Skip to main content

Advertisement

Log in

Intraspecific trait variation and species turnover in successional tropical forests: assessing trait imputation for community-weighted means

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Accounting for intraspecific trait variation (ITV) is crucial to plant ecology for vegetation modeling efforts. ITV can be substantial; however, it remains unclear how ITV influences community-weighted mean (CWM) trait estimates. We use leaf and root trait data from 423 trees of 72 species from 15 Angiosperm families in combination with community data from 164 25 × 25 m plots comprising 580 species to evaluate the contributions of ITV and compositional turnover to CWMs, comparing unlogged primary tropical forest to selectively logged and clear-cut secondary tropical forest. We also examine the effect of imputing missing trait values using phylogenetic generalized linear modeling (PhyloPars) on CWMs. For six of the seven traits, ITV negatively covaried with community compositional turnover to generate larger CWM differences between forest types than observed if ITV was not integrated. For example, plot average-weighted mean specific leaf area was 10.7 and 10.4 m2 kg−1 for primary and secondary forests, not accounting for ITV, but shifted to 9.8 and 11.1 m2 kg−1 after doing so. Our results from 72 species assemblages were largely consistent with results using phylogenetically imputed traits for the entire community. The contribution of ITV to CWMs ranged from 25 to 75%, with ITV, not species turnover, driving CWM trait variation among successional forest types. CWM trait estimates became more conservative with forest age, whereas ITV for many traits showed an opposing acquisitive shift (i.e., increasing in leaf area or root length) and because of negative covariation between ITV and species turnover, weighted mean trait differences between successional forest types increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The functional trait data used in this study are archived on figshare: https://doi.org/10.6084/m9.figshare.7996328.v4. The tree demographic data are available from Dr. Han Xu at the Chinese Academy of Forestry upon request.

Code availability

All code used is freely available as part of R. The code for the trait flex ANOVA function is available in the supplemental material of Lepš et al. (2011). Example code for the analyses and creation of figures is available from JAH upon request.

Abbreviations

AWM:

Assemblage (i.e., partial community)-weighted mean

CWM:

Community-weighted mean

ITV:

Intraspecific trait variation

JFL:

Jianfengling

pGLM:

Phylogenetic generalized linear model

RBI:

Root branching intensity (in tips cm−1)

RTD:

Root tissue density (in g cm−3)

SLA:

Specific leaf area (in m2 kg−1)

SRL:

Specific root length (in m g−1)

WD:

Wood density (in g cm−3)

References

  • Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M (2014) Functional traits explain variation in plant life history strategies. Proc Natl Acad Sci USA 111:740–745

    Article  CAS  PubMed  Google Scholar 

  • Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010) Intraspecific functional variability: extent structure and sources of variation. J Ecol 98:604–613

    Article  Google Scholar 

  • Auger S, Shipley B (2013) Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J Veg Sci 24:419–428

    Article  Google Scholar 

  • Baraloto C, Paine CET, Patiño S, Bonal D, Hérault B, Chave J (2010) Functional trait variation and sampling strategies in species-rich plant communities. Funct Ecol 24:208–216

    Article  Google Scholar 

  • Baraloto C, Hardy OJ, Paine CET, Dexter KG, Cruaud C, Dunning LT, Gonzalez MA, Molino JF, Sabatier D, Savolainen V (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. J Ecol 100:690–701

    Article  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    Article  PubMed  Google Scholar 

  • Bolnick D, Amarasekare P, Araújo M, Bürger R, Levine J, Novak M, Rudolf V, Schreiber S, Urban M, Vasseur D (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, Botta-Dukát Z, Chytrý M, Field R, Jansen F et al (2018) Global trait–environment relationships of plant communities. Nat Ecol Evol 2:1906–1917

    Article  PubMed  Google Scholar 

  • Bruggeman J, Heringa J, Brandt BW (2009) PhyloPars: estimation of missing parameter values using phylogeny. Nucleic Acids Res 37:W179–W184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan JS, Meiners SJ, Flores-Moreno H, McCormack ML (2019) Fine-root traits are linked to species dynamics in a successional plant community. Ecology 100:e02588

    Article  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Chazdon RL, Finegan B, Capers RS, Salgado-Negret B, Casanoves F, Boukili V, Norden N (2010) Composition and dynamics of functional groups of trees during tropical forest succession in northeastern Costa Rica. Biotropica 42:31–40

    Article  Google Scholar 

  • Christensen NL, Peet RK (1984) Convergence during secondary forest succession. J Ecol 72:25–36

    Article  Google Scholar 

  • Craven D, Eisenhauer N, Pearse WD, Hautier Y, Isbell F, Roscher C, Bahn M, Beierkuhnlein C, Bönisch G, Buchmann N et al (2018) Multiple facets of biodiversity drive the diversity–stability relationship. Nat Ecol Evol 2:1579–1587

    Article  PubMed  Google Scholar 

  • Denelle P, Violle C, Munoz F (2019) Distuingsihg the signatures of local environmental filtering and regional trait range limits in the study of trait-environment relationships. Oikos 128:690–971

    Article  Google Scholar 

  • Derroire G, Powers JS, Hulshof CM, Cárdenas Varela LE, Healey JR (2018) Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica. Sci Rep 8:285

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC (2016) The global spectrum of plant form and function. Nature 529:167

    Article  PubMed  Google Scholar 

  • Draper FC, Costa FRC, Arellano G, Phillips OL, Duque A, Macía MJ, ter Steege H, Asner GP, Berenguer E, Schietti J et al (2021) Amazon tree dominance across forest strata. Nat Ecol Evol 5:757–767

    Article  PubMed  Google Scholar 

  • Escudero A, Valladares F (2016) Trait-based plant ecology: moving towards a unifying species coexistence theory. Oecologia 180:919–922

    Article  PubMed  Google Scholar 

  • Fajardo A, Siefert A (2018) Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology 99:1024–1030

    Article  PubMed  Google Scholar 

  • Fisher RA, Koven CD, Anderegg WRL, Christoffersen BO, Dietze MC, Farrior CE, Holm JA, Hurtt GC, Knox RG, Lawrence PJ et al (2018) Vegetation demographics in earth system models: a review of progress and priorities. Glob Change Biol 24:35–54

    Article  Google Scholar 

  • Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, De Deyn GB, Johnson D, Klimešová J et al (2020) Root traits as drivers of plant and ecosystem functioning: current understanding pitfalls and future research needs. New Phytol 232:1123–1158

    Article  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Goolsby EW, Bruggeman J, Ané C (2017) Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol Evol 8:22–27

    Article  Google Scholar 

  • Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148:185–206

    Article  Google Scholar 

  • Hofhansl F, Chacón-Madrigal E, Brännström Å, Dieckmann U, Franklin O (2021) Mechanisms driving plant functional trait variation in a tropical forest. Ecol Evol 11:3856–3870

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogan JA, Hérault B, Bachelot B, Gorel A, Jounieaux M, Baraloto C (2018) Understanding the recruitment response of juvenile Neotropical trees to logging intensity using functional traits. Ecol Appl 28:1998–2010

    Article  PubMed  Google Scholar 

  • Hogan JA, Valverde-Barrantes OJ, Ding Q, Xu H, Baraloto C (2020) Morphological variation of fine root systems and leaves in primary and secondary tropical forests of Hainan Island China. Ann for Sci 77:79

    Article  Google Scholar 

  • Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011) Species-and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. J Ecol 99:954–963

    Article  Google Scholar 

  • Huang Q, Li Y, Zheng D, Zhang J, Wan L, Jiang Y, Zhao Y (1995) Study on tropical vegetation series in Jianfengling Hainan Island. In: Zeng Q, Zhou G, Yide L, Wu Z, Chen B (eds) Researches on tropical forest ecosystems in Jianfengling of China. China Forestry Publishing House, Beijing, China, pp 5–25

    Google Scholar 

  • Hulshof CM, Swenson NG (2010) Variation in leaf functional trait values within and across individuals and species: an example from a Costa Rican dry forest. Funct Ecol 24:217–223

    Article  Google Scholar 

  • Jin D, Cao X, Ma K (2013) Leaf functional traits vary with the adult height of plant species in forest communities. J Plant Ecol 7:68–76

    Article  Google Scholar 

  • Johnson TF, Isaac NJB, Paviolo A, González-Suárez M (2021) Handling missing values in trait data. Glob Ecol Biogeogr 30:51–62

    Article  Google Scholar 

  • Katabuchi M, Wright SJ, Swenson NG, Feeley KJ, Condit R, Hubbell SP, Davies SJ (2017) Contrasting outcomes of species- and community-level analyses of the temporal consistency of functional composition. Ecology 98:2273–2280

    Article  PubMed  Google Scholar 

  • Keddy P (1992) A pragmatic approach to functional ecology. Funct Ecol 6:621–626

    Article  Google Scholar 

  • Kichenin E, Wardle DA, Peltzer DA, Morse CW, Freschet GT (2013) Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct Ecol 27:1254–1261

    Article  Google Scholar 

  • Kraft NJ, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322:580–582

    Article  CAS  PubMed  Google Scholar 

  • Kraft NJ, Metz MR, Condit RS, Chave J (2010) The relationship between wood density and mortality in a global tropical forest data set. New Phytol 188:1124–1136

    Article  PubMed  Google Scholar 

  • Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ et al (2016) Plant functional traits have globally consistent effects on competition. Nature 529:204–207

    Article  CAS  PubMed  Google Scholar 

  • Laliberté E (2017) Below-ground frontiers in trait-based plant ecology. New Phytol 213:1597–1603

    Article  PubMed  Google Scholar 

  • Laughlin DC (2014) The intrinsic dimensionality of plant traits and its relevance to community assembly. J Ecol 102:186–193

    Article  Google Scholar 

  • Laughlin DC, Messier J (2015) Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol Evol 30:487–496

    Article  PubMed  Google Scholar 

  • Laughlin DC, Gremer JR, Adler PB, Mitchell RM, Moore MM (2020) The net effect of functional traits on fitness. Trends Ecol Evol 35:1037–1047

    Article  PubMed  Google Scholar 

  • Lavorel S, Garnier É (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lepš J (1999) Nutrient status disturbance and competition: an experimental test of relationships in a wet meadow. J Veg Sci 10:219–230

    Article  Google Scholar 

  • Lepš J, de Bello F, Šmilauer P, Doležal J (2011) Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography 3:856–863

    Article  Google Scholar 

  • Letcher SG, Lasky JR, Chazdon RL, Norden N, Wright SJ, Meave JA, Pérez-García EA, Muñoz R, Romero-Pérez E, Andrade AJJE (2015) Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. J Ecol 103:1276–1290

    Article  Google Scholar 

  • Lohbeck M, Poorter L, Paz H, Pla L, van Breugel M, Martínez-Ramos M, Bongers F (2012) Functional diversity changes during tropical forest succession. Perspect Plant Ecol Evol Syst 14:89–96

    Article  Google Scholar 

  • Lohbeck M, Poorter L, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Paz H, Pérez-García EA, Romero-Pérez IE, Tauro A, Bongers F (2013) Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94:1211–1216

    Article  PubMed  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    Article  PubMed  Google Scholar 

  • McCormack ML, Guo D, Iversen CM, Chen W, Eissenstat DM, Fernandez CW, Li L, Ma C, Ma Z, Poorter H (2017) Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytol 215:27–37

    Article  PubMed  Google Scholar 

  • Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838–848

    Article  PubMed  Google Scholar 

  • Muscarella R, Uriarte M (2016) Do community-weighted mean functional traits reflect optimal strategies? Proc R Soc B: Biol Sci 283:20152434

    Article  Google Scholar 

  • Muscarella R, Uriarte M, Aide TM, Erickson DL, Forero-Montaña J, Kress WJ, Swenson NG, Zimmerman JK (2016a) Functional convergence and phylogenetic divergence during secondary succession of subtropical wet forests. Puerto Rico J Veg Sci 27:283–294

    Article  Google Scholar 

  • Muscarella R, Uriarte M, Erickson DL, Swenson NG, Kress WJ, Zimmerman JK (2016b) Variation of tropical forest assembly processes across regional environmental gradients. Perspect Plant Ecol Evol Syst 23:52–62

    Article  Google Scholar 

  • Odum EP (1969) Strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Paine CET, Baraloto C, Chave J, Hérault B (2011) Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests. Oikos 120:720–727

    Article  Google Scholar 

  • Penone C, Davidson AD, Shoemaker KT, Di Marco M, Rondinini C, Brooks TM, Young BE, Graham CH, Costa GC (2014) Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol Evol 5:961–970

    Article  Google Scholar 

  • Pillar VD, Blanco CC, Müller SC, Sosinski EE, Joner F, Duarte LD (2013) Functional redundancy and stability in plant communities. J Veg Sci 24:963–974

    Article  Google Scholar 

  • Poorter L, van der Sande MT, Arets EJ, Ascarrunz N, Enquist BJ, Finegan B, Licona JC, Martínez-Ramos M, Mazzei L, Meave JA (2017) Biodiversity and climate determine the functioning of neotropical forests. Glob Ecol Biogeogr 26:1423–1434

    Article  Google Scholar 

  • Poorter L, Castilho C, Schietti J, Oliveira R, Costa F (2018a) Can traits predict individual growth performance? A test in a hyperdiverse tropical forest. New Phytol 219:109–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Poorter L, van der Sande M, Arets E, Ascarrunz N, Enquist B, Finegan B, Licona J, Martinez-Ramos M, Mazzei L, Meave J, Muñoz R et al (2018b) Biodiversity and climate determine the functioning of Neotropical forests. Glob Ecol Biogeogr 27:389–390

    Article  Google Scholar 

  • Poorter L, Rozendaal DMA, Bongers F, de Almeida-Cortez JS, Almeyda Zambrano AM, Álvarez FS, Andrade JL, Villa LFA, Balvanera P, Becknell JM et al (2019) Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat Ecol Evol 3:928–934

    Article  PubMed  Google Scholar 

  • Powell TL, Koven CD, Johnson DJ, Faybishenko B, Fisher RA, Knox RG, McDowell NG, Condit R, Hubbell SP, Wright SJ et al (2018) Variation in hydroclimate sustains tropical forest biomass and promotes functional diversity. New Phytol 219:932–946

    Article  PubMed  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing R Foundation for Statistical Computing Vienna Austria. https://www.r-project.org/

  • Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Réjou-Méchain M, Tanguy A, Piponiot C, Chave J, Hérault B (2017) biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol 8:1163–1167

    Article  Google Scholar 

  • Rosenfield MF, Müller SC (2020) Plant traits rather than species richness explain ecological processes in subtropical forests. Ecosystems 23:52–66

    Article  Google Scholar 

  • Rüger N, Condit R, Dent DH, DeWalt SJ, Hubbell SP, Lichstein JW, Lopez OR, Wirth C, Farrior CE (2020) Demographic trade-offs predict tropical forest dynamics. Science 368:165–216

    Article  PubMed  Google Scholar 

  • Sakschewski B, von Bloh W, Boit A, Poorter L, Peña-Claros M, Heinke J, Joshi J, Thonicke K (2016) Resilience of Amazon forests emerges from plant trait diversity. Nat Clim Change 6:1032–1036

    Article  Google Scholar 

  • Schindler DE, Armstrong JB, Reed TE (2015) The portfolio concept in ecology and evolution. Front Ecol Environ 13:257–263

    Article  Google Scholar 

  • Schrodt F, Kattge J, Shan H, Fazayeli F, Joswig J, Banerjee A, Reichstein M, Bönisch G, Díaz S, Dickie J, Gillison A (2015) BHPMF–a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob Ecol Biogeogr 24:1510–1521

    Article  Google Scholar 

  • Shipley B, De Bello F, Cornelissen JHC, Laliberté E, Laughlin DC, Reich PB (2016) Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180:923–931

    Article  PubMed  Google Scholar 

  • Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV (2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett 18:1406–1419

    Article  PubMed  Google Scholar 

  • Slik JWF, Franklin J, Arroyo-Rodríguez V, Field R, Aguilar S, Aguirre N, Ahumada J, Aiba SI, Alves LF, Avella AKA et al (2018) Phylogenetic classification of the world’s tropical forests. Proc Natl Acad Sci USA 115:1837–1842

    Article  PubMed  PubMed Central  Google Scholar 

  • Soliveres S, Maestre FT, Bowker MA, Torices R, Quero JL, García-Gómez M, Cabrera O, Cea AP, Coaguila D, Eldridge DJ (2014) Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands. Perspect Plant Ecol Evol Syst 16:164–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J Ecol 100:652–661

    Article  Google Scholar 

  • Spasojevic MJ, Yablon EA, Oberle B, Myers JA (2014) Ontogenetic trait variation influences tree communityassembly across environmental gradients. Ecosphere 5:1–20

    Article  Google Scholar 

  • Spasojevic MJ, Turner BL, Myers JA (2016) When does intraspecific trait variation contribute to functional beta-diversity? J Ecol 104:487–496

    Article  Google Scholar 

  • Subedi SC, Ross MS, Sah JP, Redwine J, Baraloto C (2019) Trait-based community assembly pattern along a forest succession gradient in a seasonally dry tropical forest. Ecosphere 10:e02719

    Article  Google Scholar 

  • Swenson NG (2014) Phylogenetic imputation of plant functional trait databases. Ecography 37:105–110

    Article  Google Scholar 

  • Swenson NG, Enquist BJ (2007) Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot 94:451–459

    Article  PubMed  Google Scholar 

  • Swenson NG, Stegen JC, Davies SJ, Erickson DL, Forero-Montaña J, Hurlbert AH, Thompson KWJ et al (2012) Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity. Ecology 9:490–499

    Article  Google Scholar 

  • Turcotte MM, Levine JM (2016) Phenotypic plasticity and species coexistence. Trends Ecol Evol 31:803–813

    Article  PubMed  Google Scholar 

  • Umaña MN, Mi X, Cao M, Enquist BJ, Hao Z, Howe R, Iida Y, Johnson DJ, Lin L, Liu X et al (2017) The role of functional uniqueness and spatial aggregation in explaining rarity in trees. Glob Ecol Biogeogr 26:777–786

    Article  Google Scholar 

  • van Buuren S, Groothuis-Oudshoorn K (2010) MICE: multivariate imputation by chained equations in R. J Stat Softw 45:1–68

    Google Scholar 

  • van der Sande M, Arets E, Peña-Claros M, Hoosbeek M, Cáceres-Siani Y, Van der Hout P, Poorter L (2018) Soil fertility and species traits but not diversity drive productivity and biomass stocks in a Guyanese tropical rainforest. Funct Ecol 32:461–474

    Article  Google Scholar 

  • Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252

    Article  PubMed  Google Scholar 

  • Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD (2015) Root structural and functional dynamics in terrestrial biosphere models–evaluation and recommendations. New Phytol 205:59–78

    Article  PubMed  Google Scholar 

  • Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mole Ecol Notes 5:181–183

    Article  Google Scholar 

  • Wenhua L (2004) Degradation and restoration of forest ecosystems in China. For Ecol Manag 201:33–41

    Article  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Wright SJ, Kitajima K, Kraft NJ, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S (2010) Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91:3664–3674

    Article  PubMed  Google Scholar 

  • Wu Z (1995) An introduction to the tropical forest soils and effect oif shifting cultiviation on soils in Jianfengling. In: Zeng Q, Zhou G, Yide L, Wu Z, Chen B (eds) Researches on tropical forest ecosystems in Jianfengling of China. China Forestry Publishing House, Beijing, China, pp 5–25

    Google Scholar 

  • Xu X, Trugman A (2021) Trait-based modeling of terrestrial ecosystems: advances and challenges under global change. Curr Clim Change Rep 7:1–13

    Article  CAS  Google Scholar 

  • Xu H, Detto M, Fang S, Li Y, Zang R, Liu S (2015a) Habitat hotspots of common and rare tropical species along climatic and edaphic gradients. J Ecol 103:1325–1333

    Article  Google Scholar 

  • Xu H, Li Y, Liu S, Zang R, He F, Spence JR (2015b) Partial recovery of a tropical rain forest a half-century after clear-cut and selective logging. J Appl Ecol 52:1044–1052

    Article  Google Scholar 

  • Yang J, Cao M, Swenson NG (2018) Why functional traits do not predict tree demographic rates. Trends Ecol Evol 33:326–336

    Article  PubMed  Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: towards a worldwide wood economics spectrum. Dryad Digital Repository. 10.5061/dryad234

  • Zeng Q (1995) Survey of water-heat condition and vegetation ecological series in Jianfengling. In: Zeng Q, Zhou G, Yide L, Wu Z, Chen B (eds) Researches on tropical forest ecosystems in Jianfengling of China. China Forestry Publishing House, Beijing, China, pp. 5–25

    Google Scholar 

  • Zhou G (1995) Ecological effects of human activities in Jianfenglin forest region Hainan Island. In: Zeng Q, Zhou G, Yide L, Wu Z, Chen B (eds) Researches on tropical forest ecosystems in Jianfengling of China. China Forestry Publishing House, Beijing, China, pp 38–48

    Google Scholar 

  • Zuo X, Yue X, Lv P, Yu Q, Chen M, Zhang J, Luo Y, Wang S, Zhang J (2017) Contrasting effects of plant inter- and intraspecific variation on community trait responses to restoration of a sandy grassland ecosystem. Ecol Evol 7:1125–1134

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jan Lepš and the anonymous reviewers for comments that improved this work. We thank Sheyla Santana from the FIU GIS lab for help in producing Figure 1. We acknowledge the assistance of the following people who helped in the field and with the processing of plant samples: Shaojun Ling, Yaxin Xie, Jaming Wang, Siqi Yang, Wenguang Tang, Shitaing Ma, Qiqi Zhang, and Jiazhu Shi. Professor Yu from the Jianfengling Forest Bureau provided taxonomic field identification assistance.

Funding

Partial financial support was received from CTFS-ForestGEO at the Smithsonian. We are grateful for many small personal donations that funded the soil analyses (http://www.experiment.com/chinaroots).

Author information

Authors and Affiliations

Authors

Contributions

JAH and CB designed the study, JAH and HX collected the data, and JAH analyzed the data and wrote the manuscript. All authors contributed intellectually and aided in the editing of manuscript drafts.

Corresponding author

Correspondence to J. Aaron Hogan.

Ethics declarations

Conflict of interest

The authors have no competing financial or non-financial interests to disclose.

Additional information

Communicated by Simon Pierce.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11258_2023_1314_MOESM1_ESM.pdf

Supplementary file1 (PDF 331 KB) JFL Transect vs. Small Plots—Soil Analyses: a literate statistical document comparing soils collected along the transect (at the base of tree individuals, where roots were harvested) to soils sampled in the network of small plots

11258_2023_1314_MOESM2_ESM.pdf

Supplementary file2 (PDF 363 KB) JFL Intraspecific Variability Effects—Assemblage-Weighted Means: a literate statistical document implementing the Trait Flex ANOVAS for the assemblage-weighted mean analysis, which uses the truncated community of 72 species for which root and leaf functional traits were directly measured

11258_2023_1314_MOESM3_ESM.pdf

Supplementary file3 (PDF 467 KB) JFL Intraspecific Variability Effects—Community-Weighted Means: a literate statistical document describing the imputation of functional traits and re-implementing the Trait Flex ANOVAS with pGLM-imputed trait matrices (using PhyloPars) for complete CWM analysis, which uses the entire plant community (580 species) for the small plots at JFL

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogan, J.A., Xu, H. & Baraloto, C. Intraspecific trait variation and species turnover in successional tropical forests: assessing trait imputation for community-weighted means. Plant Ecol 224, 463–477 (2023). https://doi.org/10.1007/s11258-023-01314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-023-01314-4

Keywords

Navigation