Skip to main content

Advertisement

Log in

Essential oils from Melia azedarach L. (Meliaceae) leaves: chemical variability upon environmental factors

  • Natural Resource Letter
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The chemical composition of the essential oils extracted from the leaves of Melia azedarach L. collected monthly from July 2019 to June 2020 was examined via gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS) techniques. Analysis of the essential oils identified about 17 compounds representing more than 85% of the oil. Oil yields were higher in the months of June and August, and the primary compounds identified were β-caryophyllene (3.50–63.41%), benzaldehyde (3.50–55.98%), and azulene (1.27–19.05%). A correlation analysis was performed to determine the relationship between yields and climatic conditions, and between constituent concentration and temperature and precipitation values during the study period. As per our findings, although not significant, a positive correlation was determined between yield and climatic parameters. However, the oil components were categorized into four groups based on their correlation with temperature and precipitation indices. Among the major components of the essential oils, only azulene and β-caryophyllene exhibited a negative correlation with both precipitation and temperature. The results show substantial differences in the chemical composition of M. azedarach essential oils and provide further insight into the phytochemical constituents that are sensitive to climate fluctuations. Furthermore, it provides an indication of the optimal time that the plant produces the important mono- and sesquiterpene components and the biological significance of their regulation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Dougnon G, Ito M (2020) Medicinal uses, thin-layer chromatography and high-performance liquid chromatography profiles of plant species from Abomey-Calavi and Dantokpa Market in the Republic of Benin. J Nat Med 74:311–322. https://doi.org/10.1007/s11418-019-01344-1

    Article  PubMed  Google Scholar 

  2. Nagalakshmi MAH, Thangadurai D, Anuradha T, Pullaiah T (2001) Essential oil constituents of Melia dubia, a wild relative of Azadirachta indica growing in the Eastern Ghats of Peninsular India. Flavour Fragr J 16:241–244. https://doi.org/10.1002/ffj.986

    Article  CAS  Google Scholar 

  3. Madzinga M, Kritzinger Q, Lall N (2018) Medicinal plants used in the treatment of superficial skin infections. Medicinal plants for holistic health and well-being. Elsevier, pp 255–275

    Chapter  Google Scholar 

  4. Zofou D, Kuete V, Titanji VPK (2013) Antimalarial and other antiprotozoal products from african medicinal plants. Medicinal plant research in Africa. Elsevier, pp 661–709

    Chapter  Google Scholar 

  5. Zhou H, Hamazaki A, Fontana JD et al (2004) New ring C-seco limonoids from Brazilian Melia azedarach and their cytotoxic activity. J Nat Prod 67:1544–1547. https://doi.org/10.1021/np040077r

    Article  CAS  PubMed  Google Scholar 

  6. Orwa C, Mutua A, Kindt R et al (2009) Agroforestree database: a tree reference and selection guide, version 4.0. World Agroforestry Centre, Kenya. http://apps.worldagroforestry.org/treedb2/. Accessed 5 May 2021

  7. Carpinella MC, Defago MT, Valladares G, Palacios SM (2003) Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J Agric Food Chem 51:369–374. https://doi.org/10.1021/jf025811w

    Article  CAS  PubMed  Google Scholar 

  8. Lee BG, Kim SH, Zee OP et al (2000) Suppression of inducible nitric oxide synthase expression in RAW 264.7 macrophages by two β-carboline alkaloids extracted from Melia azedarach. Eur J Pharmacol 406:301–309. https://doi.org/10.1016/S0014-2999(00)00680-4

    Article  CAS  PubMed  Google Scholar 

  9. Jabeen K, Javaid A, Ahmad E, Athar M (2011) Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Nat Prod Res 25:264–276. https://doi.org/10.1080/14786411003754298

    Article  CAS  PubMed  Google Scholar 

  10. Cheng-ke B (2008) analysis of chemical constituents of volatile oil from different parts of Melia azedarach L. by GC–MS. Nat Prod Res Dev 20:662–666

    Google Scholar 

  11. Abdelhalim A, Karim N, Chebib M et al (2015) Antidepressant, anxiolytic and antinociceptive activities of constituents from Rosmarinus officinalis. J Pharm Pharm Sci 18:448–459. https://doi.org/10.18433/j3pw38

    Article  PubMed  Google Scholar 

  12. Alfatemi SMH, Rad JS, Rad MS et al (2015) Chemical composition, antioxidant activity and in vitro antibacterial activity of Achillea wilhelmsii C. Koch essential oil on methicillin-susceptible and methicillin-resistant Staphylococcus aureus spp. 3 Biotech 5:39–44. https://doi.org/10.1007/s13205-014-0197-x

    Article  PubMed  Google Scholar 

  13. Dougnon G, Ito M (2020) Sedative effects of the essential oil from the leaves of Lantana camara occurring in the Republic of Benin via inhalation in mice. J Nat Med 74:159–169. https://doi.org/10.1007/s11418-019-01358-9

    Article  CAS  PubMed  Google Scholar 

  14. Pavela R, Maggi F, Lupidi G et al (2018) Clausena anisata and Dysphania ambrosioides essential oils: from ethno-medicine to modern uses as effective insecticides. Environ Sci Pollut Res 25:10493–10503. https://doi.org/10.1007/s11356-017-0267-9

    Article  CAS  Google Scholar 

  15. Dougnon G, Ito M (2021) Role of ascaridole and p -cymene in the sleep-promoting effects of Dysphania ambrosioides essential oil via the gabaergic system in a ddY mouse inhalation model. J Nat Prod 84:91–100. https://doi.org/10.1021/acs.jnatprod.0c01137

    Article  CAS  PubMed  Google Scholar 

  16. Oshima T, Ito M (2021) Sedative effects of l-menthol, d-camphor, phenylethyl alcohol, and geraniol. J Nat Med 75:319–325. https://doi.org/10.1007/s11418-020-01470-1

    Article  CAS  PubMed  Google Scholar 

  17. Dougnon G, Ito M (2020) Inhalation administration of the bicyclic ethers 1,8- and 1,4-cineole prevent anxiety and depressive-like behaviours in mice. Molecules 25:1884. https://doi.org/10.3390/molecules25081884

    Article  CAS  PubMed Central  Google Scholar 

  18. Babushok VI, Linstrom PJ, Zenkevich IG (2011) Retention indices for frequently reported compounds of plant essential oils. J Phys Chem Ref Data. https://doi.org/10.1063/1.3653552

    Article  Google Scholar 

  19. Kharkwal GC, Pande C, Tewari G et al (2015) Volatile terpenoid composition and antimicrobial activity of flowers of Melia azedarach Linn, from north west Himalayas, India. J Indian Chem Soc 92:141–145

    CAS  Google Scholar 

  20. Murakami S, Li W, Matsuura M et al (2009) Composition and seasonal variation of essential oil in Alpinia zerumbet from Okinawa Island. J Nat Med 63:204–208. https://doi.org/10.1007/s11418-008-0306-4

    Article  CAS  PubMed  Google Scholar 

  21. Ito M, Toyoda M, Honda G (1999) Chemical composition of the essential oil of Perilla frutescens. Nat Med 53:32–36

    CAS  Google Scholar 

  22. Ota Y, Ito M (2021) Sedative effects of inhaled Perilla frutescens essential oils on mice. J Nat Med 12:1–6. https://doi.org/10.1007/s11418-021-01482-5

    Article  CAS  Google Scholar 

  23. da Costa JS, Barroso AS, Mourão RHV et al (2020) Seasonal and antioxidant evaluation of essential oil from Eugenia uniflora L., curzerene-rich, thermally produced in situ. Biomolecules. https://doi.org/10.3390/biom10020328

    Article  PubMed  PubMed Central  Google Scholar 

  24. Palá-Paúl J, Pérez-Alonso MJ, Velasco-Negueruela A et al (2001) Seasonal variation in chemical constituents of Santolina rosmarinifolia L Ssp rosmarinifolia. Biochem Syst Ecol 29:663–672. https://doi.org/10.1016/S0305-1978(01)00032-1

    Article  PubMed  Google Scholar 

  25. da Costa DP, Santos SC, Seraphin JC, Ferri PH (2009) Seasonal variability of essential oils of Eugenia uniflora leaves. J Braz Chem Soc 20:1287–1293. https://doi.org/10.1590/S0103-50532009000700013

    Article  CAS  Google Scholar 

  26. Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569. https://doi.org/10.1146/annurev.ecolsys.38.091206.095601

    Article  Google Scholar 

  27. Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485. https://doi.org/10.1016/j.pbi.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  28. Köllner TG, Lenk C, Schnee C et al (2013) Localization of sesquiterpene formation and emission in maize leaves after herbivore damage. BMC Plant Biol 13:15. https://doi.org/10.1186/1471-2229-13-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miller JH (2003) Nonnative invasive plants of Southern forests: a field guide for identification and control. General technical report SRS-62. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, 93 p

  30. Song B, Liang Y, Liu S et al (2017) Behavioral responses of Aphis citricola (Hemiptera: Aphididae) and its natural enemy Harmonia axyridis (Coleoptera: Coccinellidae) to non-host plant volatiles. Fla Entomol. https://doi.org/10.1653/024.100.0202

    Article  Google Scholar 

  31. Ajayi OE, Balusu R, Morawo TO et al (2015) Semiochemical modulation of host preference of Callosobruchus maculatus on legume seeds. J Stored Prod Res 63:31–37. https://doi.org/10.1016/j.jspr.2015.05.003

    Article  Google Scholar 

  32. United States Environmental Protection Agency (2006) Inert reassessment: 2-ethyl-1-hexanol. Reassessment decision document, 27 p

  33. Andersen AF (2006) Final report on the safety assessment of benzaldehyde1. Int J Toxicol 25:11–27. https://doi.org/10.1080/10915810600716612

    Article  CAS  PubMed  Google Scholar 

  34. Nambata T, Terada N, Takeuchi S (1981) Effect of benzaldehyde on the proliferation of HeLa cells. Gan 72:289–292

    CAS  PubMed  Google Scholar 

  35. Kochi M, Takeuchi S, Mizutani T et al (1980) Antitumor activity of benzaldehyde. Cancer Treat Rep 64:21–23

    CAS  PubMed  Google Scholar 

  36. Ishihara M, Wakabayashi H, Motohashi N, Sakagami H (2011) Quantitative structure-cytotoxicity relationship of newly synthesised trihaloacetylazulenes determined by a semi-empirical molecular-orbital method (PM5). Anticancer Res 31:515–520

    CAS  PubMed  Google Scholar 

  37. Peet J, Selyutina A, Bredihhin A (2016) Antiretroviral (HIV-1) activity of azulene derivatives. Bioorg Med Chem 24:1653–1657. https://doi.org/10.1016/j.bmc.2016.02.038

    Article  CAS  PubMed  Google Scholar 

  38. Gordon M (1952) The azulenes. Chem Rev 50:127–200. https://doi.org/10.1021/cr60155a004

    Article  CAS  Google Scholar 

  39. Gardini F, Lanciotti R, Guerzoni ME (2001) Effect of trans-2-hexenal on the growth of Aspergillus flavus in relation to its concentration, temperature and water activity. Lett Appl Microbiol 33:50–55. https://doi.org/10.1046/j.1472-765X.2001.00956.x

    Article  CAS  PubMed  Google Scholar 

  40. Lanciotti R, Belletti N, Patrignani F et al (2003) Application of hexanal, (E)-2-hexenal, and hexyl acetate to improve the safety of fresh-sliced apples. J Agric Food Chem 51:2958–2963. https://doi.org/10.1021/jf026143h

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J-H, Sun H-L, Chen S-Y et al (2017) Anti-fungal activity, mechanism studies on α-phellandrene and nonanal against Penicillium cyclopium. Bot Stud 58:1–9. https://doi.org/10.1186/s40529-017-0168-8

    Article  CAS  Google Scholar 

  42. Zavala-Sánchez MA, Pérez-Gutiérrez S, Pérez-González C et al (2002) Antidiarrhoeal activity of nonanal, an aldehyde isolated from Artemisia ludoviciana. Pharm Biol 40:263–268. https://doi.org/10.1076/phbi.40.4.263.8465

    Article  Google Scholar 

  43. Jürg G, Marco L, Stefan R, Ildiko R, Jian ZC, Xiang-Qun X, Karl-Heinz A, Meliha K, Andreas Z (2008) Beta-caryophyllene is a dietary cannabinoid. PNAS 105:9099–9104. https://doi.org/10.1073/pnas.0803601105

    Article  Google Scholar 

  44. Pieri FA, de Souza MCC, Vermelho LLR et al (2016) Use of β-caryophyllene to combat bacterial dental plaque formation in dogs. BMC Vet Res. https://doi.org/10.1186/s12917-016-0842-1

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dougnon G, and Ito M (2021) Essential Oil from the Leaves of Chromolaena odorata, and Sesquiterpene Caryophyllene Oxide Induce Sedative Activity in Mice. Pharmaceuticals 14:651. https://doi.org/10.3390/ph14070651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moreno ÉM, Leal SM, Stashenko EE, García LT (2018) Induction of programmed cell death in Trypanosoma cruzi by Lippia alba essential oils and their major and synergistic terpenes (citral, limonene and caryophyllene oxide). BMC Complement Altern Med 18:225. https://doi.org/10.1186/s12906-018-2293-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Souza AC, de Oliveira AP, Lima RN et al (2015) Chemical constituents and antioxidant activity of the essential oil from leaves of Annona vepretorum Mart. (Annonaceae). Pharmacogn Mag 11:615–618. https://doi.org/10.4103/0973-1296.160462

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiho Ito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dougnon, G., Ito, M. Essential oils from Melia azedarach L. (Meliaceae) leaves: chemical variability upon environmental factors. J Nat Med 76, 331–341 (2022). https://doi.org/10.1007/s11418-021-01579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01579-x

Keywords

Navigation