Skip to main content
Log in

Fungi trapped in amber—a fossil legacy frozen in time

  • Review
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Amber is an exceptional organic mineral found all over the world that occasionally contains fossilised organisms. The physical and chemical characteristics of amber pose a challenge when looking for microfossils, such as microfungi. However, also, macrofungi are rarely found in amber, probably because of their ephemeral nature. Yet, in the course of this review, 137 records of non-lichnenised fungi and 182 of lichens were found, the earliest reaching back to the eighteenth century. The findings range from the Carboniferous (ca. 310 Ma) to the Upper Miocene (ca. 10 Ma). About 10% were macrofungi, the rest microfungi (Ascomycetes, Deuteromycetes) or lichens. Identification poses problems due to the fragmentary remains which, as a rule, are inaccessibly entombed in fossilised resin. Most non-lichenised taxa per Ma were, according to this review, recovered from Neogene deposits, whilst lichens showed a marked diversity surge during the Palaeogene. Overall, the record of fungal fossils in amber seems to mirror the diversity patterns through deep time. Nevertheless, the few records from the Palaeozoic and the Lower to Mid-Mesozoic call for the development of additional tools for detection and identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Plate 1

Similar content being viewed by others

References

  • Alekseev V, Alekseev P (2016) New approaches for reconstruction of the ecosystem of an Eocene amber forest. Biol Bull 43(1):75–86

    Article  Google Scholar 

  • Anderson KB (1994) The nature and fate of natural resins in the geosphere—IV. Middle and Upper Cretaceous amber from the Taimyr Peninsula, Siberia—evidence for a new form of polylabdanoid of resinite and revision of the classification of Class I resinites. Organic Geochemistry 21 (2):209–212

  • Andrée K (1951) Der Bernstein. Franckh’sche Verlagshandlung, Stuttgart

    Google Scholar 

  • Antoine P-O, De Franceschi D, Flynn JJ, Nel A, Baby P, Benammi M, Calderón Y, Espurt N, Goswami A, Salas-Gismondi R (2006) Amber from western Amazonia reveals Neotropical diversity during the middle Miocene. Proc Natl Acad Sci 103(37):13595–13600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ascaso C, Wierzchos J, Speranza M, Gutiérrez JC, González AM, de los Ríos A, Alonso J (2005) Fossil protists and fungi in amber and rock substrates. Micropaleontology 51(1):59–72

    Article  Google Scholar 

  • Azar D (1997) A new method for extracting plant and insect fossils from Lebanese amber. Palaeontology 40(4):1027–1060

    Google Scholar 

  • Bachmayer F (1962) Fossile Pilzhyphen im Flyschharz des Steinbruches im Höbersbachtal bei Gablitz in Niederösterreich. Ann Naturhist Mus Wien:47–49

  • Bachofen-Echt A (1949) Der Bernstein und seine Einschlüsse. Springer-Verlag, Wien

    Book  Google Scholar 

  • Bąk M, Natkaniec-Nowak L, Drzewicz P, Czapla D (2016) Ambrosiella-like fungi in fossil resin from Jambi Province in Sumatra Island—possible phoretic organisms interacted with invaded insects. Paper presented at the 17th Czech-Slovak-Polish Palaeolontological Conference, Warsaw,

  • Baniya CB, Solhøy T, Gauslaa Y, Palmer MW (2010) The elevation gradient of lichen species richness in Nepal. Lichenologist 42(1):83–96

    Article  Google Scholar 

  • Beimforde C, Schmidt AR (2011) Microbes in resinous habitats: a compilation from modern and fossil resins. In: Reitner J, Quéric N-V, Arp G (eds) Advances in stromatolite geobiology. Springer, pp 391–407

  • Beimforde C, Schäfer N, Dörfelt H, Nascimbene PC, Singh H, Heinrichs J, Reitner J, Rana RS, Schmidt AR (2011) Ectomycorrhizas from a Lower Eocene angiosperm forest. New Phytol 192(4):988–996

    Article  PubMed  Google Scholar 

  • Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi - how close are we? Fungal Biology Reviews 24:1–16

    Article  Google Scholar 

  • Berkeley MJ (1848) XXXIX.—On three species of mould detected by Dr. Thomas in the amber of East Prussia. Ann Mag Nat Hist 2(12):380–383

    Article  Google Scholar 

  • Boenigk J, Wodniok S, Glücksman E (2015) Biodiversity and earth history. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Boucot AJ, Poinar Jr GO (2011) Fossil behavior compendium. CRC Press,

  • Bresinsky A, Körner C, Kadereit JW, Neuhaus G, Sonnewald U (2008) Lehrbuch der Botanik, 36. edition. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Breton G (2007) La bioaccumulation de microorganismes dans l’ambre: analyse comparée d’un ambre cénomanien et d’un ambre sparnacien, et de leurs tapis algaires et bactériens. Comptes Rendus Palevol 6(1–2):125–133

    Article  Google Scholar 

  • Breton G (2012) L'ambre des Corbières (Aude - France). Société d'Etudes Scientifiques de l'Aude, Carcassonne

  • Breton G, Tostain F (2005) Les microorganismes de l’ambre cénomanien d’Écommoy (Sarthe, France). Comptes Rendus Palevol 4(1–2):31–46

    Article  Google Scholar 

  • Breton G, Gauthier C, Vizcaino D (1999) Land and freshwater microflora in a Sparnacian amber from the Corbières (South France): first observations. Estudios del museo de Ciencias Naturales de alava 14 (2)

  • Breton G, Bilotte M, Eychenne G L’ambre campanien du Mas d’Azil (Ariège, France): gisement, micro-inclusions, taphonomie. Annales de Paléontologie, 2013. vol 4. Elsevier, pp 317–337

  • Breton G, de Lourdes S-SM, Vega FJ (2014) Filamentous micro-organisms, inorganic inclusions and pseudo-fossils in the Miocene amber from Totolapa (Chiapas, Mexico): taphonomy and systematics. Bol Soc Geol Mex 66(1):199–214

    Google Scholar 

  • Caspary R, Klebs RHE (1907) Die Flora des Bernsteins und anderer fossiler Harze des ostpreussischen Tertiärs. Königlich Geologische Landesanstalt,

  • Conwentz H (1890) Monographie der baltischen Bernsteinbäume. Commissions-Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • de Lara NOT, Marcati CR (2016) Cambial dormancy lasts 9 months in a tropical evergreen species. Trees 30(4):1331–1339

    Article  Google Scholar 

  • Divakar PK, Crespo A, Wedin M, Leavitt SD, Hawksworth DL, Myllys L, McCune B, Randlane T, Bjerke JW, Ohmura Y et al (2015) Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi. New Phytol 208(4):1217–1226

    Article  CAS  PubMed  Google Scholar 

  • Dörfelt H, Schäfer U (1998) Fossile Pilze in Bernstein der alpischen Trias. Zeitschrift für Mykologie 64:141–152

    Google Scholar 

  • Dörfelt H, Schmidt AR (2005) A fossil Aspergillus from Baltic amber. Mycol Res 109(8):956–960

    Article  PubMed  Google Scholar 

  • Dörfelt H, Striebich B (2000) Palaeocybe striata, ein neuer fossiler Pilz in Bernstein des Tertiär. ZMykol 66:27–34

    Google Scholar 

  • Fahn A, Werker E, Ben-Tzur P (1979) Seasonal effects of wounding and growth substances on development of traumatic resin ducts in Cedrus libani. New Phytol 82(2):537–544

    Article  CAS  Google Scholar 

  • Girard V, Adl SM (2011) Amber microfossils: on the validity of species concept. Comptes Rendus Palevol 10(2–3):189–200

    Article  Google Scholar 

  • Girard V, Schmidt AR, Struwe S, Perrichot V, Breton G, Néraudeau D (2009) Taphonomy and palaeoecology of mid-Cretaceous amber-preserved microorganisms from southwestern France. Geodiversitas 31(1):153–162

    Article  Google Scholar 

  • Goeppert HR, Berendt GC (1845) Der Bernstein und die in ihm befindlichen Pflanzenreste der Vorwelt. Nicolaische Buchhandlung, Berlin

    Google Scholar 

  • Gothan W, Weyland H (1964) Lehrbuch der Paläobotanik. Akademie-Verlag, Berlin

    Google Scholar 

  • Graham A (1962) The role of fungal spores in palynology. J Paleontol 36(1):60–68

    Google Scholar 

  • Green OR (2001) Preparation of amber specimens containing fossils. In: A manual of practical laboratory and field techniques in palaeobiology. Springer Netherlands, Dordrecht, pp 234–241. https://doi.org/10.1007/978-94-017-0581-3_23

    Chapter  Google Scholar 

  • Green OR (2014) A manual of practical laboratory and field techniques in palaeobiology. Springer Science & Business Media,

  • Gregory PH (1973) Microbiology of the atmosphere, 2nd edition. John Wiley & Sons, New York

    Google Scholar 

  • Grimaldi DA, Bonwich E, Delannoy M, Doberstein S (1994) Electron microscopic studies of mummified tissues in amber fossils. American Museum novitates; no. 3097

  • Grimaldi DA, Engel MS, Nascimbene PC (2002) Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Am Mus Novit 3361:1–71

    Article  Google Scholar 

  • Grüß J (1931) Die Urform des Anthomyces Reukaufii und andere Einschlüsse in den Bernstein durch Insekten verschleppt. Wochenschr Brau 22:1–6

    Google Scholar 

  • Guimarães JTF, Nogueira ACR, Bandeira Cavalcante Da Silva Jr J, Lima Soares J, Silveira R (2013) Fossil fungi from Miocene sedimentary rocks of the central and coastal Amazon region, North Brazil. J Paleontol 87(3):484–492

    Article  Google Scholar 

  • Halbwachs H, Bässler C (2015) Gone with the wind—a review on basidiospores of lamellate agarics. Mycosphere 6:78–112

    Article  Google Scholar 

  • Henkels JF, Zimmermann CF (1744) Kleine mineralogische, und chymische Schriften: nebst einer Vorrede von den Bergwerks-Wissenschaften zur Vermehrung der Cameral-Nutzungen. Friedrich Hekel, Dresden/Leipzig

    Google Scholar 

  • Hibbett D (2017) Major events in the evolution of fungi. In: Losos JB, Baum DA, Futuyma DJ et al (eds) . Princeton University Press, The Princeton guide to evolution, pp 152–158

    Google Scholar 

  • Hibbett D, Grimaldi D, Donoghue M (1995) Cretaceous mushrooms in amber. Nature 377(6549):487

    Article  CAS  Google Scholar 

  • Hibbett D, Grimaldi D, Donoghue M (1997) Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of Homobasidiomycetes. Am J Bot 84(7):981–981

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Wang Z, Goldman Y (2003) Another fossil agaric from Dominican amber. Mycologia 95(4):685–687

    Article  PubMed  Google Scholar 

  • Holt EA, Bradford R, Garcia I (2015) Do lichens show latitudinal patterns of diversity? Fungal Ecol 15:63–72. https://doi.org/10.1016/j.funeco.2015.03.004

    Article  Google Scholar 

  • Horton TR (2017) Spore dispersal in ectomycorrhizal fungi at fine and regional scales. In: Tedersoo L (ed) Biogeography of mycorrhizal symbiosis. Springer, pp 61–78

  • Kaasalainen U, Schmidt AR, Rikkinen J (2017) Diversity and ecological adaptations in Palaeogene lichens. Nature plants 3(5):17049

    Article  PubMed  Google Scholar 

  • Kaasalainen U, Heinrichs J, Renner MA, Hedenäs L, Schäfer-Verwimp A, Lee GE, Ignatov MS, Rikkinen J, Schmidt AR (2018) A Caribbean epiphyte community preserved in Miocene Dominican amber. Earth and environmental science transactions of the royal society of Edinburgh 107(2–3):321–331

    Article  Google Scholar 

  • Kalgutkar R, Sigler L (1995) Some fossil fungal form-taxa from the Maastrichtian and Palaeogene ages. Mycol Res 99(5):513–522

    Article  Google Scholar 

  • Kappen L (1973) Response to extreme environments. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York & London, pp 311–380

    Chapter  Google Scholar 

  • Kettunen E, Grabenhorst H, Gröhn C, Dörfelt H, Sadowski E-M, Rikkinen J, Schmidt AR (2015) The enigmatic hyphomycete Torula sensu Caspary revisited. Rev Palaeobot Palynol 219:183–193

    Article  Google Scholar 

  • Kettunen E, Schmidt AR, Diederich P, Grabenhorst H, Rikkinen J (2016) Lichen-associated fungi from Paleogene amber. New Phytol 209(3):896–898

    Article  PubMed  Google Scholar 

  • Kettunen E, Schmidt AR, Diederich P, Grabenhorst H, Rikkinen J (2017) Diversity of lichen-associated filamentous fungi preserved in European Paleogene amber. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 107(2–3):311–320

    Google Scholar 

  • Kettunen E, Sadowski E-M, Seyfullah LJ, Dörfelt H, Rikkinen J, Schmidt AR (2018) Caspary’s fungi from Baltic amber: historic specimens and new evidence. Papers in Palaeontology. https://doi.org/10.1002/spp2.1238

  • Khattab A, Levetin E (2008) Effect of sampling height on the concentration of airborne fungal spores. Ann Allergy Asthma Immunol 101(5):529–534

    Article  PubMed  Google Scholar 

  • King R (2006) Amber (Part 1). Geol Today 22(6):232–237

    Article  Google Scholar 

  • King R (2007) Amber (part 2). Geol Today 23(2):74–77

    Article  Google Scholar 

  • Krings M, Taylor TN, Harper CJ (2017) Early fungi—evidence from the fossil record. In: Dighton J, White JF (eds) The fungal community—its organization and role in the ecosystem, 4th edition. CRC Press, Boca Raton, pp 37–51

    Chapter  Google Scholar 

  • Krumbiegel G, Krumbiegel B (1994) Bernstein - Fossile Harze aus aller Welt. Goldschneck Verlag, Weinstadt

    Google Scholar 

  • Labandeira CC (2014) Amber. The Paleontological Society Papers 20:163–216. https://doi.org/10.1017/S1089332600002850

    Article  Google Scholar 

  • Lak M, Néraudeau D, Nel A, Cloetens P, Perrichot V, Tafforeau P (2008) Phase contrast X-ray synchrotron imaging: opening access to fossil inclusions in opaque amber. Microsc Microanal 14(3):251–259

    Article  CAS  PubMed  Google Scholar 

  • Langenheim R Jr, Smiley C, Gray J (1960) Cretaceous amber from the Arctic coastal plain of Alaska. Geol Soc Am Bull 71(9):1345–1356

    Article  Google Scholar 

  • Leelawatanasuk T, Wathanakul P, Paramita S, Sutthirat C, Sriprasert B, Bupparenoo P (2013) The characteristics of amber from Indonesia. Aust Gemmol 25(4):142–145

    CAS  Google Scholar 

  • Lin C-P, Huang J-P, Wu C-S, Hsu C-Y, Chaw S-M (2010) Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. Genome biology and evolution 2:504–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodge DJ, Ammirati J, O'Dell TE, Mueller GM, Huhndorf SM, Wang C-J, Stokland JN, Schmit JP, Ryvarden L, Leacock PR, Mata M, Umaña L, Wu Q, Czederpiltz DL (2004) Terrestrial and lignicolous macrofungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Academic Press, pp 127–172

  • Lorrey AM, Boswijk G, Hogg A, Palmer JG, Turney CSM, Fowler AM, Ogden J, Woolley J-M (2018) The scientific value and potential of New Zealand swamp kauri. Quat Sci Rev 183:124–139. https://doi.org/10.1016/j.quascirev.2017.12.019

    Article  Google Scholar 

  • Lücking R, Nelsen MP (2018) Ediacarans, protolichens, and lichen-derived Penicillium: a critical reassessment of the evolution of lichenization in fungi. In: Harper CJ, Cúneo NR, Rothwell GW (eds) Krings M. Elsevier, Transformative paleobotany, pp 551–590

    Google Scholar 

  • Lumbsch HT, Rikkinen J (2017) Evolution of lichens. In: Dighton J, White JF (eds) The fungal community—its organization and role in the ecosystem, 4th Edition. CRC Press, pp 53–62

  • Martín-González A, Wierzchos J, Gutiérrez JC, Alonso J, Ascaso C (2009) Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber. Naturwissenschaften 96(5):551–564

    Article  CAS  PubMed  Google Scholar 

  • Masuch G (1993) Biologie der Flechten. Quelle und Meyer, Heidelberg & Wiesbaden

    Google Scholar 

  • Mazur N, Nagel M, Leppin U, Bierbaum G, Rust J (2014) The extraction of fossil arthropods from Lower Eocene Cambay amber. Acta Palaeontol Pol 59(2):455–459

    Google Scholar 

  • Menge A (1858) Beitrag zur Bernsteinflora. Schriften der Naturforschenden Gesellschaft in Danzig 5:1–18

    Google Scholar 

  • Murray AP, Edwards D, Hope JM, Boreham CJ, Booth WE, Alexander RA, Summons RE (1998) Carbon isotope biogeochemistry of plant resins and derived hydrocarbons. Org Geochem 29(5–7):1199–1214

    Article  CAS  Google Scholar 

  • Mustoe GE (1985) Eocene amber from the Pacific Coast of North America. GSA Bull 96(12):1530–1536. https://doi.org/10.1130/0016-7606(1985)96<1530:EAFTPC>2.0.CO;2

    Article  CAS  Google Scholar 

  • Naglik B, Kosmowska-Ceranowicz B, Natkaniec-Nowak L, Drzewicz P, Dumańska-Słowik M, Matusik J, Wagner M, Milovsky R, Stach P, Szyszka A (2018) Fossilization history of fossil resin from Jambi Province (Sumatra, Indonesia) based on physico-chemical studies. Minerals 8(3):95

    Article  CAS  Google Scholar 

  • Nel P, Schmidt AR, Bässler C, Nel A (2012) Fossil thrips of the family Uzelothripidae suggest 53 million years of morphological and ecological stability. Acta Palaeontol Pol 58:609–614

    Google Scholar 

  • Nicholas CJ, Henwood AA, Simpson M (1993) A new discovery of early Cretaceous (Wealden) amber from the Isle of Wight. Geol Mag 130(6):847–850. https://doi.org/10.1017/S0016756800023207

    Article  Google Scholar 

  • Pampaloni L (1902) Resti organici nel disolide di Melilli in Sicilia. In: Canavari M (ed) Palaeontographia Italica. Museo Geologico della R. Università di Pisa, Pisa, pp 121–130

    Google Scholar 

  • Peñalver E, Delclòs X (2010) Spanish amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 299–303

    Google Scholar 

  • Peñalver E, Delclos X, Soriano C (2007) A new rich amber outcrop with palaeobiological inclusions in the Lower Cretaceous of Spain. Cretac Res 28(5):791–802

    Article  Google Scholar 

  • Penney D (2010) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press,

  • Penney D, Green DI (2010) Introduction, preparation, study & conservation of amber inclusions. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 5–21

    Google Scholar 

  • Penney D, Preziosi RF (2010) On inclusions in subfossil resins (copal). In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 299–303

    Google Scholar 

  • Penney D, Wadsworth C, Green DI, Kennedy SL, Preziosi RF, Brown TA (2013) Extraction of inclusions from (sub) fossil resins, with description of a new species of stingless bee (Hymenoptera: Apidae: Meliponini) in Quaternary Colombian copal. Paleontological Contributions 7:1–6

    Google Scholar 

  • Perrichot V, Boudinot B. F., Cole J, Delhaye-Prat V, Esnault J, Al E (2016) African fossiliferous amber: a review. Paper presented at the 7th International Conference on Fossil Insects, Arthropods and Amber, Edinburgh, 2016-04-21

  • Pirozynski K (1976) Fossil fungi. Annu Rev Phytopathol 14(1):237–246

    Article  Google Scholar 

  • Poinar Jr GO (1992) Life in amber. Stanford University Press.

  • Poinar GO Jr (2001) Fossil puffballs (Gasteromycetes: Lycoperdales) in Mexican amber. Hist Biol 15(3):219–222

    Article  Google Scholar 

  • Poinar GO Jr (2003) Coelomycetes in Dominican and Mexican amber. Mycol Res 107(1):117–122

    Article  PubMed  Google Scholar 

  • Poinar GO Jr (2014a) Bird’s nest fungi (Nidulariales: Nidulariaceae) in Baltic and Dominican amber. Fungal biology 118(3):325–329

    Article  PubMed  Google Scholar 

  • Poinar GO Jr (2014b) Xylaria antiqua sp. Nov.(Ascomycota: Xylariaceae) in Dominican amber. Journal of the Botanical Research Institute of Texas 8(1):145–149

    Google Scholar 

  • Poinar GO Jr (2016a) A Mid-Cretaceous ectoparasitic fungus, Spheciophila adercia gen et sp. nov, attached to a wasp in Myanmar amber. Fungal Genet Biol 6(2):1–4

    Google Scholar 

  • Poinar GO Jr (2016b) Fossil fleshy fungi (“mushrooms”) in Amber. Fungal Genom Biol 6(142):2

    Google Scholar 

  • Poinar GO Jr (2016c) A gilled mushroom, Gerontomyces lepidotus gen. et sp. nov. (Basidiomycota: Agaricales), in Baltic amber. Fungal biology 120(9):1090–1093

    Article  PubMed  Google Scholar 

  • Poinar GO Jr (2017a) Developmental stages of the fungus, Synaptomitus orchiphilus, in the germinating seed, Mycophoris elongatus (Orchidaceae), in Dominican amber. Hist Biol:1–5. doi:https://doi.org/10.1080/08912963.2017.1411352

  • Poinar GO Jr (2017b) Two new genera, Mycophoris gen. nov. (Orchidaceae) and Synaptomitus gen. nov. (Basidiomycota) based on a fossil seed with developing embryo and associated fungus in Dominican amber. Botany 95(1):1–8

    Article  Google Scholar 

  • Poinar GO Jr (2018) A mid-Cretaceous pycnidia, Palaeomycus epallelus gen. et sp. nov., in Myanmar amber. Historical biology Doi https://doi.org/10.1080/08912963.2018.1481836:1-4

  • Poinar GO Jr, Buckley R (2007) Evidence of mycoparasitism and hypermycoparasitism in Early Cretaceous amber. Mycol Res 111(4):503–506

    Article  PubMed  Google Scholar 

  • Poinar GO Jr, Hess R (1985) Preservative qualities of recent and fossil resins: electron micrograph studies on tissue preserved in Baltic amber. Journal of Baltic Studies 16(3):222–230

    Article  Google Scholar 

  • Poinar GO Jr, Poinar R (1999) The amber forest: a reconstruction of a vanished world. Princeton University Press, Princeton

    Google Scholar 

  • Poinar GO Jr, Singer R (1990) Upper Eocene gilled mushroom from the Dominican Republic. Science 248(4959):1099–1101

    Article  PubMed  Google Scholar 

  • Poinar GO Jr, Thomas G (1982) An entomophthoralean fungus from Dominican amber. Mycologia 74(2):332–334

    Article  Google Scholar 

  • Poinar GO Jr, Thomas G (1984) A fossil entomogenous fungus from Dominican amber. Experientia 40(6):578–579

    Article  Google Scholar 

  • Poinar GO Jr, Waggoner BM, Bauer U-C (1993) Terrestrial soft-bodied protists and other microorganisms in Triassic amber. Science 259(5092):222–224

    Article  PubMed  Google Scholar 

  • Poinar GO Jr, Peterson E, Platt J (2000) Fossil Parmelia in new world amber. Lichenologist 32(3):263–269

    Article  Google Scholar 

  • Poinar GO Jr, da Silva AD, Baseia IG (2014) A gasteroid fungus, Palaeogaster micromorpha gen. & sp. nov. (Boletales) in Cretaceous Myanmar amber. Journal of the Botanical Research Institute of Texas 8(1):139–143

    Google Scholar 

  • Poinar GO Jr, Alderman S, Wunderlich J (2015) One hundred million year old ergot: psychotropic compounds in the Cretaceous? Palaeodiversity 8:13–19

    Google Scholar 

  • Poinar GO Jr, Vega FE (2019) A mid-Cretaceous trichomycete, Priscadvena corymbosa gen. et sp. nov., in Burmese amber. Fungal Biology. https://doi.org/10.1016/j.funbio.2019.02.007

  • Ponomarenko AG (2016) Insects during the time around the Permian—Triassic crisis. Paleontol J 50(2):174–186. https://doi.org/10.1134/s0031030116020052

    Article  Google Scholar 

  • Rikkinen J, Poinar G (2002) Yeast-like fungi in Dominican amber. Karstenia 42:29–32

    Article  Google Scholar 

  • Rikkinen J, Poinar GO Jr (2001) Fossilised fungal mycelium from Tertiary Dominican amber. Mycol Res 105(7):890–896

    Article  Google Scholar 

  • Rikkinen J, Poinar GO Jr (2008) A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. J Exp Bot 59(5):1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Rikkinen J, Schmidt AR (2018) Morphological convergence in forest microfungi provides a proxy for Paleogene forest structure. In: Krings M, Harper CJ, Cúneo NR, Rothwell GW (eds) Transformative Paleobotany. Elsevier, pp 527–549

  • Rikkinen J, Meinke SKL, Grabenhorst H, Gröhn C, Kobbert M, Wunderlich J, Schmidt AR (2018) Calicioid lichens and fungi in amber—tracing extant lineages back to the Paleogene. Geobios 51(5):469–479

    Article  Google Scholar 

  • Rossi W, Kotrba M, Triebel D (2005) A new species of Stigmatomyces from Baltic amber, the first fossil record of Laboulbeniomycetes. Mycol Res 109(3):271–274

    Article  PubMed  Google Scholar 

  • Rust J, Singh H, Rana RS, McCann T, Singh L, Anderson K, Sarkar N, Nascimbene PC, Stebner F, Thomas JC (2010) Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proc Natl Acad Sci 107(43):18360–18365

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryberg M, Matheny PB (2011) Asynchronous origins of ectomycorrhizal clades of Agaricales. Proceedings of the Royal Society of London B: Biological Sciences:rspb20112428

  • Sadowski E-M, Beimforde C, Gube M, Rikkinen J, Singh H, Seyfullah LJ, Heinrichs J, Nascimbene PC, Reitner J, Schmidt AR (2012) The anamorphic genus Monotosporella (Ascomycota) from Eocene amber and from modern Agathis resin. Fungal biology 116(10):1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Sadowski E-M, Schmidt AR, Kunzmann L, Gröhn C, Seyfullah LJ (2016) Sciadopitys cladodes from Eocene Baltic amber. Bot J Linn Soc 180(2):258–268

    Article  Google Scholar 

  • Sadowski E-M, Schmidt AR, Seyfullah LJ, Kunzmann L (2017) Conifers of the “Baltic Amber Forest” and their Palaeoecological significance (Stapfia 106), vol 106. Stapfia. Oberösterreichisches Landesmuseum, Linz

  • Saint Martin J-P, Saint Martin S (2018) Exquisite preservation of a widespread filamentous microorganism in French Cretaceous ambers: crucial for revising a controversial fossil. Comptes Rendus Palevol 17(7):415–434

    Article  Google Scholar 

  • Saint Martin S, Saint Martin J-P, Girard V, Grosheny D, Néraudeau D (2012) Filamentous micro-organisms in Upper Cretaceous amber (Martigues, France). Cretac Res 35:217–229

    Article  Google Scholar 

  • Schmidt A (2003) Das fossile Harz von Schliersee (Bayerische Alpen) und seine Mikroinklusen. Doctoral thesis, Friedrich-Schiller-Universität, Jena

  • Schmidt AR, Dörfelt H (2007) Evidence of Cenozoic Matoniaceae from Baltic and Bitterfeld amber. Rev Palaeobot Palynol 144(3–4):145–156

    Article  Google Scholar 

  • Schmidt AR, Ragazzi E, Coppellotti O, Roghi G (2006) A microworld in Triassic amber. Nature 444(7121):835

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AR, Dörfelt H, Perrichot V (2007) Carnivorous fungi from Cretaceous amber. Science 318(5857):1743–1743

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AR, Dörfelt H, Perrichot V (2008) Palaeoanellus dimorphus gen. et sp. nov. (Deuteromycotina): a Cretaceous predatory fungus. Am J Bot 95(10):1328–1334

    Article  PubMed  Google Scholar 

  • Schmidt AR, Perrichot V, Svojtka M, Anderson KB, Belete KH, Bussert R, Dörfelt H, Jancke S, Mohr B, Mohrmann E (2010) Cretaceous African life captured in amber. Proc Natl Acad Sci 107(16):7329–7334

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt AR, Beimforde C, Seyfullah LJ, Wege S-E, Dörfelt H, Girard V, Grabenhorst H, Gube M, Heinrichs J, Nel A (2013a) Amber fossils of sooty moulds. Rev Palaeobot Palynol 200:53–64

    Article  Google Scholar 

  • Schmidt AR, Dörfelt H, Grabenhorst H, Tuovila H, Rikkinen J (2013b) Fungi of the Bitterfeld amber forest. Exkursf und Veröfftl DGG 249:54–60

    Google Scholar 

  • Schmidt AR, Kaulfuss U, Bannister JM, Baranov V, Beimforde C, Bleile N, Borkent A, Busch A, Conran JG, Engel MS, Harvey M, Kennedy EM, Kerr PH, Kettunen E, Kiecksee AP, Lengeling F, Lindqvist JK, Maraun M, Mildenhall DC, Perrichot V, Rikkinen J, Sadowski E-M, Seyfullah LJ, Stebner F, Szwedo J, Ulbrich P, Lee DE (2018) Amber inclusions from New Zealand. Gondwana Res 56:135–146. https://doi.org/10.1016/j.gr.2017.12.003

    Article  Google Scholar 

  • Schöller H (1997) Flechten: Geschichte, Biologie, Systematik, Ökologie, Naturschutz und kulturelle Bedeutung: Begleitheft zur Ausstellung" Flechten-Kunstwerke der Natur". Waldemar Kramer, Frankfurt a. M

  • Schönborn W, Dörfelt H, Foissner W, Krienitz L, Schäfer U (1999) A fossilized microcenosis in Triassic amber. J Eukaryot Microbiol 46(6):571–584

    Article  Google Scholar 

  • Selosse M-A, Brundrett M, Dearnaley J, Merckx VS, Rasmussen F, Zettler LW, Rasmussen HN (2017) Why Mycophoris is not an orchid seedling, and why Synaptomitus is not a fungal symbiont within this fossil. Botany 95(9):865–868

    Article  Google Scholar 

  • Sendel N (1742) Historia succinorum corpora aliena involventium et naturae opere pictorum et caelatorum. Apud Io. Fridericum Gleditschium, Leipzig

  • Seyfullah LJ, Beimforde C, Dal Corso J, Perrichot V, Rikkinen J, Schmidt AR (2018) Production and preservation of resins–past and present. Biol Rev 93:1684–1714

    Article  PubMed  Google Scholar 

  • Sidorchuk EA (2013) A new technique for preparation of small-sized amber samples with application to mites. Paper presented at the proceedings of the 6th International Congress on Fossil Insects, Arthropods and Amber, Byblos/Lebanon,

  • Signor PW (1990) The geologic history of diversity. Annu Rev Ecol Syst 21(1):509–539

    Article  Google Scholar 

  • Smith J (1896) On the discovery of fossil microscopic plants in the fossil amber of the Ayrshire coal-field. Trans Geol Soc Glasgow 10(2):318–322

    Article  Google Scholar 

  • Smith RD, Ross AJ (2017) Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amber. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 107(2–3):239–247

    CAS  Google Scholar 

  • Speranza M, Wierzchos J, Alonso J, Bettucci L, Martín-González A, Ascaso C (2010) Traditional and new microscopy techniques applied to the study of microscopic fungi included in amber. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, application and education. Formatex Research Center, Badajoz, pp 1135–1145

    Google Scholar 

  • Stankiewicz BA, Poinar HN, Briggs DE, Evershed RP, Poinar GO Jr (1998) Chemical preservation of plants and insects in natural resins. Proc R Soc Lond B Biol Sci 265(1397):641–647

    Article  CAS  Google Scholar 

  • Stubblefield SP, Taylor TN (1988) Recent advances in palaeomycology. New Phytol 108(1):3–25

    Article  PubMed  Google Scholar 

  • Stubblefield SP, Miller CE, Taylor TN, Cole GT (1985) Geotrichites glaesarius, a conidial fungus from Tertiary Dominican amber. Mycologia 77(1):11–16

    Article  Google Scholar 

  • Sung G-H, Poinar GO Jr, Spatafora JW (2008) The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal–arthropod symbioses. Mol Phylogenet Evol 49(2):495–502. https://doi.org/10.1016/j.ympev.2008.08.028

    Article  PubMed  Google Scholar 

  • Taylor TN, Krings M (2010) Paleomycology: the rediscovery of the obvious. Palaios 25(5):283–286

    Article  Google Scholar 

  • Taylor TN, Krings M, Taylor EL (2014) Fossil Fungi. Elsevier Science, London

    Google Scholar 

  • Taylor TN, Krings M, Taylor EL (2015) Fungal diversity in the fossil record. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution, 2nd edition. Springer, Berlin/Heidelberg, pp 259–278

    Chapter  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L-d, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346(6213). https://doi.org/10.1126/science.1256688

  • Thiel V, Lausmaa J, Sjövall P, Ragazzi E, Seyfullah LJ, Schmidt AR (2016) Microbe-like inclusions in tree resins and implications for the fossil record of protists in amber. Geobiology 14(4):364–373. https://doi.org/10.1111/gbi.12180

    Article  CAS  PubMed  Google Scholar 

  • Thomas GM, Poinar GO Jr (1988) A fossil Aspergillus from Eocene Dominican amber. J Paleontol:141–143

  • Traverse A (2008) Paleopalynology 2nd edition. Springer, Dordrecht

    Google Scholar 

  • Tripathi S (2012) The systematics and evolutionary perspectives of fossil fungi. In: Misra J, Tewari J, Deshmukh S (eds) Systematics and evolution of fungi. pp 15–27

  • Tripp EA, Lendemer JC, Barberán A, Dunn RR, Fierer N (2016) Biodiversity gradients in obligate symbiotic organisms: exploring the diversity and traits of lichen propagules across the United States. J Biogeogr 43(8):1667–1678

    Article  Google Scholar 

  • Tuovila H, Schmidt AR, Beimforde C, Dörfelt H, Grabenhorst H, Rikkinen J (2013) Stuck in time—a new Chaenothecopsis species with proliferating ascomata from Cunninghamia resin and its fossil ancestors in European amber. Fungal Divers 58(1):199–213

    Article  Google Scholar 

  • Urbański T, Molak W (1984) Chemistry of Baltic amber. Part VII*. Chemistry 32(1–2):3–8

    Google Scholar 

  • Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, Sánchez-Ramírez S, Szöllősi GJ, Szarkándi JG, Papp V, Albert L, Andreopoulos W, Angelini C, Antonín V, Barry KW, Bougher NL, Buchanan P, Buyck B, Bense V, Catcheside P, Chovatia M, Cooper J, Dämon W, Desjardin D, Finy P, Geml J, Haridas S, Hughes K, Justo A, Karasiński D, Kautmanova I, Kiss B, Kocsubé S, Kotiranta H, LaButti KM, Lechner BE, Liimatainen K, Lipzen A, Lukács Z, Mihaltcheva S, Morgado LN, Niskanen T, Noordeloos ME, Ohm RA, Ortiz-Santana B, Ovrebo C, Rácz N, Riley R, Savchenko A, Shiryaev A, Soop K, Spirin V, Szebenyi C, Tomšovský M, Tulloss RE, Uehling J, Grigoriev IV, Vágvölgyi C, Papp T, Martin FM, Miettinen O, Hibbett DS, Nagy LG (2019) Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-019-0834-1

  • Wolfe AP, Tappert R, Muehlenbachs K, Boudreau M, McKellar RC, Basinger JF, Garrett A (2009) A new proposal concerning the botanical origin of Baltic amber. Proc R Soc Lond B Biol Sci 276(1672):3403–3412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I sincerely thank Heinrich Dörfelt (Jena/Germany) for his valuable comments on the manuscript. For the provision of electronic images, I am indebted to David S. Hibbett (Worcester/ Massachusetts) and George Poinar Jr. (Corvallis/Oregon), and again to George Poinar Jr. for our fruitful dialogue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Halbwachs.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 569 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halbwachs, H. Fungi trapped in amber—a fossil legacy frozen in time. Mycol Progress 18, 879–893 (2019). https://doi.org/10.1007/s11557-019-01498-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-019-01498-y

Keywords

Navigation