Skip to main content
Log in

Seasonal and tissue-specific transgene expression and resveratrol-3-glucoside (piceid) accumulation in genetically modified white poplars carrying the grapevine StSy gene

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Unexpected responses may occur in trees at specific stages after extensive cultivation time or they may be induced by specific environmental signals. The present work reports on a greenhouse trial carried out with transgenic white poplars (Populus alba L. cv. ‘Villafranca’) expressing the StSy gene from Vitis vinifera L., responsible for resveratrol biosynthesis. Notwithstanding the presence of the constitutive 35SCaMV promoter, significant fluctuations in the amount of the StSy transcript were observed in relation to season, tissue/organ type and position. High-Performance Liquid Chromatography with Diode-Array Detection revealed that the trans-isomer of resveratrol-3-glucoside (trans-piceid) accumulated in highly variable concentrations in leaves while reaching more stable values in stems and roots. Substantial amounts were observed in leaves (up to 717 mg kg−1 fresh weight), stems (up to 226 mg kg−1 fresh weight) and roots (up to 330 mg kg−1 fresh weight) while the cis-isomer was present only in leaves (up to 321 mg kg−1 fresh weight).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

GM:

Genetically modified

HPLC-DAD:

High performance liquid chromatography with diode-array detection

Nos-P:

Nopaline synthase promoter

nptII :

Gene encoding neomycine phosphotransferase

PCR:

Polymerase chain reaction

SDS:

Sodium dodecyl sulphate

StSy :

Gene encoding stylbene synthase

References

  • Ahuja MR (2009) Transgene stability and dispersal in forest trees. Trees Struct Funct 23:1125–1135

    CAS  Google Scholar 

  • Austin MB, Bowman ME, Ferrer JL, Schroder J, Noel JP (2004) An aldol switch discovered in stilbene synthase mediates cyclization specificity of type III polyketide synthases. Chem Biol 11:1179–1194

    Article  PubMed  CAS  Google Scholar 

  • Balestrazzi A, Allegro G, Confalonieri M (2006) Genetically modified trees expressing genes for insect pest resistance. In: Fladung M, Ewald D (eds) Tree transgenesis: recent developments. Springer, Berlin, pp 253–273

    Google Scholar 

  • Balestrazzi A, Botti S, Zelasco S, Biondi S, Franchin C, Calligari P, Racchi M, Turchi A, Lingua G, Berta G, Carbonera D (2009) Expression of the PsMTA1 gene in white poplar engineered with the MAT system is associated with heavy metal tolerance and protection against 8-hydroxy-2′-deoxyguanosine mediated-DNA damage. Plant Cell Rep 28:1179–1192

    Article  PubMed  CAS  Google Scholar 

  • Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve SJ, Karlsson J, Gardestrom P, Gustafsson P, Lundeberg J, Jansson S (2003) Gene expression in autumn leaves. Plant Physiol 131:430–442

    Article  PubMed  Google Scholar 

  • Bonadei M, Balestrazzi A, Giorcelli A, Mattivi F, Carbonera D (2007) Evaluation of the expression level of the endogenous marker poUBI gene for studies on transgene stability in bar and StSy GM poplars. Caryologia 60:172–174

    Google Scholar 

  • Brunner AM, Li J, DiFazio SP, Schevchenko O, Montgomery BE, Mohamed R, Wil H, Ma C, Elias AA, vanWormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Genet Gen 3:75–100

    Article  Google Scholar 

  • Confalonieri M, Belenghi B, Balestrazzi A, Negri S, Facciotto G, Schenone G, DelleDonne M (2000) Transformation of elite white poplar (P. alba) cv ‘Villafranca’ and evaluation of herbicide resistance. Plant Cell Rep 19:978–982

    Article  CAS  Google Scholar 

  • D’Introno A, Paradiso A, Scoditti E, D’Amico L, De Paolis A, Carluccio MA, Nicoletti I, DeGara L, Santino A, Giovinazzo G (2009) Antioxidant and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes. Plant Biotech J 7:422–429

    Article  Google Scholar 

  • Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J (2007) Sirtuins: the ‘magnificent seven’, functions, metabolism and longevity. Ann Med 39:335–345

    Article  PubMed  CAS  Google Scholar 

  • Delaunois B, Cordelier S, Conreux A, Clement C, Jeandet P (2009) Molecular engineering of resveratrol in plants. Plant Biotech J 7:2–12

    Article  CAS  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822

    Article  PubMed  CAS  Google Scholar 

  • Filipecki M, Malepszy S (2006) Unintended consequences of plant transformation: a molecular insight. J Appl Genet 47:277–286

    Article  PubMed  Google Scholar 

  • Fisher R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J 11:489–498

    Article  Google Scholar 

  • Giorcelli A, Sparvoli F, Mattivi F, Balestrazzi A, Tava A, Vrhovsek U, Calligari P, Bollini R, Confalonieri M (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant compounds resveratrol glucosides. Trans Res 13:203–214

    Article  CAS  Google Scholar 

  • Goswami SK, Das DK (2009) Resveratrol and chemoprevention. Cancer Lett 284:1–6

    Article  PubMed  CAS  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  PubMed  CAS  Google Scholar 

  • Halls C, Yu O (2007) Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotech 26:77–81

    Article  Google Scholar 

  • Hanhineva K, Kokko H, Siljanen H, Rogachev I, Aharoni A, Karenlampi SO (2009) Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria × ananassa). J Exp Bot 60:2093–2106

    Article  PubMed  CAS  Google Scholar 

  • Henry-Vitrac C, Desmouliere A, Girard D, Merillon J-M, Krisa S (2006) Transport, deglycosylation, and metabolism of trans-piceid by small intestinal epithelial cells. Eur J Nutr 45:376–382

    Article  PubMed  CAS  Google Scholar 

  • Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact 13:551

    Article  PubMed  CAS  Google Scholar 

  • Hoenicka H, Fladung M (2006) Genome instability in woody plants derived from genetic engineering. In: Fladung M, Ewald D (eds) Tree transgenesis: recent developments. Springer, Berlin, pp 301–321

    Google Scholar 

  • Husken A, Baumert A, Milkowski C, Becker HC, Strack D, Mollers C (2005) Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). TAG 111:1553–1562

    Article  PubMed  Google Scholar 

  • Jeandet P, Douillet-Breuil A-C, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    Article  PubMed  CAS  Google Scholar 

  • Li J, Brunner AM, Meilan R, Strauss SH (2009) Stability of transgenes in trees: expression of two reporter genes in poplar over three field seasons. Tree Physiol 29:299–312

    Article  PubMed  CAS  Google Scholar 

  • Meilan R, Han K-H, Ma C, DiFazio SP, Eaton JA, Skinner JS, Jouanin L, Pilate G, Strauss SH (2002) The CP4 transgene provides high levels of tolerance to Roundup herbicide in field-grown hybrid poplars. Can J For Res 32:967–976

    Article  CAS  Google Scholar 

  • Nicoletti I, De Rossi A, Giovinazzo G, Corradini D (2007) Identification and quantification of stilbenes in fruits of transgenic tomato plants (Lycopersicon esculentum Mill.) by reversed phase HPLC with photodiode array and mass spectrometry detection. J Agric Food Chem 55:3304–3311

    Article  PubMed  CAS  Google Scholar 

  • Pirola L, Frojdo S (2008) Resveratrol: one molecule, many targets. IUBMB Life 60:323–332

    Article  PubMed  CAS  Google Scholar 

  • Schwekendick A, Spring O, Heyerick A, Pickel B, Pitsch NT, Peschke F, De Keukeleire D, Weber G (2007) Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and its derivatives in substantial quantities. J Agric Food Chem 55:7002–7009

    Article  Google Scholar 

  • Sharma AK, Sharma MK (2009) Plants as bioreactors: recent developments and emerging opportunities. Biotech Adv 27:811–832

    Article  CAS  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    Article  PubMed  CAS  Google Scholar 

  • Strauss SH, Brunner AM, Busov VB, Ma C, Meilan R (2004) Ten lessons from 15 years of transgenic Populus research. Forestry 77:455–465

    Article  Google Scholar 

  • Trela BC, Waterhouse AL (1996) Resveratrol: isomeric molar absorptivities and stability. J Agric Food Chem 44:1253–1257

    Article  CAS  Google Scholar 

  • Varshavsky A (1997) The ubiquitin system. Trends Biochem Sci 22:383–387

    Article  PubMed  CAS  Google Scholar 

  • Verwoerd TC, Dekker BMM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Kong X, Martins-Santos ME, Aleman G, Chaco E, Liu GE, Wu SY, Samols D, Hakaimi P, Chiang CM, Hanson RW (2009) The activation of Sirt1 by resveratrol represses transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) by deacetylating HNF4α. J Biol Chem 284:27042–27053

    Article  PubMed  CAS  Google Scholar 

  • Yu CK, Lam CN, Springob K, Schmidt J, Chu IK, Lo C (2006) Constitutive accumulation of cis-piceid in transgenic Arabidopsis overexpressing a sorghum stilbene synthase gene. Plant Cell Physiol 47:1017–1721

    Article  PubMed  CAS  Google Scholar 

  • Zelasco S, Ressegotti V, Confalonieri M, Carbonera D, Calligari P, Bonadei M, Bisoffi S, Yamada K, Balestrazzi A (2007) Evaluation of MAT-vector system in white poplar (Populus alba L.) and production of ipt marker-free transgenic plants by ‘single-step transformation’. Plant Cell Tissue Organ Cult 9:61–72

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Regione Lombardia (Divisione Generale Agricoltura). M. B. and S. Z. received a fellowship from Regione Lombardia. The authors would like to thank Massimo Confalonieri for assistance with statistical analyses and Domenico Masuero for technical assistance in the chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Carbonera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balestrazzi, A., Bonadei, M., Zelasco, S. et al. Seasonal and tissue-specific transgene expression and resveratrol-3-glucoside (piceid) accumulation in genetically modified white poplars carrying the grapevine StSy gene. Plant Cell Tiss Organ Cult 105, 1–8 (2011). https://doi.org/10.1007/s11240-010-9830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9830-5

Keywords

Navigation