Skip to main content
Log in

New ophiostomatoid fungi from wounds on storm-damaged trees in Afromontane forests of the Cape Floristic Region

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Ophiostomatoid fungi, a well-known tree-associated group, include some of the most important forest pathogens globally. Several ophiostomatoid species were reported already from Rapanea melanophloeos of the Afromontane forests from the Cape Floristic Region (CFR) of South Africa. The aim of this study was to investigate the diversity of ophiostomatoid fungi associated with wounds on other Afromontane forest tree species in the CFR. Storm-damaged trees were surveyed and fungi were isolated from bark and wood samples. Two undescribed ophiostomatoid species were identified based on micro-morphological characters and phylogenetic analyses. They are newly described here as Graphilbum roseum and Sporothrix oleae. A third taxon in the genus Graphium may also represent an undescribed species, but additional data is required to support this hypothesis. Sporothrix oleae, a species that groups within the S. candida species complex, was associated with Olea capensis. Graphilbum roseum was isolated from several host tree species including Curtisia dentata, Halleria lucida and Pterocelastrus tricuspidatus, while the Graphium sp. was isolated from Ilex mitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aghayeva DN, Wingfield MJ, de Beer ZW, Kirisits T (2004) Two new Ophiostoma species with Sporothrix anamorphs from Austria and Azerbaijan. Mycologia 96:866–878

    Article  PubMed  Google Scholar 

  • Aghayeva DN, Wingfield MJ, Kirisits T, Wingfield BD (2005) Ophiostoma dentifundum sp. nov. from oak in Europe, characterized using molecular phylogenetic data and morphology. Mycol Res 109:1127–1136

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Brasier CM, Buck KW (2001) Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biol Invasions 3:223–233

    Article  Google Scholar 

  • Brooks T, Balmford A, Burgess N, Fjeldsa J, Hansen LA, Moore J, Rahbek C, Williams P (2001) Towards a blueprint for conservation. Africa. BioScience 51:613–624

    Article  Google Scholar 

  • Chang R, Duong TA, Taerum SJ, Wingfield MJ, Zhou X, de Beer ZW (2017) Ophiostomatoid fungi associated with conifer-infesting beetles and their phoretic mites in Yunnan, China. MycoKeys 28:19–64

    Article  Google Scholar 

  • Crous PW, Rong IH, Wood A, Lee S, Glen H, Botha W, Slippers B, de Beer ZW, Wingfield MJ, Hawksworth DL (2006) How many species of fungi are there at the tip of Africa? Stud Mycol 55:13–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruywagen EM, de Beer ZW, Roux J, Wingfield MJ (2010) Three new Graphium species from baobab trees in South Africa and Madagascar. Persoonia 25:61–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Beer ZW, Wingfield MJ (2013) Emerging lineages in the Ophiostomatales. In: Seifert KA, de Beer ZW, Wingfield MJ (eds) Ophiostomatoid fungi: expanding frontiers, CBS Biodiversity Series 12, Netherlands, pp 21–46

    Google Scholar 

  • De Beer ZW, Wingfield BD, Wingfield MJ (2003a) The Ophiostoma piceae complex in the Southern Hemisphere: a phylogenetic study. Mycol Res 107:469–476

    Article  PubMed  CAS  Google Scholar 

  • De Beer ZW, Harrington TC, Vismer HF, Wingfield BD, Wingfield MJ (2003b) Phylogeny of the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 95:434–441

    PubMed  Google Scholar 

  • De Beer ZW, Seifert KA, Wingfield MJ (2013a) The ophiostomatoid fungi: their dual position in the Sordarimycetes. In: Seifert KA, de Beer ZW, Wingfield MJ (eds) Ophiostomatoid fungi: expanding frontiers, CBS Biodiversity Series 12, Netherlands, pp 1–19

    Google Scholar 

  • De Beer ZW, Seifert KA, Wingfield MJ (2013b) A nomenclature for ophiostomatoid genera and species in the Ophiostomatales and Microascales. In: Seifert KA, de Beer ZW, Wingfield MJ (eds) Ophiostomatoid fungi: expanding frontiers, CBS Biodiversity Series 12, Netherlands, pp 245–322

    Google Scholar 

  • De Beer ZW, Duong TA, Wingfield MJ (2016) The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship. Stud Mycol 83:165–191

    Article  PubMed  PubMed Central  Google Scholar 

  • De Errasti A, de Beer ZW, Coetzee M, Roux J, Rajchenberg M, Wingfield MJ (2016) Three new species of Ophiostomatales from Nothofagus in Patagonia. Mycol Prog 15:1–15

    Article  Google Scholar 

  • De Meyer EM, de Beer ZW, Summerbell RC, Moharram AM, de Hoog GS, Vismer HF, Wingfield MJ (2008) Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 100:647–661

    Article  PubMed  Google Scholar 

  • Deepali K, Sigler L, Gibas CFC, Subhash M, Schuh A, Medeiros BC, Peckham K, Natul H (2007) Graphium basitruncatum fungemia in a patient with acute leukemia. J Clin Microbiol 45:1644–1647

    Article  Google Scholar 

  • Fourie A, Wingfield MJ, Wingfield BD, Barnes I (2015) Molecular markers delimit cryptic species in Ceratocystis sensu stricto. Mycol Prog 14:1–18

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Geldenhuis MM, Roux J, Montenegro F, de Beer ZW, Wingfield MJ, Wingfield BD (2004) Identification and pathogenicity of Graphium and Pesotum species from machete wounds on Schizolobium parahybum in Ecuador. Fungal Divers 15:137–151

    Google Scholar 

  • Geldenhuys CJ (2010) Distribution, size and ownership of forests in the Southern Cape. S Afr Forestry J 158:51–66

    Article  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microb 61:1323–1330

    CAS  Google Scholar 

  • Goldblatt P, Manning J (2000) Plant diversity of the Cape Region of Southern Africa. Ann Missouri Bot Gard 89:281–302

    Article  Google Scholar 

  • Goldblatt P, Manning J (2002) Cape plants: a conspectus of the Cape flora of South Africa. National Botanical Institute of South Africa, South Africa

    Google Scholar 

  • Harrington TC, McNew D, Steimel J, Hofstra D, Farrell R (2001) Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch elm disease fungi. Mycologia 93:111–136

    Article  CAS  Google Scholar 

  • Harrington TC, Fraedrich SW, Aghayeva DN (2008) Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404

    Google Scholar 

  • Heath RN, Wingfield MJ, Wingfield BD, Meke G, Mbaga A, Roux J (2009) Ceratocystis species on Acacia mearnsii and Eucalyptus spp. in eastern and southern Africa including six new species. Fungal Divers 34:41–67

    Google Scholar 

  • HuiMin W, Wang Z, Liu F, Wu CX, Zhang SF, Kong XB, Decock C, Lu Q, Zhang Z (2019) Differential patterns of ophiostomatoid fungal communities associated with three sympatric Tomicus species infesting pines in south-western China, with a description of four new species. MycoKeys 50:93–133

    Article  Google Scholar 

  • Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BD (2004) Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res 108:411–418

    Article  PubMed  Google Scholar 

  • Jankowiak R, Strzałka B, Bilański P, Resnerová K, Linnakoski R, Matwiejczuk S, Misztela M, Rossa R (2017) Diversity of Ophiostomatales species associated with conifer-infesting beetles in the Western Carpathians. Eur J Forest Res 136:939–956

    Article  CAS  Google Scholar 

  • Juzwik J, Harrington TC, MacDonald WL, Appel DN (2008) The origin of Ceratocystis fagacearum, the oak wilt fungus. Annu Rev Phytopathol 46:13–26

    Article  CAS  PubMed  Google Scholar 

  • Kamgan Nkuekam G, Jacobs K, de Beer ZW, Wingfield MJ, Roux J (2008) Ceratocystis and Ophiostoma species including three new taxa, associated with wounds on native South African trees. Fungal Divers 29:37–59

    Google Scholar 

  • Kamgan Nkuekam G, de Beer ZW, Wingfield MJ, Roux J (2012) A diverse assemblage of Ophiostoma species, including two new taxa on eucalypt trees in South Africa. Mycol Prog 11:515–533

    Article  Google Scholar 

  • Kamgan Nkuekam G, Wingfield MJ, Roux J (2013) Ceratocystis species, including two new taxa, from Eucalyptus trees in South Africa. Australas Plant Pathol 42:283–311

    Article  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  CAS  PubMed  Google Scholar 

  • Kerley GIH, Pressey RL, Cowling RM, Boshohof AF, SimsCastley R (2003) Options for the conservation of large and medium-sized mammals in the Cape Floristic Region. Biol Conserv 112:169–190

    Article  Google Scholar 

  • Kim JJ, Allen EA, Humble LM, Breuli C (2005) Ophiostomatoid and basidiomycetous fungi associated with green, red and grey lodgepole pines after mountain pine beetle (Dendroctonus ponderosae) infestation. Can J Forest Res 35:274–284

    Article  Google Scholar 

  • Kim S, Harrington TC, Lee JC, Seybold SJ (2011) Leptographium tereforme sp. nov. and other Ophiostomatales isolated from the root-feeding bark beetle Hylurgus ligniperda in California. Mycologia 103:152–163

    Article  PubMed  Google Scholar 

  • Kubono T, Ito S (2002) Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle Platypus quercivorus. Mycoscience 43:255–260

    Article  Google Scholar 

  • Kumar D, Sigler L, Gibas CF, Mohan S, Schuh A, Medeiros BC, Peckham K, Humar A (2007) Graphium basitruncatum fungemia in a patient with acute leukemia. J. Clin. Microbiol. 45:1644–1647

    Article  PubMed  PubMed Central  Google Scholar 

  • Lackner M, de Hoog GS (2011) Parascedosporium and its relatives: phylogeny and ecological trends. IMA Fungus 2:39–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Linnakoski R, de Beer ZW, Ahtiainen J, Sidorov E, Niemela P, Pappinen A, Wingfield MJ (2010) Ophiostoma spp. associated with pine- and spruce-infesting bark beetles in Finland and Russia. Persoonia 25:72–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Zhou XD, de Beer ZW, Wingfield MJ, Sun J-H (2009) Ophiostomatoid fungi associated with the invasive pine-infesting bark beetle, Dendroctonus valens, in China. Fungal Divers 38:133–145

    CAS  Google Scholar 

  • Lubke RA, Mckenzie B (1996) Afromontane forest. In: Low AB, Rebelo GA (eds) Vegetation of South Africa, Lesotho and Swaziland. Department of Environmental Affairs and Tourism, Pretoria, p 12

    Google Scholar 

  • Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F, Kayim M, Kasson MT, Thu PQ, Bateman C, Rugman-Jones P, Hulcr J, Stouthamer R, Eskalen A (2016) Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 108:313–329

    Article  PubMed  Google Scholar 

  • Madrid H, Gene J, Cano J, Silvera C, Guarro J (2010) Sporothrix brunneoviolacea and Sporothrix dimorphospora, two new members of the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 102:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Marimon R, Gene J, Cano J, Trilles L, Dos Santos LM, Guarro J (2006) Molecular phylogeny of Sporothrix schenckii. J Clin Microbiol 44:3251–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marimon R, Gene J, Cano J, Guarro J (2008) Sporothrix luriei: a rare fungus from clinical origin. Med. Mycol. 46:621–625

    Article  PubMed  Google Scholar 

  • Mathiesen-Käärik A (1953) Eine Übersicht über die gewöhnlichsten mit Borkenkäfern assoziierten Bläuepilze in Schweden und einige für Schweden neue Bläuepilze. Meddelanden fran Statens Skogforskningsinstitut 43:1–74

    Google Scholar 

  • Matsushima T (1971) Microfungi of the Solomon Islands and Papua New Guinea. Matsushima, Kobe

    Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, pp 1–8

  • Mouton M, Wingfield MJ, van Wyk PS, van Wyk WJ (1994) Graphium pseudormiticum sp. nov.: a new hyphomycete with unusual conidiogenesis. Mycol Res 98:1272–1276

    Article  Google Scholar 

  • Mucina L, Rutherford M (2006) The vegetation of South Africa, Lesotho and Swaziland. Streletzia 19, South African National Biodiversity Institute, Pretoria

  • Musvuugwa T (2014) Biodiversity and ecology of ophiostomatoid fungi associated with trees in the Cape Floristic Region of South Africa. Dissertation, Stellenbosch University

  • Musvuugwa T, de Beer ZW, Duong TA, Dreyer LL, Oberlander KC, Roets F (2015) New species of Ophiostomatales from Scolytinae and Platypodinae beetles in the Cape Floristic Region, including the discovery of the sexual state of Raffaelea. A van Leeuw J Microb 108:933–950

    Article  Google Scholar 

  • Musvuugwa T, de Beer ZW, Duong TA, Dreyer LL, Oberlander KC, Roets F (2016a) Wounds on Rapanea melanophloeos provide habitat for a large diversity of Ophiostomatales including four new species. A van Leeuw J Mycrob 109:877–894

    Article  Google Scholar 

  • Musvuugwa T, Dreyer LL, Roets F (2016b) Future danger posed by fungi in the Ophiostomatales when encountering new hosts. Fungal Ecol 22:83–89

    Article  Google Scholar 

  • Myers N, Mittelmeier RA, Mittelmeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Na F, Carrillo J, Mayorquin J, Ndinga Muniania C, Stajich J, Stouthamer R, Huang Y, Lin Y, Yu Chen C, Eskalen A (2018) Two novel fungal symbionts Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. of Kuroshio shot hole borer (Euwallacea sp. nr. fornicatus) cause Fusarium dieback on woody host species in California. Plant Disease 102:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Ohtaka N, Masuya H, Yamaoka Y, Kaneko S (2006) Two new Ophiostoma species lacking conidial states isolated from bark beetles and bark beetle-infested Abies species in Japan. Can J Bot 84:282–293

    Article  CAS  Google Scholar 

  • Okada G, Jacobs K, Kirisits T, Louis-Seize GW, Seifert KA, Sugita T, Takematsu A, Wingfield MJ (2000) Epitypification of Graphium penicillioides Corda, with comments on the phylogeny and taxonomy of Graphium-like synnematous fungi. Stud Mycol 45:169–188

    Google Scholar 

  • Oliveira LSS, Harrington TC, Ferreira MA, Damacena MB, Al-Sadi AM, Al-Mahmooli IHS, Alfenas AC (2015) Species or genotypes? Reassessment of four recently described species of the Ceratocystis wilt pathogen, Ceratocystis fimbriata, on Mangifera indica. Phytopathology 105:1229–1244

    Article  CAS  PubMed  Google Scholar 

  • Osorio JA, de Beer ZW, Wingfield MJ, Roux J (2016) Ophiostomatoid fungi associated with mangroves in South Africa, including Ophiostoma palustre sp. nov. A van Leeuw J Mycrob 109:1555–1571

    Article  CAS  Google Scholar 

  • Paciura D, Zhou XD, de Beer ZW, Jacobs K, Ye H, Wingfield MJ (2010) Characterisation of synnematous bark beetle-associated fungi from China, including Graphium carbonarium sp. nov. Fungal Divers 40:75–88

    Article  Google Scholar 

  • Pipe ND, Brasier CM, Buck KW (2000) Evolutionary relationships of the Dutch elm disease fungus Ophiostoma novo-ulmi to other Ophiostoma species investigated by restriction fragment length polymorphism analysis of the rDNA region. J Phytopathol 148:533–539

    Article  CAS  Google Scholar 

  • Rayner RW (1970) A mycological colour chart/prepared R.W. Rayner. Commonwealth Mycological Institute, Surry, UK.

  • Reid J, Hausner G (2015) A new Graphilbum species from western hemlock (Tsuga heterophylla) in Canada. Mycotaxon 130:399–419

    Article  Google Scholar 

  • Roets F, de Beer ZW, Dreyer LL, Zipfel R, Crous PW, Wingfield MJ (2006) Multi-gene phylogeny for Ophiostoma spp. reveals two new species from Protea infructescences. Stud Mycol 55:199–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Roets F, de Beer ZW, Wingfield MJ, Crous PW, Dreyer LL (2008) Ophiostoma gemellus and Sporothrix variecibatus from mites infesting Protea infructescences in South Africa. Mycologia 100:496–510

    Article  PubMed  Google Scholar 

  • Roets F, Wingfield MJ, Crous PW, Dreyer LL (2009) Fungal radiation in the Cape Floristic Region: an analysis based on Gondwanamyces and Ophiostoma. Mol Phylogenet Evol 51:111–119

    Article  CAS  PubMed  Google Scholar 

  • Romon P, Zhou X, Iturrondobeitia JC, Wingfield MJ, Goldarazena A (2007) Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain. Can J Microbiol 53:756–767

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Roux J, Wingfield MJ (2013) Ceratocystis species on the African continent, with particular reference to C. albifundus, and African species in the C. fimbriata sensu lato species complex. In: Seifert KA, de Beer ZW, Wingfield MJ (eds) Ophiostomatoid fungi: expanding frontiers, CBS Biodiversity Series 12, Netherlands, pp 131–138

    Google Scholar 

  • Schroeder S, Kim SH, Cheung WT, Sterflinger K, Breuil C (2001) Phylogenetic relationship of Ophiostoma piliferum to other sapstain fungi based on the nuclear rRNA gene. FEMS Microbiol Lett 195:163–167

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stattersfield AJ, Crosby MJ, Long AJ, Wedge DC (1998) Endemic bird areas of the world. BirdLife Conservation Series 7. BirdLife International, Cambridge

  • Thwaites JM, Farrell RL, Duncan SM, Reay SD, Blanchette RA, Hadar E, Hadar Y, Harrington TC, McNew D (2005) Survey of potential sapstain fungi on Pinus radiata in New Zealand. NZ J Bot 43:653–663

    Article  Google Scholar 

  • Tsopelas P, Santini A, Wingfield MJ, de Beer ZW (2017) Canker stain: a lethal disease destroying iconic plane trees. Plant Dis 101:645–658

    Article  PubMed  Google Scholar 

  • Turpie JK, Heydenrych BJ, Lamberth SJ (2003) Economic value of terrestrial and marine biodiversity in the Cape Floristic Region: implications for defining effective and socially optimal conservation strategies. Biol Conserv 112:233–251

    Article  Google Scholar 

  • Van der Linde JA, Six DL, de Beer ZW, Wingfield MJ, Roux J (2016) Novel ophiostomatalean fungi from galleries of Cyrtogenius africus (Scolytinae) infesting dying Euphorbia ingens. A van Leeuw J Microb 109:589–601

    Article  Google Scholar 

  • Van Wyk B, Van Wyk P (1997) Field guide to trees of Southern Africa. Struik Publishers, Cape Town, South Africa

    Google Scholar 

  • Vermeulen WJ, Geldenhuys CJ, Esler KJ (2012) Response of Ocotea bullata, Curtisia dentata and Rapanea melanophloeos to medicinal bark stripping in the southern Cape, South Africa: implications for sustainable use. South Forests 74:183–193

    Article  Google Scholar 

  • Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a sequencing guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wingfield MJ, Seifert KA, Webber JF (1993) Ceratocystis and ophiostoma: taxonomy, ecology and pathogenicity. American Phytopathological Society Press, St. Paul Minnesota, USA

    Google Scholar 

  • Zhou XD, de Beer ZW, Wingfield MJ (2006) DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa. Stud Mycol 55:269–277

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N. Machingambi, P.C. Benade and D. van der Colff assisted with fieldwork. Thanks also to the anonymous reviewers and the section editor who have made considerable contributions to improving our manuscript. The authors thank the South African National Parks Board (SANPARKS) and Western Cape Nature Conservation Board for issuing the necessary collecting permits.

Funding

The authors thank the Department of Science and Innovation (DSI)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Roets.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Hans-Josef Schroers

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1.

Bayesian Inference consensus tree based on ITS sequence data for species of Sporothrix. Values above nodes indicate posterior probabilities obtained through Bayesian Inference. Values below nodes indicate bootstrap values (1000 replicates) obtained from Maximum Likelihood analysis. The scale bar is in substitutions per site. (PDF 36 kb)

Supplementary Figure 2.

Bayesian Inference consensus tree based on ITS sequence data for species of Graphium. Values above nodes indicate posterior probabilities obtained through Bayesian Inference. Values below nodes indicate bootstrap values (1000 replicates) obtained from Maximum Likelihood analysis. The scale bar is in substitutions per site. (PDF 39 kb)

Supplementary Table 1

(DOCX 27 kb)

Supplementary Table 2

(DOCX 25 kb)

Supplementary text 1

(FAS 15 kb)

Supplementary text 2

(FAS 15 kb)

Supplementary text 3

(FAS 20 kb)

Supplementary text 4

(FAS 48 kb)

Supplementary text 5

(FAS 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musvuugwa, T., de Beer, Z.W., Dreyer, L.L. et al. New ophiostomatoid fungi from wounds on storm-damaged trees in Afromontane forests of the Cape Floristic Region. Mycol Progress 19, 81–95 (2020). https://doi.org/10.1007/s11557-019-01545-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-019-01545-8

Keywords

Navigation