Skip to main content
Log in

Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Endophytic fungi are known to play a vital role in the growth and development of their host plants. We isolated eleven endophytic fungi from the roots of sand-dune plant Elymus mollis and their growth-promoting ability was studied on waito-c rice and Atriplex gemelinii. We found that eight fungal isolates promoted growth of both plants. Fungal isolate EM-7-1 induced maximum growth promotion in waito-c rice (9.25 cm) and Atriplex gemelinii (3.1 cm), which was higher than wild-type Gibberella fujikuroi. Gibberellin analysis of EM-7-1 culture filtrate showed the presence of bioactive gibberellins GA1 (0.32 ng/ml), GA3 (5.76 ng/ml), GA4 (0.82 ng/ml) and GA7: (0.1 ng/ml) along with physiologically inactive GA5 (0.59 ng/ml), GA9 (5.38 ng/ml), GA20 (0.25 ng/ml) and GA24 (2.03 ng/ml). The fungal isolate EM-7-1 was identified as new strain of Gliomastix murorum (G. murorum KACC43902) with 99% sequence homology. This study reports the plant growth-promoting ability of genus Gliomastix and the presence of GA5 in the culture filtrate of fungi for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13. doi:10.1139/b04-171

    Article  Google Scholar 

  • Bayman B, Lebron LL, Tremblay RL et al (1997) Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol 135:143–149. doi:10.1046/j.1469-8137.1997.00618.x

    Article  Google Scholar 

  • Choi WY, Rim SO, Lee JH et al (2005) Isolation of gibberellins producing fungi from the root of several Sesamum indicum plants. J Microbiol Biotechnol 15(1):22–28

    CAS  Google Scholar 

  • Hao C, Zhao X, Yang P (2007) GC–MS and HPLC–MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices. Trends Analyt Chem 26:569–580. doi:10.1016/j.trac.2007.02.011

    Article  CAS  Google Scholar 

  • Hasan HAH (2002) Gibberellin and auxin production plant root fungi and their biosynthesis under salinity–calcium interaction. Rostlinna Vyroba 48(3):101–106

    CAS  Google Scholar 

  • Higgs RE, James AZ, Jeffrey DG et al (2001) Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl Environ Microbiol 67(1):371–376. doi:10.1128/AEM.67.1.371-376.2001

    Article  CAS  Google Scholar 

  • Kawaide H (2006) Biochemical and molecular analysis of gibberellin biosynthesis in fungi. Biosci Biotechnol Biochem 70(3):583–590. doi:10.1271/bbb.70.583

    Article  CAS  Google Scholar 

  • Kim KS, Lee YS (2000) Rapid and accurate species-specific detection of Phytophthora infestans through analysis of ITS regions in its rDNA. J Microbiol Biotechnol 10:651–655. doi:10.1159/000016110

    CAS  Google Scholar 

  • Kunkel G (1984) Plants for human consumption. Koeltz Scientific Books, ISBN, USA 3874292169

  • Lee IJ, Foster K, Morgan PW (1998) Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol 116:1003–1011. doi:10.1104/pp.116.3.1003

    Article  CAS  Google Scholar 

  • Lee HG, Lee JY, Lee DH (2001) Cloning and characterization of the ribosomal RNA gene from Gonyaulax polyerdra. J Microbiol Biotechnol 11:515–523

    CAS  Google Scholar 

  • MacMillan J (2002) Occurence of gibberellins in vascular plants, fungi and bacteria. J Plant Growth Regul 20:387–442. doi:10.1007/s003440010038

    Article  Google Scholar 

  • Mineo L (1990) Plant tissue culture techniques; In tested studies in laboratory teachings. Proc ABLE 11:151–174

    Google Scholar 

  • Modess O (1941) Zur Kenntins der Mykorrhizabildner von Kiefer und Fichte. Symb Bot Ups 5:1–146

    Google Scholar 

  • Nishijima T, Koshioka M, Yamazaki H et al (1995) Endogenous gibberellins and bolting in cultivars of Japanese Radish. Acta Hortic 394:199–206

    CAS  Google Scholar 

  • Rim SO, Lee JH, Choi WY et al (2005) Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J Microbiol Biotechnol 15(4):809–814

    CAS  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT et al (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544. doi:10.1016/S1286-4579(03)00073-X

    Article  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. doi:10.1128/MMBR.67.4.491-502.2003

    Article  CAS  Google Scholar 

  • Sugita T, Nishikawa A (2003) Fungal identification method based on DNA sequence analysis. Reassessment of the methods of the pharmaceutical society of Japan and the Japanese pharmacopoeia. J Health Sci 49(6):531–533. doi:10.1248/jhs.49.531

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evo pp 1596–1599

  • Vandenbussche F, Fierro AC, Wiedemann G et al (2007) Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol 7:65. doi:10.1186/1471-2229-7-65

    Article  Google Scholar 

  • Vandenkoornhuyse P, Baldauf SL, Leyval C et al (2002) Extensive fungal diversity in plant roots. Science 295:2051. doi:10.1126/science.295.5562.2051

    Article  Google Scholar 

  • Vazquez MM, Cesar S, Azcon R et al (2000) Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272. doi:10.1016/S0929-1393(00)00075-5

    Article  Google Scholar 

  • Yamada A, Ogura T, Degawa Y et al (2001) Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience 42:43–50. doi:10.1007/BF02463974

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research is a part of ‘Eco-technopia 21 project’ supported by the Korean Ministry of Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Guk Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afzal Khan, S., Hamayun, M., Kim, HY. et al. Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum . World J Microbiol Biotechnol 25, 829–833 (2009). https://doi.org/10.1007/s11274-009-9981-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-9981-x

Keywords

Navigation