Skip to main content
Log in

Adenosine signaling mediate pain transmission in the central nervous system

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Pain is a common clinical symptom that seriously affects the quality of life in a variety of patient populations. In recent years, research on the role of adenosine signaling in pain modulation has made great progress. Adenosine is a purine nucleoside and a neuromodulator, and regulates multiple physiological and pathophysiological functions through the activation of four G protein–coupled receptors, which are classified as A1, A2A, A2B, and A3 adenosine receptors (ARs). Adenosine and its receptors that are widespread in the central nervous system (CNS) play an important role in the processing of nociceptive sensory signals in different pain models. A1Rs have the highest affinity to adenosine, and the role in analgesia has been well investigated. The roles of A2ARs and A2BRs in the modulation of pain are controversial because they have both analgesic and pronociceptive effects. The analgesic effects of A3Rs are primarily manifested in neuropathic pain. In this article, we have reviewed the recent studies on ARs in the modulation of neuropathic pain, inflammatory pain, postoperative pain, and visceral pain in the CNS. Furthermore, we have outlined the pathways through which ARs contribute to pain regulation, thereby shedding light on how this mechanism can be targeted to provide effective pain relief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

This article does not contain unpublished data, and all data discussed in this article are available in cited publications.

References

  1. (2020) International Association For The Study Of Pain

  2. Peirs C, Seal RP (2016) Neural circuits for pain: recent advances and current views. Science, 354(6312), 578–584. https://doi.org/10.1126/science.aaf8933

  3. Zeilhofer HU (2008) Loss of glycinergic and GABAergic inhibition in chronic pain--contributions of inflammation and microglia. Int Immunopharmacol, 8(2), 182–187. https://doi.org/10.1016/j.intimp.2007.07.009

  4. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain, 9(4), 463–484. https://doi.org/10.1016/j.ejpain.2004.11.001

  5. Gwak YS, Hulsebosch CE, Leem JW (2017) Neuronal-glial interactions maintain chronic neuropathic pain after spinal cord injury. Neural Plast, 20172480689. https://doi.org/10.1155/2017/2480689

  6. Sawynok J (2016) Adenosine receptor targets for pain. Neuroscience, 3381–18. https://doi.org/10.1016/j.neuroscience.2015.10.031

  7. Adebiyi MG, Manalo J, Kellems RE, Xia Y (2019) Differential role of adenosine signaling cascade in acute and chronic pain. Neurosci Lett, 712134483. https://doi.org/10.1016/j.neulet.2019.134483

  8. Fredholm BB, AP IJ, Jacobson KA, Linden J, Muller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev, 63(1), 1–34. https://doi.org/10.1124/pr.110.003285

  9. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K (2018) Pharmacology of adenosine receptors: the state of the art. Physiol Rev, 98(3), 1591–1625. https://doi.org/10.1152/physrev.00049.2017

  10. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov, 12(4), 265–286. https://doi.org/10.1038/nrd3955

  11. Shaw S, Uniyal A, Gadepalli A, Tiwari V, Belinskaia DA, Shestakova NN, Venugopala KN, Deb PK, Tiwari V (2020) Adenosine receptor signalling: probing the potential pathways for the ministration of neuropathic pain. Eur J Pharmacol, 889173619. https://doi.org/10.1016/j.ejphar.2020.173619

  12. Choudhury H, Chellappan DK, Sengupta P, Pandey M, Gorain B (2019) Adenosine receptors in modulation of central nervous system disorders. Curr Pharm Des, 25(26), 2808–2827. https://doi.org/10.2174/1381612825666190712181955

  13. Liu YJ, Chen J, Li X, Zhou X, Hu YM, Chu SF, Peng Y, Chen NH (2019) Research progress on adenosine in central nervous system diseases. CNS Neurosci Ther, 25(9), 899–910. https://doi.org/10.1111/cns.13190

  14. Vapaatalo H, Onken D, Neuvonen PJ, Westermann E (1975) Stereospecificity in some central and circulatory effects of phenylisopropyl-adenosine (PIA). Arzneimittelforschung, 25(3), 407–410.

  15. Yoon MH, Bae HB, Choi JI, Kim SJ, Chung ST, Kim CM (2006) Roles of adenosine receptor subtypes in the antinociceptive effect of intrathecal adenosine in a rat formalin test. Pharmacology, 78(1), 21–26. https://doi.org/10.1159/000094762

  16. Rivkees SA, Price SL, Zhou FC (1995) Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res, 677(2), 193–203. https://doi.org/10.1016/0006-8993(95)00062-u

  17. Schulte G, Robertson B, Fredholm BB, DeLander GE, Shortland P, Molander C (2003) Distribution of antinociceptive adenosine a1 receptors in the spinal cord dorsal horn, and relationship to primary afferents and neuronal subpopulations. Neuroscience 121(4):907–916. https://doi.org/10.1016/s0306-4522(03)00480-9

    Article  CAS  PubMed  Google Scholar 

  18. Guntz E, Dumont H, Pastijn E, d'Exaerde Ade K, Azdad K, Sosnowski M, Schiffmann SN, Gall D (2008) Expression of adenosine A 2A receptors in the rat lumbar spinal cord and implications in the modulation of N-methyl-d-aspartate receptor currents. Anesth Analg, 106(6), 1882–1889. https://doi.org/10.1213/ane.0b013e318173251f

  19. Brooke RE, Deuchars J, Deuchars SA (2004) Input-specific modulation of neurotransmitter release in the lateral horn of the spinal cord via adenosine receptors. J Neurosci, 24(1), 127–137. https://doi.org/10.1523/JNEUROSCI.4591-03.2004

  20. Merighi S, Borea PA, Stefanelli A, Bencivenni S, Castillo CA, Varani K, Gessi S (2015) A2a and a2b adenosine receptors affect HIF-1alpha signaling in activated primary microglial cells. Glia, 63(11), 1933–1952. https://doi.org/10.1002/glia.22861

  21. Pedata F, Dettori I, Coppi E, Melani A, Fusco I, Corradetti R, Pugliese AM (2016) Purinergic signalling in brain ischemia. Neuropharmacology, 104105–130. https://doi.org/10.1016/j.neuropharm.2015.11.007

  22. Hasko G, Csoka B, Nemeth ZH, Vizi ES, Pacher P (2009) A(2B) adenosine receptors in immunity and inflammation. Trends Immunol, 30(6), 263–270. https://doi.org/10.1016/j.it.2009.04.001

  23. Janes K, Symons-Liguori AM, Jacobson KA, Salvemini D (2016) Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics. Br J Pharmacol, 173(8), 1253–1267. https://doi.org/10.1111/bph.13446

  24. Vincenzi F, Pasquini S, Borea PA, Varani K (2020) Targeting adenosine receptors: a potential pharmacological avenue for acute and chronic pain. Int J Mol Sci, 21(22). https://doi.org/10.3390/ijms21228710

  25. Boison D, Chen JF, Fredholm BB (2010) Adenosine signaling and function in glial cells. Cell Death Differ, 17(7), 1071–1082. https://doi.org/10.1038/cdd.2009.131

  26. Finnerup NB, Kuner R, Jensen TS (2021) Neuropathic pain: from mechanisms to treatment. Physiol Rev, 101(1), 259–301. https://doi.org/10.1152/physrev.00045.2019

  27. Meacham K, Shepherd A, Mohapatra DP, Haroutounian S (2017) Neuropathic pain: central vs. peripheral mechanisms. Curr Pain Headache Rep, 21(6), 28. https://doi.org/10.1007/s11916-017-0629-5

  28. Dai QX, Huang LP, Mo YC, Yu LN, Du WW, Zhang AQ, Geng WJ, Wang JL, Yan M (2020) Role of spinal adenosine A1 receptors in the analgesic effect of electroacupuncture in a rat model of neuropathic pain. J Int Med Res, 48(4), 300060519883748. https://doi.org/10.1177/0300060519883748

  29. Zhang M, Dai Q, Liang D, Li D, Chen S, Chen S, Han K, Huang L, Wang J (2018) Involvement of adenosine A1 receptor in electroacupuncture-mediated inhibition of astrocyte activation during neuropathic pain. Arq Neuropsiquiatr, 76(11), 736–742. https://doi.org/10.1590/0004-282X20180128

  30. Jacobson KA, Giancotti LA, Lauro F, Mufti F, Salvemini D (2020) Treatment of chronic neuropathic pain: purine receptor modulation. Pain, 161(7), 1425–1441. https://doi.org/10.1097/j.pain.0000000000001857

  31. Hansen Wang, Hui Xu, Long-Jun Wu, Susan S Kim, Tao Chen, Kohei Koga GD, Bo Gong, Kunjumon I Vadakkan, Xuehan Zhang, Bong-Kiun Kaang MZ (2011) Identification of an adenylyl cyclase inhibitor for treating neuropathic and inflammatory pain. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3001269

  32. Salter MW, De Koninck Y, Henry JL (1993) Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn. Prog Neurobiol, 41(2), 125–156. https://doi.org/10.1016/0301-0082(93)90006-e

  33. Wu WP, Hao JX, Halldner L, Lovdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain, 113(3), 395–404. https://doi.org/10.1016/j.pain.2004.11.020

  34. Yin D, Liu YY, Wang TX, Hu ZZ, Qu WM, Chen JF, Cheng NN, Huang ZL (2016) Paeoniflorin exerts analgesic and hypnotic effects via adenosine A1 receptors in a mouse neuropathic pain model. Psychopharmacology (Berl), 233(2), 281–293. https://doi.org/10.1007/s00213-015-4108-6

  35. Kim K, Jeong W, Jun IG, Park JY (2020) Antiallodynic and anti-inflammatory effects of intrathecal R-PIA in a rat model of vincristine-induced peripheral neuropathy. Korean J Anesthesiol, 73(5), 434–444. https://doi.org/10.4097/kja.19481

  36. Katz NK, Ryals JM, Wright DE (2015) Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy. Neuroscience, 285312–323. https://doi.org/10.1016/j.neuroscience.2014.10.065

  37. Gong QJ, Li YY, Xin WJ, Wei XH, Cui Y, Wang J, Liu Y, Liu CC, Li YY, Liu XG (2010) Differential effects of adenosine A1 receptor on pain-related behavior in normal and nerve-injured rats. Brain Res, 136123–30. https://doi.org/10.1016/j.brainres.2010.09.034

  38. Ji RR, Gereau RWt, Malcangio M, Strichartz GR (2009) MAP kinase and pain. Brain Res Rev, 60(1), 135–148. https://doi.org/10.1016/j.brainresrev.2008.12.011

  39. Zhao C, Zhao J, Yang Q, Ye Y (2017) Cobra neurotoxin produces central analgesic and hyperalgesic actions via adenosine A1 and A2A receptors. Mol Pain, 131744806917720336. https://doi.org/10.1177/1744806917720336

  40. Metzner K, Gross T, Balzulat A, Wack G, Lu R, Schmidtko A (2021) Lack of efficacy of a partial adenosine A1 receptor agonist in neuropathic pain models in mice. Purinergic Signal. https://doi.org/10.1007/s11302-021-09806-6

  41. Kwilasz AJ, Ellis A, Wieseler J, Loram L, Favret J, McFadden A, Springer K, Falci S, Rieger J, Maier SF, Watkins LR (2018) Sustained reversal of central neuropathic pain induced by a single intrathecal injection of adenosine A2A receptor agonists. Brain Behav Immun, 69470–479. https://doi.org/10.1016/j.bbi.2018.01.005

  42. Loram LC, Taylor FR, Strand KA, Harrison JA, Rzasalynn R, Sholar P, Rieger J, Maier SF, Watkins LR (2013) Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling. Brain Behav Immun, 33112–122. https://doi.org/10.1016/j.bbi.2013.06.004

  43. Bailey A, Weber D, Zimmer A, Zimmer AM, Hourani SM, Kitchen I (2004) Quantitative autoradiography of adenosine receptors and NBTI-sensitive adenosine transporters in the brains of mice deficient in the preproenkephalin gene. Brain Res, 1025(1–2), 1–9. https://doi.org/10.1016/j.brainres.2004.06.088

  44. Loram LC, Harrison JA, Sloane EM, Hutchinson MR, Sholar P, Taylor FR, Berkelhammer D, Coats BD, Poole S, Milligan ED, Maier SF, Rieger J, Watkins LR (2009) Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci, 29(44), 14015–14025. https://doi.org/10.1523/JNEUROSCI.3447-09.2009

  45. Hu X, Adebiyi MG, Luo J, Sun K, Le TT, Zhang Y, Wu H, Zhao S, Karmouty-Quintana H, Liu H, Huang A, Wen YE, Zaika OL, Mamenko M, Pochynyuk OM, Kellems RE, Eltzschig HK, Blackburn MR, Walters ET, Huang D, Hu H, Xia Y (2016) Sustained elevated adenosine via ADORA2B promotes chronic pain through neuro-immune interaction. Cell Rep, 16(1), 106–119. https://doi.org/10.1016/j.celrep.2016.05.080

  46. Terayama R, Tabata M, Maruhama K, Iida S (2018) A3 adenosine receptor agonist attenuates neuropathic pain by suppressing activation of microglia and convergence of nociceptive inputs in the spinal dorsal horn. Exp Brain Res, 236(12), 3203–3213. https://doi.org/10.1007/s00221-018-5377-1

  47. Janes K, Wahlman C, Little JW, Doyle T, Tosh DK, Jacobson KA, Salvemini D (2015) Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav Immun, 4491–99. https://doi.org/10.1016/j.bbi.2014.08.010

  48. Janes K, Esposito E, Doyle T, Cuzzocrea S, Tosh DK, Jacobson KA, Salvemini D (2014) A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain, 155(12), 2560–2567. https://doi.org/10.1016/j.pain.2014.09.016

  49. Kim Y, Kwon SY, Jung HS, Park YJ, Kim YS, In JH, Choi JW, Kim JA, Joo JD (2019) Amitriptyline inhibits the MAPK/ERK and CREB pathways and proinflammatory cytokines through A3AR activation in rat neuropathic pain models. Korean J Anesthesiol, 72(1), 60–67. https://doi.org/10.4097/kja.d.18.00022

  50. Durante M, Squillace S, Lauro F, Giancotti LA, Coppi E, Cherchi F, Di Cesare Mannelli L, Ghelardini C, Kolar G, Wahlman C, Opejin A, Xiao C, Reitman ML, Tosh DK, Hawiger D, Jacobson KA, Salvemini D (2021) Adenosine A3 agonists reverse neuropathic pain via T cell-mediated production of IL-10. J Clin Invest, 131(7). https://doi.org/10.1172/JCI139299

  51. Coppi E, Cherchi F, Fusco I, Failli P, Vona A, Dettori I, Gaviano L, Lucarini E, Jacobson KA, Tosh DK, Salvemini D, Ghelardini C, Pedata F, Di Cesare Mannelli L, Pugliese AM (2019) Adenosine A3 receptor activation inhibits pronociceptive N-type Ca2+ currents and cell excitability in dorsal root ganglion neurons. Pain, 160(5), 1103–1118. https://doi.org/10.1097/j.pain.0000000000001488

  52. Little JW, Ford A, Symons-Liguori AM, Chen Z, Janes K, Doyle T, Xie J, Luongo L, Tosh DK, Maione S, Bannister K, Dickenson AH, Vanderah TW, Porreca F, Jacobson KA, Salvemini D (2015) Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states. Brain, 138(Pt 1), 28–35. https://doi.org/10.1093/brain/awu330

  53. Ford A, Castonguay A, Cottet M, Little JW, Chen Z, Symons-Liguori AM, Doyle T, Egan TM, Vanderah TW, De Koninck Y, Tosh DK, Jacobson KA, Salvemini D (2015) Engagement of the GABA to KCC2 signaling pathway contributes to the analgesic effects of A3AR agonists in neuropathic pain. J Neurosci, 35(15), 6057–6067. https://doi.org/10.1523/JNEUROSCI.4495-14.2015

  54. Cioato SG, Medeiros LF, Lopes BC, de Souza A, Medeiros HR, Assumpcao JAF, Caumo W, Roesler R, Torres ILS (2020) Antinociceptive and neurochemical effects of a single dose of IB-MECA in chronic pain rat models. Purinergic Signal, 16(4), 573–584. https://doi.org/10.1007/s11302-020-09751-w

  55. Pedersen JL (2000) Inflammatory pain in experimental burns in man. Dan Med Bull, 47(3), 168–195

  56. A Poon JS (1998) Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain, 235–245. https://doi.org/10.1016/S0304-3959(97)00186-3

  57. Bai HH, Liu JP, Yang L, Zhao JY, Suo ZW, Yang X, Hu XD (2017) Adenosine A1 receptor potentiated glycinergic transmission in spinal cord dorsal horn of rats after peripheral inflammation. Neuropharmacology, 126158–167. https://doi.org/10.1016/j.neuropharm.2017.09.001

  58. Diao XT, Yao L, Ma JJ, Zhang TY, Bai HH, Suo ZW, Yang X, Hu XD (2020) Analgesic action of adenosine A1 receptor involves the dephosphorylation of glycine receptor alpha1(ins) subunit in spinal dorsal horn of mice. Neuropharmacology, 176108219. https://doi.org/10.1016/j.neuropharm.2020.108219

  59. Li Y, Wu F, Lao LX, Shen XY (2020) Laser irradiation activates spinal adenosine A1 receptor to alleviate osteoarthritis pain in monosodium iodoacetate injected rats. J Integr Neurosci, 19(2), 295–302. https://doi.org/10.31083/j.jin.2020.02.33

  60. Gao X, Lu Q, Chou G, Wang Z, Pan R, Xia Y, Hu H, Dai Y (2014) Norisoboldine attenuates inflammatory pain via the adenosine A1 receptor. Eur J Pain, 18(7), 939–948. https://doi.org/10.1002/j.1532-2149.2013.00439.x

  61. Sawynok J, Reid AR, Liu J (2013) Spinal and peripheral adenosine A(1) receptors contribute to antinociception by tramadol in the formalin test in mice. Eur J Pharmacol, 714(1–3), 373–378. https://doi.org/10.1016/j.ejphar.2013.07.012

  62. Yamamoto S, Nakanishi O, Matsui T, Shinohara N, Kinoshita H, Lambert C, Ishikawa T (2003) Intrathecal adenosine A1 receptor agonist attenuates hyperalgesia without inhibiting spinal glutamate release in the rat. Cell Mol Neurobiol, 23(2), 175–185. https://doi.org/10.1023/a:1022997805525

  63. Holanda AD, Asth L, Santos AR, Guerrini R, de PS-RV, Calo G, Andre E, Gavioli EC (2015) Central adenosine A1 and A2A receptors mediate the antinociceptive effects of neuropeptide S in the mouse formalin test. Life Sci, 1208–12. https://doi.org/10.1016/j.lfs.2014.10.021

  64. By Y, Condo J, Durand-Gorde JM, Lejeune PJ, Mallet B, Guieu R, Ruf J (2011) Intracerebroventricular injection of an agonist-like monoclonal antibody to adenosine A(2A) receptor has antinociceptive effects in mice. J Neuroimmunol, 230(1–2), 178–182. https://doi.org/10.1016/j.jneuroim.2010.07.025

  65. Sawynok J, Reid AR (2012) Caffeine inhibits antinociception by acetaminophen in the formalin test by inhibiting spinal adenosine A(1) receptors. Eur J Pharmacol, 674(2–3), 248–254. https://doi.org/10.1016/j.ejphar.2011.10.036

  66. Yang Y, Zhang H, Lu Q, Liu X, Fan Y, Zhu J, Sun B, Zhao J, Dong X, Li L (2021) Suppression of adenosine A2a receptors alleviates bladder overactivity and hyperalgesia in cyclophosphamide-induced cystitis by inhibiting TRPV1. Biochem Pharmacol, 183114340. https://doi.org/10.1016/j.bcp.2020.114340

  67. Bilkei-Gorzo A, Abo-Salem OM, Hayallah AM, Michel K, Muller CE, Zimmer A (2008) Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn Schmiedebergs Arch Pharmacol, 377(1), 65–76. https://doi.org/10.1007/s00210-007-0252-9

  68. Zahn PK, Straub H, Wenk M, Pogatzki-Zahn EM (2007) Adenosine A1 but not A2a receptor agonist reduces hyperalgesia caused by a surgical incision in rats: a pertussis toxin-sensitive G protein-dependent process. Anesthesiology, 107(5), 797–806. https://doi.org/10.1097/01.anes.0000286982.36342.3f

  69. Yamaoka G, Horiuchi H, Morino T, Miura H, Ogata T (2013) Different analgesic effects of adenosine between postoperative and neuropathic pain. J Orthop Sci, 18(1), 130–136. https://doi.org/10.1007/s00776-012-0302-0

  70. Hambrecht-Wiedbusch VS, Gabel M, Liu LJ, Imperial JP, Colmenero AV, Vanini G (2017) Preemptive caffeine administration blocks the increase in postoperative pain caused by previous sleep loss in the rat: a potential role for preoptic adenosine A2A receptors in sleep-pain interactions. Sleep, 40(9). https://doi.org/10.1093/sleep/zsx116

  71. Okumura T, Nozu T, Kumei S, Takakusaki K, Miyagishi S, Ohhira M (2016) Adenosine A1 receptors mediate the intracisternal injection of orexin-induced antinociceptive action against colonic distension in conscious rats. J Neurol Sci, 362106–110. https://doi.org/10.1016/j.jns.2016.01.031

  72. Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M (2020) Adenosine A1 receptor agonist induces visceral antinociception via 5-HT1A, 5-HT2A, dopamine D1 or cannabinoid CB1 receptors, and the opioid system in the central nervous system. Physiol Behav, 220112881. https://doi.org/10.1016/j.physbeh.2020.112881

  73. Zhang XH, Feng CC, Pei LJ, Zhang YN, Chen L, Wei XQ, Zhou J, Yong Y, Wang K (2021) Electroacupuncture attenuates neuropathic pain and comorbid negative behavior: the involvement of the dopamine system in the amygdala. Front Neurosci, 15657507. https://doi.org/10.3389/fnins.2021.657507

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (NSFC) No. 81973944 and 81503636, the National Natural Science Foundation of Tianjin No.20JCYBJC00200, and the Youth Talent Promotion Project of the Tianjin Association for Science and Technology No. TJSQNTJ-2020–15.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxin Fang, Di Zhang or Yi Guo.

Ethics declarations

Conflict of interest

All authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Wu, J., Chang, H. et al. Adenosine signaling mediate pain transmission in the central nervous system. Purinergic Signalling 19, 245–254 (2023). https://doi.org/10.1007/s11302-021-09826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09826-2

Keywords

Navigation