, Thomas SH, Sengupta-Gopalan C (2001) Genes induced during early response to Meloidogyne incognita in roots of resistant and susceptible alfalfa cultivars. Plant Sci 161:289–299

    CAS  PubMed  Google Scholar 

  • Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 51:309–330

    CAS  PubMed  Google Scholar 

  • Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Fournier J (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139:1902–1913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riedell WE (1989) Effect of Russian wheat aphid infestation on barley plant response to drought stress. Physiol Plantarum 77:587–592

    CAS  Google Scholar 

  • Rubiales D, Moreno MT, Sillero JC (2005) Search for resistance to crenate broomrape (Orobanche crenata) in pea germplasm. Genet Resour Crop Ev 52:853–861

    Google Scholar 

  • Sachetto-Martins G, Franco LO, de Oliveira DE (2000) Plant glycine-rich proteins: a family or just proteins with a common motif? BBA-Gene Struct Expr 1492:1–14

    CAS  Google Scholar 

  • Sandström J, Moran N (1999) How nutritionally imbalanced is phloem sap for aphids? Entomol Exp Appl 91:203–210

    Google Scholar 

  • Sandström J, Pettersson J (1994) Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance. J Insect Physiol 40:947–955

    Google Scholar 

  • Sandström J, Telang A, Moran NA (2000) Nutritional enhancement of host plants by aphids—a comparison of three aphid species on grasses. J Insect Physiol 46:33–40

    PubMed  Google Scholar 

  • Schwartzberg EG, Böröczky K, Tumlinson JH (2011) Pea aphids, Acyrthosiphon pisum, suppress induced plant volatiles in broad bean, Vicia faba. J Chem Ecol 37:1055–1062

    CAS  PubMed  Google Scholar 

  • Searls EM (1932) A preliminary report on the resistance of certain legumes to certain homopterous insects. J Econ Entomol 25:46–49

    Google Scholar 

  • Sempruch C, Ciepiela AP (2002) Changes in content and amino acids composition of protein of winter triticale selected cultivars caused by grain aphid feeding. J Plant Prot Res 42:37–44

    CAS  Google Scholar 

  • Sempruch C, Michalak A, Leszczyński B (2011) Effect of Sitobion avenae (Fabricius, 1775) feeding on the free amino acid content within selected parts of triticale plants. Aphids Hemipterous Insects 17:139–145

    Google Scholar 

  • Sharov AA, Dudekula DB, Ko MS (2005) A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 21:2548–2549

    CAS  PubMed  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    CAS  PubMed  Google Scholar 

  • Singh BN, Mishra RN, Agarwal PK, Goswami M, Nair S, Sopory SK, Reddy MK (2004) A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochem Bioph Res Co 320:523–530

    CAS  Google Scholar 

  • Soroka JJ, Mackay PA (1990) Seasonal occurrence of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), on cultivars of field peas in Manitoba and its effects on pea growth and yield. Can Entomol 122:503–513

    Google Scholar 

  • Soroka JJ, Mackay PA (1991) Antibiosis and antixenosis to pea aphid (Homoptera: Aphididae) in cultivars of field peas. J Econ Entomol 84:1951–1956

    Google Scholar 

  • Stasolla C, Katahira R, Thorpe TA, Ashihara H (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160:1271–1295

    CAS  PubMed  Google Scholar 

  • Stewart SA, Hodge S, Ismail N, Mansfield JW, Feys BJ, Prospéri JM, Powell G (2009) The RAP1 gene confers effective, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Mol Plant-Microbe Interact 22:1645–1655

    CAS  PubMed  Google Scholar 

  • Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54:1127–1132

    CAS  PubMed  Google Scholar 

  • Thornalley PJ (2003) Glyoxalase I-structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348

    CAS  PubMed  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    CAS  PubMed  Google Scholar 

  • Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745

    CAS  PubMed  Google Scholar 

  • Valledor L, Jorrín J (2011) Back to the basics: maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J Proteomics 74:1–18

    CAS  PubMed  Google Scholar 

  • Vander Jagt D (1989) The glyoxalase system. In: Dolphin D, Poulson R, Avramovic O (eds) Glutathione: chemical, biochemical and medical aspects, part A, Wiley, New York, pp. 597–641

  • Voelckel C, Baldwin IT (2004) Herbivore‐induced plant vaccination Part II Array‐studies reveal the transience of herbivore‐specific transcriptional imprints and a distinct imprint from stress combinations. Plant J 38:650–663

    CAS  PubMed  Google Scholar 

  • Vranová E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    PubMed  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    CAS  PubMed  Google Scholar 

  • Will T, Kornemann SR, Furch AC, Tjallingii WF, van Bel AJ (2009) Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon? J Exp Biol 212:3305–3312

    CAS  PubMed  Google Scholar 

  • Will T, Tjallingii WF, Thönnessen A, van Bel AJ (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci USA 104:10536–10541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkinson TL, Douglas AE (1998) Plant penetration by pea aphids (Acyrthosiphon pisum) of different plant range. Entomol Exp Appl 87:43–50

    Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    CAS  PubMed  Google Scholar 

  • Yang DH, Hettenhausen C, Baldwin IT, Wu J (2011) BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata's responses to herbivory. J Exp Bot 62:641–652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Mickelson S, See D, Blake TK, Fischer AM (2004) Genetic analysis of the function of major leaf proteases in barley (Hordeum vulgare L) nitrogen remobilization. J Exp Bot 55:2607–2616

    CAS  PubMed  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6:79–84

    CAS  PubMed  Google Scholar 

  • Zeng F, Pederson G, Ellsbury M, Davis F (1993) Demographic statistics for the pea aphid (Homoptera: Aphididae) on resistant and susceptible red clovers. J Econ Entomol 86:1852–1856

    Google Scholar 

  • Zou J, Rodriguez-Zas S, Aldea M, Li M, Zhu J, Gonzalez DO, Clough SJ (2005) Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Mol Plant-Microbe Interact 18:1161–1174

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish AGL2011-22524 project. The authors would like to thank the research group of Dr. Pr. Singh (CSIRO, Australia) for their support and training with the pea aphid. E. Carrillo was funded by a grant from Cabildo de La Palma- CSIC PhD and Mª Angeles Castillejo by a postdoctoral fellowship from the Spanish Ministry of Education, through the Mobility Program R-D + I 2008–2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Castillejo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Dataset containing protein expression intensity values for 411 protein spots selected due to prospective differential expression behavior. The expression values were obtained after data normalization using the PD-QuestTM Advanced 2D analysis software. Values are mean ± SD of three biological replicates. (DOCX 333 kb)

Table S2

PCA analysis at 24 hai and 84 hai. This analysis allows for generation of associations between proteins and experimental conditions. Protein spots are listed from highest to lowest log changes. (DOC 2285 kb)

Table S3

Fragmented peptides sequences obtained by MSMS analysis. (DOC 2433 kb)

Figure S1

Venn diagrams of the quantitative (a-d), and qualitative (e-h) changes in proteins between non-infested (a, e) and infested (b, f) accessions, as well as in response to the infestation in the susceptible Messire (c, g) and in the resistant P665 (d, h) accessions. M (Messire), P (P665), C (Control, non-infested), I (Infested), 24 (24 hai), 84 (84 hai). (PPTX 528 kb)

Figure S2

Mean log abundance intensities for protein spots identified by PCA and pairwise comparisons separately shown by sampling time (24 hai, 84 hai). (PC1+) protein spots positively correlated with PC1. (PC1-) protein spots negatively correlated with PC1. (PC2+) protein spots positively correlated with PC2. (PC2-) protein spots negatively correlated with PC2. (PC3+) protein spots positively correlated with PC3. (PC3-) protein spots negatively correlated with PC3. (a) Legend for graphs in panels. The mean log intensity values were calculated from the sample replications. (PPTX 1434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, E., Rubiales, D. & Castillejo, M.A. Proteomic Analysis of Pea (Pisum sativum L.) Response During Compatible and Incompatible Interactions with the Pea Aphid (Acyrthosiphon pisum H.). Plant Mol Biol Rep 32, 697–718 (2014). https://doi.org/10.1007/s11105-013-0677-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0677-x

Keywords

Navigation