Skip to main content
Log in

Resurrection of Cortinarius coalescens: taxonomy, chemistry, and ecology

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Cortinarius coalescens Kärcher & Seibt is a rare European species of the subgenus Phlegmacium, section Phlegmacioides, neglected in recent molecular studies. New primers (CortF and CortR) designed for species in the section Phlegmacioides allowed to obtain ITS rDNA sequence data from the holotype collection of C. coalescens; according to the results, this epithet has priority over C. crassorum Rob. Henry ex Rob. Henry, C. pardinus Reumaux, and C. parargutus Bidaud, Moënne-Locc. & Reumaux. Morphological and ecological observations on recent collections of C. coalescens from the Czech Republic in comparison with the co-occurring C. largus are discussed. Nomenclatural and taxonomic comments on C. tomentosus Rob. Henry, C. balteatotomentosus Rob. Henry, and C. subtomentosus Reumaux are also provided. So far, C. coalescens is known with certainty from Germany, France, and the Czech Republic, where it grows in deciduous forests on acid to neutral soils. Arsenic and its compounds were determined in C. coalescens and related species of the section Phlegmacioides: C. largus, C. pseudodaulnoyae, and C. variecolor. Total arsenic concentrations were in the range 3.6–30.2 mg kg−1 (dry matter) and arsenobetaine was the major arsenic compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baize D (1993) Soil science analyses: a guide to current use. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271. doi:10.1128/mmbr.66.2.250-271.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidaud A, Bellanger JM (2016) À propos de Cortinarius daulnoyae Quél. J JEC 18:13–23

    Google Scholar 

  • Bidaud A, Moënne-Loccoz P, Reumaux P, Henry R (1995) Atlas des Cortinaires VII. Fédération Mycologique Dauphiné-Savoie, Annecy

    Google Scholar 

  • Bidaud A, Moënne-Loccoz P, Reumaux P, Henry R (1999) Atlas des Cortinaires IX. Fédération Mycologique Dauphiné-Savoie, Annecy

  • Borovička J, Řanda Z, Jelínek E (2006) Antimony content of macrofungi from clean and polluted areas. Chemosphere 64:1837–1844. doi:10.1016/j.chemosphere.2006.01.060

    Article  PubMed  Google Scholar 

  • Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res 111:1339–1344. doi:10.1016/j.mycres.2007.08.015

    Article  PubMed  Google Scholar 

  • Borovička J, Kotrba P, Gryndler M, Mihaljevič M, Řanda Z, Rohovec J, Cajthaml T, Stijve T, Dunn CE (2010) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Env 408:2733–2744. doi:10.1016/j.scitotenv.2010.02.031

    Article  Google Scholar 

  • Borovička J, Noordeloos ME, Gryndler M, Oborník M (2011) Molecular phylogeny of Psilocybe cyanescens complex in Europe, with reference to the position of the secotioid Weraroa novae-zelandiae. Mycol Prog 10:149–155. doi:10.1007/s11557-010-0684-3

    Article  Google Scholar 

  • Borovička J, Rockefeller A, Werner PG (2012) Psilocybe allenii—a new bluing species from the Pacific coast, USA. Czech Mycol 64:181–195

    Google Scholar 

  • Borovička J, Bušek B, Mikšík M, Dvořák D, Jeppesen TS, Dima B, Albert L, Frøslev TG (2015a) Cortinarius prodigiosus—a new species of the subgenus Phlegmacium from Central Europe. Mycol Prog 14:29. doi:10.1007/s11557-015-1051-1

    Article  Google Scholar 

  • Borovička J, Oborník M, Stříbrný J, Noordeloos ME, Parra Sánchez LA, Gryndler M (2015b) Phylogenetic and chemical studies in the potential psychotropic species complex of Psilocybe atrobrunnea with taxonomic and nomenclatural notes. Persoonia 34:1–9. doi:10.3767/003158515X685283

    Article  PubMed  Google Scholar 

  • Brandrud TE (1998) Cortinarius subgenus Phlegmacium section Phlegmacioides (= Variecolores) in Europe. Edinb J Bot 55:65–156. doi:10.1017/S0960428600004364

    Article  Google Scholar 

  • Cejpková J, Gryndler M, Hršelová H, Kotrba P, Řanda Z, Synková I, Borovička J (2016) Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area. Env Poll 218:176–185. doi:10.1016/j.envpol.2016.08.009

    Article  Google Scholar 

  • Cullen WR (2014) Chemical mechanism of arsenic biomethylation. Chem Res Toxicol 27:457–461. doi:10.1021/tx400441h

    Article  CAS  PubMed  Google Scholar 

  • Ertl K, Kitzer R, Goessler W (2016) Elemental composition of game meat from Austria. Food Addit Contam B 9:120–126. doi:10.1080/19393210.2016.1151464

    Article  CAS  Google Scholar 

  • Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501. doi:10.1007/s00253-012-4552-8

    Article  CAS  PubMed  Google Scholar 

  • Falandysz J, Rizal LM (2016) Arsenic and its compounds in mushrooms: a review. J Environ Sci Health C 34:217–232. doi:10.1080/10590501.2016.1235935

    Article  CAS  Google Scholar 

  • Garnica S, Weiß M, Oertel B, Oberwinkler F (2003) Phylogenetic relationships of European Phlegmacium species (Cortinarius, Agaricales). Mycologia 95:1155–1170. doi:10.2307/3761917

    Article  CAS  PubMed  Google Scholar 

  • Garnica S, Weiß M, Oertel B, Oberwinkler F (2005) A framework for a phylogenetic classification in the genus Cortinarius (Basidiomycota, Agaricales) derived from morphological and molecular data. Can J Bot 83:1457–1477. doi:10.1139/b05-107

    Article  CAS  Google Scholar 

  • Garnica S, Schön ME, Abarenkov K, Riess K, Liimatainen K, Niskanen T, Dima B, Soop K, Froeslev TG, Jeppesen TS, Peintner U, Brandrud TE, Saar G, Oertel B, Ammirati J (2016) Determining threshold values for barcoding fungi: lessons from Cortinarius (Basidiomycota), a highly diverse and widespread ectomycorrhizal genus. FEMS Microbiol Ecol 92:fiw045. doi:10.1093/femsec/fiw045

    Article  PubMed  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi:10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

  • Henry R (1958) Suite à l’étude des Cortinaires. Bull Soc Mycol Fr 74:249–361

    Google Scholar 

  • Henry R (1985a) Nouvelle étude de Cortinaires. Bull Soc Mycol Fr 101:1–13

    Google Scholar 

  • Henry R (1985b) Validations—Diagnoses Latines. Doc Mycol 16:47–54

    Google Scholar 

  • Henry R (1988) Nouvelles validations et typifications. Doc Mycol 19:63–68

    Google Scholar 

  • Horak E (2005) Röhrlinge und Blätterpilze in Europa. Elsevier, München

    Google Scholar 

  • IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, FAO, Rome 192 pp

  • Jahn R, Blume HP, Asio VB, Spaargaren O, Schad P (2006) Guidelines for soil description, 4th edn. FAO, Rome

    Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15. doi:10.1016/j.foodchem.2010.02.045

    Article  Google Scholar 

  • Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281. doi:10.1016/S0308-8146(99)00264-2

    Article  Google Scholar 

  • Kärcher R, Seibt D (1988) Beitrag zur Kenntnis der Pilzflora des Rhein-Main-Gebietes. Teil 1 – Pilzgesellschaften im Kronberger Edelkastanienhain – Cortinarius subgenus Phlegmacium und Myxacium. Z Mykol 54:77–92

    Google Scholar 

  • Kärcher R, Seibt D (1991) Beitrag zur Kenntnis der Pilzflora des Rhein-Main-Gebietes. Teil 3 – Neues über Cortinarius (Phl.) coalescens Kärcher & Seibt (1988) sowie Diskussionen über nahestahende Taxa aus Laubwaldgesellschaften. Z Mykol 57:249–252

    Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298. doi:10.1093/bib/bbn013

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Kuma KI, Toh H, Miyata T (2005) MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. doi:10.1093/nar/gki198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen H, Vesterholt J (eds) (2012) Funga Nordica, 2nd edn. Nordsvamp, Copenhagen

    Google Scholar 

  • Kubrová J, Žigová A, Řanda Z, Rohovec J, Gryndler M, Krausová I, Dunn CE, Kotrba P, Borovička J (2014) On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. J Haz Mat 280:79–88. doi:10.1016/j.jhazmat.2014.07.050

    Article  Google Scholar 

  • Kühner R, Romagnesi H (1953) Flore Analytique des Champignons Supérieurs (agarics, bolets, chanterelles). Masson, Paris

    Google Scholar 

  • Liimatainen K, Niskanen T, Dima B, Kytövuori I, Ammirati JF, Frøslev TG (2014) The largest type study of Agaricales species to date: Bringing identification and nomenclature of Phlegmacium (Cortinarius) into the DNA era. Persoonia 33:98–140. doi:10.3767/003158514X684681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser MM (1961) Die Gattung Phlegmacium. Julius Klinkhardt, Bad Heilbrunn Obb

  • Nearing MM, Koch I, Reimer KJ (2014) Arsenic speciation in edible mushrooms. Environ Sci Technol 48:14203–14210. doi:10.1021/es5038468

    Article  CAS  PubMed  Google Scholar 

  • Nearing MM, Koch I, Reimer KJ (2015) Uptake and transformation of arsenic during the vegetative life stage of terrestrial fungi. Env Poll 197:108–115. doi:10.1016/j.envpol.2014.12.006

    Article  CAS  Google Scholar 

  • Nearing MM, Koch I, Reimer KJ (2016) Uptake and transformation of arsenic during the reproductive life stage of Agaricus bisporus and Agaricus campestris. J Environ Sci 49:140–149. doi:10.1016/j.jes.2016.06.021

    Article  Google Scholar 

  • Reumaux P (1988) En marge de l’Atlas des Cortinaires (validation d’espèces nouvelles). Bull Trim Féd Mycol Dauph-Sav 28:25–30

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Scheer J, Findenig S, Goessler W, Francesconi KA, Howard B, Umans JG, Pollak J, Tellez-Plaza M, Silbergeld EK, Guallar E, Navas-Acien A (2012) Arsenic species and selected metals in human urine: validation of HPLC/ICPMS and ICPMS procedures for a long-term population-based epidemiological study. Anal Methods 4:406–413. doi:10.1039/C2AY05638K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao D, Tang S, Healy RA, Imerman PM, Schrunk DE, Rumbeiha WK (2016) A novel orellanine containing mushroom Cortinarius armillatus. Toxicon 114:65–74. doi:10.1016/j.toxicon.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  • Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337. doi:10.1007/s13127-011-0056-0

    Article  Google Scholar 

  • Šlejkovec Z, Byrne AR, Stijve T, Goessler W, Irgolic KJ (1997) Arsenic compounds in higher fungi. Appl Organomet Chem 11:673–682. doi:10.1002/(SICI)1099-0739(199708)11:8<673::AID-AOC620>3.0.CO;2-1

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiers B (2017) [continuously updated] Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih/

  • van Reeuwijk LP (2002) Procedures for soil analysis. Technical paper 9. International Soil Reference and Information Centre (ISRIC), Wageningen

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323. doi:10.1016/S0003-2670(01)00924-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Luis Alberto Parra-Sánchez for the invaluable comments on nomenclature, Jan Běťák for donating his collection of C. pseudodaulnoyae, and Tereza Tejklová for the kind assistance with the literature. Furthermore, we thank the curators of herbaria FR, G, O, PC, PRM, and TUB for providing their collections for microscopic and molecular study. André Bidaud and Patrick Reumaux are acknowledged for sending us the holotype of C. subtomentosus. This research was supported by the joint project GAČR GF16-34839 L (Czech Science Foundation) – FWF I 2352-B21 (Austrian Science Fund). The visit of Bálint Dima in PC was financially supported by SYNTHESYS, the European Union-funded Integrated Activities grant (application FR-TAF-4253). Institutional support for the institutes of the Czech Academy of Sciences was provided by the Long-term Development Projects RVO61388971, RVO67985831, and RVO61389005. INAA irradiations were carried out at the infrastructure of the NPI CAS Řež supported through the projects LM2011019 and LM2015074 (Ministry of Education, Youth and Sports of the Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Borovička.

Additional information

Section Editor: Zhu-Liang Yang

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borovička, J., Braeuer, S., Žigová, A. et al. Resurrection of Cortinarius coalescens: taxonomy, chemistry, and ecology. Mycol Progress 16, 927–939 (2017). https://doi.org/10.1007/s11557-017-1331-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-017-1331-z

Keywords

Navigation