Skip to main content

Advertisement

Log in

Bioherbicidal Activity and Metabolic Profiling of Allelopathic Metabolites of Three Cassia species using UPLC-qTOF-MS/MS and Molecular Networking

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction: Compared to synthetic herbicides, natural products with allelochemical properties can inhibit weed germination, aiding agricultural output with less phytotoxic residue in water and soil.

Objectives: To identify natural product extracts of three Cassia species; C. javanica, C. roxburghii, and C. fistula and to investigate the possible phytotoxic and allelopathic potential.

Methods: Allelopathic activity of three Cassia species extracts was evaluated. To further investigate the active constituents, untergated metabolomics using UPLC-qTOF-MS/MS and ion-identity molecular networking (IIMN) approach was performed to identify and determine the distribution of metabolites in different Cassia species and plant parts.

Results: We observed in our study that the plant extracts showed consistent allelopathic activity against seed germination (P < 0.05) and the inhibition of shoot and root development of Chenopodium murale in a dose-dependent manner. Our comprehensive study identified at least 127 compounds comprising flavonoids, coumarins, anthraquinones, phenolic acids, lipids, and fatty acid derivatives. We also report the inhibition of seed germination, shoot growth, and root growth when treated with enriched leaf and flower extracts of C. fistula, and C. javanica, and the leaf extract of C. roxburghii.

Conclusion: The present study recommends further evaluation of Cassia extracts as a potential source of allelopathic compounds in agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ag:

Aglycone

ESI:

Electrospray ionization

GNPS:

Global Natural Products Social Molecular Networking

References

  • Aabideen, Z. U., Mumtaz, M. W., Akhtar, M. T., Raza, M. A., Mukhtar, H., Irfan, A., Raza, S. A., Touqeer, T., Nadeem, M., & Saari, N. (2021). Cassia fistula Leaves; UHPLC-QTOF-MS/MS Based Metabolite Profiling and Molecular Docking Insights to Explore Bioactives Role Towards Inhibition of Pancreatic Lipase. Plants 10, 1334.

  • Ablajan, K., Abliz, Z., Shang, X. Y., He, J. M., Zhang, R. P., & Shi, J. G. (2006). Structural characterization of flavonol 3, 7-di‐O‐glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. Journal Of Mass Spectrometry, 41, 352–360.

    Article  CAS  PubMed  Google Scholar 

  • Aliotta, G., Cafiero, G., Fiorentino, A., & Strumia, S. (1993). Inhibition of radish germination and root growth by coumarin and phenylpropanoids. Journal Of Chemical Ecology, 19, 175–183.

    Article  CAS  PubMed  Google Scholar 

  • Anaya, A. L. (1999). Allelopathy as a tool in the management of biotic resources in agroecosystems. Crit Rev Plant Sci, 18, 697–739.

    Article  CAS  Google Scholar 

  • Anwar, T., Qureshi, H., Mahnashi, M. H., Kabir, F., Parveen, N., Ahmed, D., Afzal, U., Batool, S., Awais, M., & Alyami, S. A. (2021). Bioherbicidal ability and weed management of allelopathic methyl esters from Lantana camara. Saudi Journal of Biological Sciences.

  • Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., & Vivanco, J. M. (2003). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science And Culture, 301, 1377–1380.

    CAS  Google Scholar 

  • Bellassoued, K., Hamed, H., Ghrab, F., Kallel, R., Van Pelt, J., Makni Ayadi, F., & Elfeki, A. (2019). Antioxidant and hepatopreventive effects of Cassia angustifolia extract against carbon tetrachloride-induced hepatotoxicity in rats. Archives of physiology and biochemistry, 1–11.

  • Berhow, M., & Vaughn, S. J. P. (1999). practices in Plant Ecology: Allelochemical Interactions.–CRC Press, B.R., Higher plant flavonoids: biosynthesis and chemical ecology, in: Dakshini, K.M.M., Foy, C.L. (Ed.), Principles and Practices in Plant Ecology. Allelochemical Interaction. CRC Press, Florida, FL, USA, pp. 423–438.

  • Bremner, J. M., & McCarty, G. W. (2021). Inhibition of nitrification in soil by allelochemicals derived from plants and plant residues. In J. M. Bollag, G.S. (Ed.), Soil biochemistry (pp. 181–218). CRC Press.

  • Brunetti, C., Fini, A., Sebastiani, F., Gori, A., & Tattini, M. J. F.i.P.s., 2018. Modulation of phytohormone signaling: A primary function of flavonoids in plant–environment interactions. 9,1042.

  • Calvano, C. D., Bianco, M., Ventura, G., Losito, I., Palmisano, F., & Cataldi, T. R. (2020). Analysis of phospholipids, lysophospholipids, and their linked fatty acyl chains in yellow lupin seeds (Lupinus luteus L.) by liquid chromatography and tandem mass spectrometry. Molecules, 25, 805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., Hoff, K., Kessner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T. A., Brusniak, M. Y., Paulse, C., Creasy, D., Flashner, L., Kani, K., Moulding, C., Seymour, S. L., Nuwaysir, L. M., Lefebvre, B., Kuhlmann, F., Roark, J., Rainer, P., Detlev, S., Hemenway, T., Huhmer, A., Langridge, J., Connolly, B., Chadick, T., Holly, K., Eckels, J., Deutsch, E. W., Moritz, R. L., Katz, J. E., Agus, D. B., MacCoss, M., Tabb, D. L., & Mallick, P. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30, 918–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra, P., Pandey, R., Kumar, B., Srivastva, M., Pandey, P., Sarkar, J., & Singh, B. P. (2015). Quantification of multianalyte by UPLC–QqQLIT–MS/MS and in-vitro anti-proliferative screening in Cassia species. Industrial Crops and Products 76, 1133–1141.

  • Chaudhari, S. S., Chaudhari, S. R., & Chavan, M. J. (2012). Analgesic, anti-inflammatory and anti-arthritic activity of Cassia uniflora Mill. Asian Pacific Journal of Tropical Biomedicine, 2, S181–S186.

    Article  Google Scholar 

  • Cheng, F., & Cheng, Z. (2015). Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Frontiers in Plant Science 6.

  • Della Corte, A., Chitarrini, G., Di Gangi, I. M., Masuero, D., Soini, E., Mattivi, F., & Vrhovsek, U. (2015). A rapid LC–MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Talanta, 140, 52–61.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, R. A., Xie, D. Y., & Sharma, S. B. (2005). Proanthocyanidins–a final frontier in flavonoid research? New Phytologist, 165, 9–28.

    Article  CAS  PubMed  Google Scholar 

  • Duke, S. O., Dayan, F. E., Bajsa, J., Meepagala, K. M., Hufbauer, R. A., & Blair, A. C. (2009). The case against (–)-catechin involvement in allelopathy of Centaurea stoebe (spotted knapweed). Plant signaling behavior, 4, 422–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duke, S. O., Dayan, F. E., Rimando, A. M., Schrader, K. K., Aliotta, G., Oliva, A., & Romagni, J. G. (2002). Chemicals from nature for weed management. Weed Science, 50, 138–151.

    Article  CAS  Google Scholar 

  • El-Amier, Y. A., Al-hadithy, O., Fahmy, A., & El-Zayat, M. (2021). Phytochemical analysis and biological activities of three wild Mesembryanthemum species growing in heterogeneous habitats. Journal of Phytology, 13, 01–08.

    Article  CAS  Google Scholar 

  • Enomoto, H., Takahashi, S., Takeda, S., & Hatta, H. (2020). Distribution of flavan-3-ol species in ripe strawberry fruit revealed by matrix-assisted laser desorption/ionization-mass spectrometry imaging. Molecules, 25, 103.

    Article  CAS  Google Scholar 

  • Falcone Ferreyra, M. L., Rius, S., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications.Frontiers in Plant Science3.

  • Ghimire, B. K., Hwang, M. H., Sacks, E. J., Yu, C. Y., Kim, S. H., & Chung, I. M. (2020). Screening of allelochemicals in Miscanthus sacchariflorus extracts and assessment of their effects on germination and seedling growth of common weeds. Plants, 9, 1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girme, A., Saste, G., Chinchansure, A., Joshi, S., Kunkulol, R., Hingorani, L., & Patwardhan, B. (2020). Simultaneous determination of Anthraquinone, Flavonoids, and Phenolic Antidiabetic Compounds from Cassia auriculata seeds by validated UHPLC based MS/MS method. Mass Spectrometry Letters, 11, 82–89.

    CAS  Google Scholar 

  • Grossert, J. S., Fancy, P. D., & White, R. L. (2005). Fragmentation pathways of negative ions produced by electrospray ionization of acyclic dicarboxylic acids and derivatives. Canadian journal of chemistry, 83, 1878–1890.

    Article  CAS  Google Scholar 

  • Gupta, S., Sharma, S. B., Bansal, S. K., & Prabhu, K. M. (2009). Antihyperglycemic and hypolipidemic activity of aqueous extract of Cassia auriculata L. leaves in experimental diabetes. Journal Of Ethnopharmacology, 123, 499–503.

    Article  PubMed  Google Scholar 

  • Hernández, M. L., & Cejudo, F. J. (2021). Chloroplast lipids metabolism and function. a redox perspective.Frontiers in Plant Science,1636.

  • Ibrahim, D., & Osman, H. (1995). Antimicrobial activity of Cassia alata from Malaysia. Journal Of Ethnopharmacology, 45, 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, M., Nishimura, H., Li, H. H., & Mizutani, J. (1992). Allelochemicals from Polygonum sachalinense Fr. Schm. (Polygonaceae). Journal of chemical ecology, 18, 1833–1840.

  • Katajamaa, M., Miettinen, J., & Orešič, M. (2006). MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22, 634–636.

    Article  CAS  PubMed  Google Scholar 

  • Khurm, M., Wang, X., Zhang, H., Hussain, S. N., Qaisar, M. N., Hayat, K., Saqib, F., Zhang, X., Zhan, G., & Guo, Z. (2021). The genus Cassia L.: Ethnopharmacological and phytochemical overview. Phytother. Res. 35, 2336–2385.

  • Kleinenkuhnen, N., Büchel, F., Gerlich, S. C., Kopriva, S., & Metzger, S. (2019). A novel method for identification and quantification of sulfated flavonoids in plants by neutral loss scan mass spectrometry. Frontiers in plant science, 10, 885.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong, C. H., Xuan, T. D., Khanh, T. D., Tran, H. D., & Trung, N. T. (2019). Allelochemicals and signaling chemicals in plants. Molecules, 24, 2737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavell, A., & Benning, C. (2019). Cellular organization and regulation of plant glycerolipid metabolism. Plant Cell Physiology, 60, 1176–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Chen, L., Chen, Q., Miao, Y., Peng, Z., Huang, B., Guo, L., Liu, D., & Du, H. (2021). Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Scientific reports, 11(1), 1–15.

  • Macias, F. A., Molinillo, J. M., Varela, R. M., & Galindo, J. C. (2007). Allelopathy—a natural alternative for weed control. Pest Management Science: Formerly Pesticide Science, 63, 327–348.

    Article  CAS  Google Scholar 

  • McPherson, J. K., Chou, C. H., & Muller, C. H. (1971). Allelopathic constituents of the chaparral shrub Adenostoma fasciculatum. Phytochemistry, 10, 2925–2933.

    Article  CAS  Google Scholar 

  • Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19, 16240–16265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohsen, E., Younis, I. Y., & Farag, M. (2020). Metabolites profiling of egyptian Rosa damascena Mill. Flowers as analyzed via ultra-high-performance liquid chromatography-mass spectrometry and solid-phase microextraction gas chromatography-mass spectrometry in relation to its anti-collagenase skin effect. Journal of Industrial Crops and products, 155, 112818.

    Article  CAS  Google Scholar 

  • Mushtaq, W., Siddiqui, M. B., & Hakeem, K. R. (2020). Role of Allelochemicals in Agroecosystems, Allelopathy: potential for green agriculture. Springer Nature.

  • Muzell Trezzi, M., Vidal, R. A., Balbinot Junior, A. A., & von Hertwig Bittencourt, H. (2016). da Silva Souza Filho, A.P., Allelopathy: driving mechanisms governing its activity in agriculture. Journal of Plant Interactions 11, 53–60.

  • Myers, O. D., Sumner, S. J., Li, S., Barnes, S., & Du, X. (2017). One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: new algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Analytical chemistry, 89, 8696–8703.

    Article  CAS  PubMed  Google Scholar 

  • Nesměrák, K., Kudláček, K., Čambal, P, Štícha, M., Kozlík, P., & Červený, V. (2020). Authentication of senna extract from the eighteenth century and study of its composition by HPLC–MS. Monatshefte für Chemie-Chemical Monthly, 151, 1241–1248.

  • Niro, E., Marzaioli, R., De Crescenzo, S., D’Abrosca, B., Castaldi, S., Esposito, A., Fiorentino, A., & Rutigliano, F. (2016). Effects of the allelochemical coumarin on plants and soil microbial community. Soil Biology & Biochemistry, 95, 30–39.

    Article  CAS  Google Scholar 

  • Nothias, L. F., Petras, D., Schmid, R., Dührkop, K., Rainer, J., Sarvepalli, A., Protsyuk, I., Ernst, M., Tsugawa, H., & Fleischauer, M. (2020). Feature-based molecular networking in the GNPS analysis environment. Nature methods, 17, 905–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ntandou, G. N., Banzouzi, J., Mbatchi, B., Elion-Itou, R., Etou-Ossibi, A., Ramos, S., Benoit-Vical, F., Abena, A., & Ouamba, J. (2010). Analgesic and anti-inflammatory effects of Cassia siamea Lam. Stem bark extracts. Journal Of Ethnopharmacology, 127, 108–111.

    Article  Google Scholar 

  • Osman, S. M., Ayoub, N. A., Hafez, S. A., Ibrahim, H. A., El Raey, M. A., El-Emam, S. Z., Seada, A. A., & Saadeldeen, A. M. (2020). Aldose reductase inhibitor form Cassia glauca: A comparative study of cytotoxic activity with Ag nanoparticles (NPs) and molecular docking evaluation. PLoS One, 15(10):e0240856.

  • Otify, A. M., El-Sayed, A. M., Michel, C. G., & Farag, M. A. (2019). Metabolites profiling of date palm (Phoenix dactylifera L.) commercial by-products (pits and pollen) in relation to its antioxidant effect: a multiplex approach of MS and NMR metabolomics. Metabolomics, 15, 1–17.

    Article  CAS  Google Scholar 

  • Pham, D. Q., Pham, H. T., Han, J. W., Nguyen, T. H., Nguyen, H. T., Nguyen, T. D., Nguyen, T. T. T., Ho, C. T., Pham, H. M., Vu, H. D., Choi, G. J., & Dang, Q. L. (2021). Extracts and metabolites derived from the leaves of Cassia alata L. exhibit in vitro and in vivo antimicrobial activities against fungal and bacterial plant pathogens. Industrial Crops and Products, 166, 113465.

  • Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. Bmc Bioinformatics, 11, 1–11.

    Article  Google Scholar 

  • Reigosa, M., & Souto, X. (1999). Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regulation, 28, 83–88.

    Article  CAS  Google Scholar 

  • Remya, R., Rajasree, S. R., Aranganathan, L., & Suman, T. (2015). An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnology Reports, 8, 110–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha, D., Marble, S. C., & Pearson, B. J. (2018). Allelopathic effects of common landscape and nursery mulch materials on weed control. Frontiers in plant science, 9, 733.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampietro, D. A., Catalan, C. A. N., & Vattuone, M. A. (2009). Isolation, identification and characterization of allelochemicals/natural products. Routledge Journals, Taylor & Francis Ltd.

  • Schmid, R., Petras, D., Nothias, L. F., Wang, M., Aron, A. T., Jagels, A., Tsugawa, H., Rainer, J., Garcia-Aloy, M., Dührkop, K., Korf, A., Pluskal, T., Kameník, Z., Jarmusch, A. K., Caraballo-Rodríguez, A. M., Weldon, K. C., Nothias-Esposito, M., Aksenov, A. A., Bauermeister, A., Albarracin Orio, A., Grundmann, C. O., Vargas, F., Koester, I., Gauglitz, J. M., Gentry, E. C., Hövelmann, Y., Kalinina, S. A., Pendergraft, M. A., Panitchpakdi, M., Tehan, R., Le Gouellec, A., Aleti, G., Russo, M., Arndt, H., Hübner, B., Hayen, F., Zhi, H., Raffatellu, H., Prather, M., Aluwihare, K. A., Böcker, L. I., McPhail, S., Humpf, K. L., Karst, H. U., & Dorrestein, U., P.C (2021). Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment.Nature Communications12,3832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seethapathy, G. S., Ganesh, D., Kumar, J. U. S., Senthilkumar, U., Newmaster, S. G., Ragupathy, S., Shaanker, R. U., & Ravikanth, G. (2015). Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. International Journal of Legal Medicine, 129, 693–700.

    Article  PubMed  Google Scholar 

  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla, S., Hegde, S., Kumar, A., Chaudhary, G., Tewari, S. K., Upreti, D. K., & Pal, M. (2018). Fatty acid composition and antibacterial potential of Cassia tora (leaves and stem) collected from different geographic areas of India. Journal of food and drug analysis, 26, 107–111.

    Article  CAS  PubMed  Google Scholar 

  • Siddhuraju, P., Mohan, P., & Becker, K. (2002). Studies on the antioxidant activity of indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chemistry, 79, 61–67.

    Article  CAS  Google Scholar 

  • Sobeh, M., Mahmoud, M. F., Abdelfattah, M. A., Cheng, H., El-Shazly, A. M., & Wink, M. (2018). A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. Journal Of Ethnopharmacology, 213, 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Šoln, K., Žnidaršič, N., & Koce, D. (2021). J., Root growth inhibition and ultrastructural changes in radish root tips after treatment with aqueous extracts of Fallopia japonica and F. ×bohemica rhizomes. Protoplasma.

  • Stefanachi, A., Leonetti, F., Pisani, L., Catto, M., & Carotti, A. (2018). Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. Molecules, 23, 250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tietel, Z., Ananth, D. A., Sivasudha, T., & Klipcan, L. (2021). Metabolomics of Cassia Auriculata plant parts (leaf, flower, bud) and their antidiabetic medicinal potentials. Omics: A Journal Of Integrative Biology, 25, 294–301.

    Article  CAS  PubMed  Google Scholar 

  • Tlak Gajger, I., & Dar, S. A. (2021). Plant Allelochemicals as Sources of Insecticides. 12, 189.

  • Tripathi, B., Bhatia, R., Pandey, A., Gaur, J., Chawala, G., Walia, S., Choi, E. H., & Attri, P. (2014). Potential antioxidant anthraquinones isolated from Rheum emodi showing nematicidal activity against Meloidogyne incognita. Journal of Chemistry 2014.

  • Venugopala, K. N., Rashmi, V., & Odhav, B. (2013). Review on natural coumarin lead compounds for their pharmacological activity. BioMed research international 2013.

  • Wang, C., Wang, M., & Han, X. (2015). Applications of mass spectrometry for cellular lipid analysis. Molecular Biosystems, 11, 698–713.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., & Luzzatto-Knaan, T. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular networking. Nature biotechnology, 34, 828–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Sun, X., An, S., Sang, F., Zhao, Y., & Yu, Z. (2021). High-Throughput Identification of Organic Compounds from Polygoni Multiflori Radix Praeparata (Zhiheshouwu) by UHPLC-Q-Exactive Orbitrap-MS. Molecules 26.

  • Weir, T. L., Park, S. W., & Vivanco, J. M. (2004). J.C.o.i.p.b., Biochemical and physiological mechanisms mediated by allelochemicals. 7,472–479.

  • Yang, N. Y., Yang, Y. F., & Li, K. (2013). Analysis of Hydroxy Fatty Acids from the Pollen of Brassica campestris L. var. oleifera DC. by UPLC-MS/MS. Journal of Pharmaceutics 2013.

  • Yan, Z., Guo, H., Yang, J., Liu, Q., Jin, H., Xu, R., Cui, H., & Qin, B. (2014). Phytotoxic flavonoids from roots of stellera chamaejasme L. (Thymelaeaceae). Phytochemistry, 106, 61–68.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Zhao, K., Jiang, K., Tao, S., Li, Y., Chen, W., Kou, S., Gu, C., Li, Z., Guo, L., White, W. L., & Zhang, K. X. (2016). A review of flavonoids from Cassia Species and their biological activity. Current Pharmaceutical Biotechnology, 17, 1134–1146.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., Zhou, K., Gao, X. M., Jiang, Z. Y., Lv, J. J., Liu, Z. H., Yang, G. Y., Miao, M. M., Che, C. T., & Hu, Q. F. (2015). Fistulains a and B, new bischromones from the bark of Cassia fistula, and their activities. Organic letters, 17, 2638–2641.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was accomplished according the the material transefer agreement (MTA-2020/2021) between The University of Michigan (U.S.A.) and Cairo University (Egypt). This research was funded by UM Biological Science Initiative (DHS, AT).

Author information

Authors and Affiliations

Authors

Contributions

I.Y.Y. collected the plant material and conceptualized the research; Writing original draft, writing review and editing. A.M.O. Tentatively identified the metabolites based on MS/MS fragmentation, Visualization, writing original draft, writing review and editing. O.G.M. carried out UPLC-qTOF-MS/MS data acquisition, MZmine data pre-processing, GNPS ion-identity molecular networking visualization, writing original draft, writing review and editing. Y.A.E. Methodology, Investigation, Visualization, Writing-original draft, writing-review and editing. All authors constructed the Supporting Information; F.R.S. Methodology, Visualization, Writing original draft, writing review and editing. A.T. supervision, resources, funding acquisition, writing-review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Fatema R. Saber or Ashootosh Tripathi.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otify, A.M., Mohamed, O.G., El-Amier, Y.A. et al. Bioherbicidal Activity and Metabolic Profiling of Allelopathic Metabolites of Three Cassia species using UPLC-qTOF-MS/MS and Molecular Networking. Metabolomics 19, 16 (2023). https://doi.org/10.1007/s11306-023-01980-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-023-01980-5

Keywords

Navigation