Skip to main content
Log in

Species diversity of Cladorrhinum in Argentina and description of a new species, Cladorrhinum australe

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The genus Cladorrhinum constitutes a fungal group of prime importance for agriculture and livestock, since some species have biocontrol potential or were shown to promote plant growth and to produce phytases, which are enzymes useful for processing animal feed. We assessed the species diversity of Cladorrhinum in Argentina. Strains were identified at the species level by analysis of morphological and physiological characters, as well as by using molecular characters and by sequencing three nuclear DNA loci: internal transcribed spacer regions (ITS), and the 28S ribosomal subunit and β-tubulin genes. C. bulbillosum and C. samala were detected, and a new species is described as C. australe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6–12

Similar content being viewed by others

References

  • Bunyard BA, Nicholson MS, Royse DJ (1994) A systematic assessment of Morchella with RFLP analysis of the 28S ribosomal RNA gene. Mycologia 86:762–772

    Article  CAS  Google Scholar 

  • Butler EE (1980) A method for long-time culture storage of Rhizoctonia solani. Phytopathology 70:820–821

    Article  Google Scholar 

  • Cai L, Jeewon R, Hyde KD (2006) Molecular systematics of Zopfiella and allied genera: evidence from multi-gene sequence analyses. Mycol Res 110:359–368

  • Chaverri P, Samuels GJ (2013) Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 7:2823–2837

    Google Scholar 

  • Chopin JB, Sigler L, Connole MD, O’Boyle DA, Mackay B, Goldstein L (1997) Keratomycosis in a Percheron cross horse caused by Cladorrhinum bulbillosum. J Med Vet Mycol 35:53–55

    Article  CAS  PubMed  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (2007) Compendium of soil fungi, 2nd edn. IHW Verlag, Eching, 672 p

    Google Scholar 

  • Fukiharu T, Horigome R (1996) Ammonia fungi in the Abukuma Mountains and its biogeographical distribution around Japan. Mem Natl Sci Mus Tokyo 29:105–112

    Google Scholar 

  • Gajjar DU, Pal AK, Santos JM, Ghodadra BK, Vasavada AR (2011) Severe pigmented keratitis caused by Cladorrhinum bulbillosum. Indian J Med Microbiol 29:434–437

    Article  CAS  PubMed  Google Scholar 

  • Gasoni L (1994) El complejo Rhizoctonia en la Argentina. Distribución, patogenicidad y biocontrol. Ph.D. Thesis Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. pp. 220

  • Gasoni L, Stegman de Gurfinkel B (1997) The endophyte Cladorrhinum foecundissimum in cotton roots. Effects on phosphorus uptake and host growth. Mycol Res 101:867–870

    Article  Google Scholar 

  • Gasoni L, Stegman de Gurfinkel B (2009) Biocontrol of Rhizoctonia solani by the endophytic fungus Cladorrhinum foecundissimum in cotton plants. Australas Plant Pathol 38:389–391

    Article  Google Scholar 

  • Glass NL, Donaldson (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus 2(2):155–162

    Article  PubMed Central  PubMed  Google Scholar 

  • Image Pro-Plus (2000) The proven solution. Version 4.5.1.29 .Media Cybernetics, Inc

  • Kernaghan G (2013) Functional diversity and resource partitioning in fungi associated with the fine feeder roots of forest trees. Symbiosis 61:113–123. doi:10.1007/s13199-013-0265-8

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Ko W, Hora FK (1971) A selective medium for the quantitative determination of Rhizoctonia solani in soil. Phytopathology 61:707–710

    Article  Google Scholar 

  • Kruys A, Huhndorf SM, Miller AN (2015) Coprophilous contributions to the phylogeny of Lasiosphaeriaceae and allied taxa within Sordariales (Ascomycota, Fungi). Fungal Divers 70(1):101–113

    Article  Google Scholar 

  • Lei X, Stahl C (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57:474–481

    Article  CAS  PubMed  Google Scholar 

  • Lewis JA, Larkin RP (1998) Formulation of the biocontrol fungus Cladorrhinum foecundissimum to reduce damping-off diseases caused by Rhizoctonia solani and Pythium ultimum. Biol Control 12:182–190

    Article  Google Scholar 

  • Lewis JA, Fravel DR, Papavizas GC (1995) Cladorrhinum foecundissimum: a potential biological control agent for the reduction of Rhizoctonia solani. Soil Biol Biochem 27:863–869

    Article  CAS  Google Scholar 

  • Madrid H, Cano J, Gené J, Guarro J (2011) Two new species of Cladorrhinum. Mycologia 103:795–805. doi:10.3852/10-150

    Article  PubMed  Google Scholar 

  • Marchal E (1885) Champignons coprophiles de la Belgique. Bull Soc R Bot Belg 24:57–77

    Google Scholar 

  • Mouchacca J (2007) Heat tolerant fungi and applied research: addition to the previously treated group of strictly thermotolerant species. World J Microbiol Biotechnol 23:1755–1770

    Article  Google Scholar 

  • Mouchacca J, Gams W (1993) The hyphomycete genus Cladorrhinum and its teleomorph connections. Mycotaxon 48:415–440

    Google Scholar 

  • Pradhan N, Sukla LB (2005) Solubilization of inorganic phosphate by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Ridgway R (2006) Color standards and color nomenclature NNC. Columbia University Libraries Electronic Books

  • Sagara N (1975) Ammonia fungi: a chemoecological grouping of terrestrial fungi. Contrib Biol Lab Kyoto Univ 24:205–276

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Udagawa S, Muroi T (1979) Coprophilous pyrenomycetes from Japan V. Trans Mycol Soc Jpn 20:453–468

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walker DM, Castlebury LA, Rossman AY, White JF (2012) New molecular markers for fungal phylogenetics: two genes for species-level systematics in the Sordariomycetes (Ascomycota). Mol Phylogenet Evol 64:500–512

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322

    Google Scholar 

  • Zapater RC, Scattini F (1979) Mycotic keratitis by Cladorrhinum. Sabouraudia 17:65–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our deep thanks to Mrs Nanci López and Lic. Lorena La Fuente for their technical assistance and to Dr. Ricardo Comerio for the Latin translation of the fungal diagnosis. S.M. was granted a fellowship from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). C.C. and M.B. are staff members of CONICET. This work was funded by the Instituto Nacional de Tecnología Agropecuaria (INTA), MINCYT-FNRS Project and CONICET (PIP 0846).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Gasoni.

Additional information

Section Editor: Roland Kirschner

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resources 1

(DOC 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmarán, C.C., Berretta, M., Martínez, S. et al. Species diversity of Cladorrhinum in Argentina and description of a new species, Cladorrhinum australe . Mycol Progress 14, 94 (2015). https://doi.org/10.1007/s11557-015-1106-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11557-015-1106-3

Keywords

Navigation