Skip to main content
Log in

Proposal for a subdivision of the family Psathyrellaceae based on a taxon-rich phylogenetic analysis with iterative multigene guide tree

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The family Psathyrellaceae was analysed using phylogenetic and morphological characters. A total of 18,133 sequences (ITS, 5.8S, LSU, ef-1α, β-tubulin), with 45 newly generated, were evaluated from a wide geographic sampling. Special attention was given to the alignment procedures and an iterative multigene guide tree was used to achieve the best possible phylogenetic hypotheses. A new generic system is proposed, which includes the known genera Coprinellus, Coprinopsis, Cystoagaricus, Homophron, Hormographiella, Kauffmania, Lacrymaria, Parasola, Psathyrella and Typhrasa. Six new, monophyletic genera are recognized, viz. Candolleomyces, Britzelmayria, Narcissea, Olotia, Punjabia and Tulosesus, and the corresponding new combinations are proposed. Galerella floriformis is shown to belong to the Psathyrellaceae and the new genus Hausknechtia is erected for it. Psathyrella is subdivided into 18 sections (sections Noli-tangere, Saponaceae, Stridvalliorum, Arenosae, Confusae, Sublatisporae, Sinefibularum are new), and sections Pennatae, Pygmaeae and Pseudostropharia are emended. Coprinellus is divided into nine sections (Disseminati, Aureogranulati, Curti, Hepthemeri and Deminuti are new), and 20 sections are proposed for Coprinopsis (Cinereae, Filamentiferae, Melanthinae, Alopeciae, Xenobiae, Phlyctidosporae, Krieglsteinerorum, Erythrocephalae, Geesteranorum, Mitraesporae, Radiatae, Subniveae and Canocipes are new). And lastly, Parasola is divided into sections Parasola and Conopileae. Many problematic species groups still need revision. A key to the genera based on morphological characters is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84
Fig. 85
Fig. 86
Fig. 87
Fig. 88
Fig. 89
Fig. 90
Fig. 91
Fig. 92
Fig. 93
Fig. 94
Fig. 95
Fig. 96
Fig. 97
Fig. 98
Fig. 99
Fig. 100
Fig. 101

Similar content being viewed by others

References

  • Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M, Kurina O, Ostonen I, Jõgeva J, Halapuu S, Põldmaa K, Toots M, Truu J, Larsson K-H, Kõljalg U (2010) PlutoF – a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol Bioinform Online 6:189–196. https://doi.org/10.4137/EBO.S6271

    Article  PubMed Central  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19(9):716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel Metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415. https://doi.org/10.1093/bioinformatics/btg427

    Article  CAS  PubMed  Google Scholar 

  • Amandeep K, Atri NS, Munruchi K (2014) Taxonomic study on coprophilous species of Coprinopsis (Psathyrellaceae, Agaricales) from Punjab, India. Mycosphere 5(1):1–25

    Article  Google Scholar 

  • Amandeep K, Atri NS, Munruchi K (2015) Psathyrella (Psathyrellaceae, Agaricales) species collected on dung from Punjab, India. Curr Res Environ Appl Mycol J Fungal Biol 5(2):128–137. https://doi.org/10.5943/cream/5/2/6

    Article  Google Scholar 

  • Arnolds E (2003) Rare and interesting species of Psathyrella. Fungi non delineati 26:1–76

    Google Scholar 

  • Arnolds E, Perini C (2006) Psathyrella berolinensis, a remarkabla fungus on dung of wild boar. Micol Veget Medit 21(1):35–40

    Google Scholar 

  • Aronsen A (1993) Agarics from wetland in south-east Norway. Agarica 21:22–64

    Google Scholar 

  • Baca SM, Toussaint EFA, Miller KB, Short AEZ (2016) Molecular phylogeny of the aquatic beetle family Noteridae (Coleoptera: Adephaga) with an emphasis on data partitioning strategies. Mol Phylogenet Evol 107:282–292. https://doi.org/10.1016/j.ympev.2016.10.016

    Article  PubMed  Google Scholar 

  • Baker RED, Dale WT (1951) Fungi of Trinidad and Tobago. Mycol Pap 33:1–123

    Google Scholar 

  • Barua BS, Suzuki A, Pham HN-C, Inatomi S (2012) Adaption of ammonia fungi to urea enrichment environment. Journal of Agricultural Technology 8(1):173–189

    CAS  Google Scholar 

  • Battistin E, Chiarello O, Vizzini A, Örstadius L, Larsson E (2014) Morphological characterisation and phylogenetic placement of the very rare species Psathyrella sulcatotuberculosa. Sydowia 66(2):171–181

    Google Scholar 

  • Bender H (1989) Coprinus subimpatiens und einige seiner nächsten Verwandten. Beitr Kenntn Pilze Mitteleur 5:75–82

    Google Scholar 

  • Bender H, Enderle M (1988) Studien zur Gattung Coprinus (Pers.: Fr.) S.F. Gray in der BR Deutschland. IV. Z Mykol 54(1):45–68

    Google Scholar 

  • Bender H, Enderle M, Krieglsteiner GJ (1984) Studien zur Gattung Coprinus (Pers.: Fr.) S.F. Gray in der BR Deutschland. II. Z Mykol 50(1):17–40

    Google Scholar 

  • Bengtsson-Palme J, Veldre V, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, Bertrand Y, De Wit P, Sanchez M, Ebersberger I, Sanli K, de Souza F, Kristiansson E, Abarenkov K, Eriksson KM, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for use in environmental sequencing. Methods Ecol Evol 4(10):914–919. https://doi.org/10.1111/2041-210X.12073

    Article  Google Scholar 

  • Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350. https://doi.org/10.1093/bioinformatics/btq662

    Article  CAS  PubMed  Google Scholar 

  • Berkeley MJ, Broome CE (1871) The fungi of Ceylon (Hymenomycetes, from Agaricus to Cantharellus). Bot J Linn Soc 11:494–567

    Article  Google Scholar 

  • Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T (2017) Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep 7(1):10480. https://doi.org/10.1038/s41598-017-09654-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G, Bordoli L, Schwede T (2017) The SWISS-MODEL Repository – new features and functionality. Nucleic Acids Res 45:D313–D319. https://doi.org/10.1093/nar/gkw1132

    Article  CAS  PubMed  Google Scholar 

  • Bon M, van Haluwyn C (1983) Macromycetes des terrils de Charbonnages du nord de la France. 4 ème note. Docums Mycol 13(49):43–55

    Google Scholar 

  • Breitenbach J, Kränzlin F (1994) Über einen kritischen Rübling, zwei seltene Tintlinge sowie ein kurioses Tintlings-Wachstum in der Schweiz. Z Mykol 60(1):25–33

    Google Scholar 

  • Breitenbach J, Kränzlin F (1995) Pilze der Schweiz 4. Mykologia, Luzern

    Google Scholar 

  • Brewer MJ, Butler A, Cooksley SL (2016) The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods Ecol Evol 7(6):679–692. https://doi.org/10.1111/2041-210X.12541

    Article  Google Scholar 

  • Broussal M, Carbo J, Mir G, Pérez-de-Gregorio MÀ (2018) Psathyrella salina, nouvelle espèce des milieux halophiles méditerranéens. Bull FAMM, N.S 53:17–30

    Google Scholar 

  • Brown JM, Lemmon AR (2007) The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Syst Biol 56:643–655. https://doi.org/10.1080/10635150701546249

    Article  PubMed  Google Scholar 

  • Buller AHR (1920, "1919") The production and liberation of spores in the genus Coprinus. Trans Br mycol Soc 3(5):348-350

  • Bulliard JBF (1783) Herbier de la France 3. Chez l'auteur, Didot, Debure, Belin, Paris

    Google Scholar 

  • Cacialli G, Caroti V, Doveri F (1999) Contributio ad Cognitionem Coprinorum. Monografie di Pagine di Micologia 1:1–256

    Google Scholar 

  • Cantrell SA, Tkavc R, Gunde-Cimerman N, Zalar P, Acevedo M, Baez-Felix C (2013) Fungal communities of young and mature hypersaline microbial mats. Mycologia 105(4):827–836. https://doi.org/10.3852/12-288

    Article  PubMed  Google Scholar 

  • Carbó J, Pérez-de-Gregorio MÀ (1999) Cuartro especies de hongos interesantes citadas por primera vez en la península ibérica. Revista Soc Catalana Micol 22:7–90

    Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

  • Christan J, Hussong A, Dondl M (2017) Beiträge zur Familie Psathyrellaceae: Psathyrella spintrigeroides, Psathyrella supernula, Psathyrella typhae. Mycol Bav 18:35–58

    Google Scholar 

  • Citérin M (1992) Clé analytique du genre Coprinus Pers. Doc Mycol 22(86):1–28

    Google Scholar 

  • Citérin M. (1994) Clé analytique du genre Coprinus Pers. (suite). Révision des sections Farinosi, Lanatuli, et Picacei. Doc Mycol 24(95):1–13

  • Consiglio F (2000) Contributo alla conoszenza dei Macromiceti dell´Emilia-Romagna. XX. Genre Psathyrella. Boll Gr micol G Bres (n.s.) 43(1):31–44

    Google Scholar 

  • Consiglio F (2005) Contributo alla conoscenza dei Macromiceti dell’Emilia-Romagna. XXIII. Famiglia Coprinaceae – Parte terza. Boll Gr micol G Bres (n.s.) 48(2):7–22

    Google Scholar 

  • Contu M (1991) Psathyrella bivelata spec. nov., une nouvelle espèce de la section Cystopsathyra. Bull Soc mycol Fr 107(3):85–89

    Google Scholar 

  • Corriol GG (2014) Psathyrella litoralis sp. nov., una especie halófila de les marismas retrodunaes del sur de Córcega. Errotari 11:17–25

    Google Scholar 

  • Crous PW, Wingfield MJ, Burgess TI et al (2017) Fungal Planet description sheets 558-624. Persoonia 38:240–384. https://doi.org/10.3767/003158517X698941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Wingfield MJ, Burgess TI et al (2018) Fungal Planet description sheets: 716-184. Persoonia 40:240–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Haan A (1993) Twee Psathyrella’s uit de sectie Cystopsathyra: Psathyrella kellermanii (Peck) Sing. en Psathyrella globosivelata Gröger. AMK Mededelingen 93(3):69–71

    Google Scholar 

  • Dennis RWG (1961, “1960”) Fungi venezuelani: IV, Agaricales. Kew Bull 15(1):67–156

  • Deschuyteneer D (2018) Psathyrella supernula (Britzelm.) Örstadius & Enderle, une espèce peu commune récoltée en Belgique. Bulletin de la Fédération des Associations Mycologiques de l'Ouest 7:3–9

    Google Scholar 

  • Deschuyteneer D, Melzer A (2017) Psathyrella hellebosensis, a new species from Belgium. Bulletin de l’Association des Mycologues francophones de Belgique 10:3–10

    Google Scholar 

  • Deschuyteneer D, Melzer A, Pérez-De-Gregorio MÀ (2018) Psathyrella codinae, a new species from Spain. Bulletin de l’Association des Mycologues francophones de Belgique 11:4–8

    Google Scholar 

  • Desjardin DE, Perry BA (2016) Dark-spored species of Agaricineae from Republic of Sao Tome and Principe, West Africa. Mycosphere 7(3):359–391

    Article  Google Scholar 

  • Doveri F (2010) Occurrence of coprophilous Agaricales in Italy, new records, and comparisons with their European and extraeuropean distribution. Mycosphere 1(2):103–140

    Google Scholar 

  • Doveri F, Granito VM, Lunghini D (2005) Nuovi ritrovamenti di Coprinus s.l. fimicoli in Italia. Riv Micol 48(4):319–340

    Google Scholar 

  • Doveri F, Sarrocco S, Pecchia S, Forti M, Vannacci G (2010) Coprinellus mitrinodulisporus, a new species from chamois dung. Mycotaxon 114:351–360

    Article  Google Scholar 

  • Dress AWM, Flamm C, Fritzsch G, Gruenewald S, Kruspe M, Prohaska SJ, Stadler PF (2008) Noisy: Identification of Homoplastic Characters in Multiple Sequence Alignments. Alg Mol Biol 3:7. https://doi.org/10.1186/1748-7188-3-7

    Article  CAS  Google Scholar 

  • Earle FS (1909) The genera of the North American gill fungi. Bull New York Bot Gard 5:373–451

    Google Scholar 

  • Einhellinger A (1976) Die Pilze in primären und sekundären Pflanzengesellschaften oberbayerischer Moore. Teil 1. Ber Bayer Bot Ges 47:75–149

    Google Scholar 

  • Einhellinger A (1987) Erster sicherer mitteleuropäischer Nachweis von Psathyrella narcotica Kits van Waveren außerhalb der Niederlande. Beitr Kenntn Pilze Mitteleur 3:235–240

    Google Scholar 

  • El-Assfouri A, Ouazzani Touhami A, Benkirana R, Douira A (2009) Etude de quelques espèces du genre Psathyrella (Fr.) Quél., nouvellement découvertes au Maroc. Bull de i´Institut Scientifique Rabat 31(1):7–11

    Google Scholar 

  • Enderle M (1989) Bemerkenswerte Agaricales (Psathyrella)-Funde VIII. Beitr Kenntn Pilze Mitteleur 5:55–74

    Google Scholar 

  • Enderle M (1994) Studien in der Gattung Psathyrella III. Beitr Kenntn Pilze Mitteleur 9:57–78

    Google Scholar 

  • Enderle M (1998) Studien in der Gattung Psathyrella VII. Z Mykol 64(2):217–231

    Google Scholar 

  • Enderle M (2000) Studien in der Gattung Psathyrella VIII. Z Mykol 66(1):3–26

    Google Scholar 

  • Enderle M (2004) Die Pilzflora des Ulmer Raumes. Südd, Verlagsgesellschaft, Ulm

    Google Scholar 

  • Enderle M, Bender H (1990) Studien zur Gattung Coprinus (Pers.: Fr.) S.F. Gray in der BR Deutschland V. Z Mykol 56(1):19–46

    Google Scholar 

  • Enderle M, Christan J (1992) Studien in der Gattung Psathyrella I. Z Mykol 58(1):67–84

    Google Scholar 

  • Enderle M, Hübner H-J (2005) Studien in der Gattung Psathyrella IX. Beitr. Kenntn Pilze Mitteleur 14:53–65

    Google Scholar 

  • Enderle M, Krieglsteiner GJ, Bender H (1986) Studien zur Gattung Coprinus (Pers.: Fr.) S.F. Gray in der BR Deutschland. Z Mykol 52(1):101–132

    Google Scholar 

  • Esteve-Raventós F, Enderle M (1992) Psathyrella halophila spec. nov., eine neue Art aus der Sektion Spintrigerae (Fr.) Konrad & Maublanc vom Meerestrand der Insel Mallorca (Spanien). Z Mykol 58(2):205–210

    Google Scholar 

  • Fasciotto J-L (2009) Espèces rares ou intéressantes, étuidiées en 2007. Bull mycol bot Dauphiné-Savoie 194:5–16

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1992) Phylogenies from restriction sites: A maximum-likelihood approach. Evolution 46:159–173. https://doi.org/10.1111/j.1558-5646.1992.tb01991.x

    Article  PubMed  Google Scholar 

  • Ferisin G, Melzer A (2019, “2018”) Three interesting species of Psathyrella from Slovenia. Micol Veget Medit 33(2):121–133

  • Frank JL, Coffan RA, Southworth D (2010) Aquatic gilled mushrooms: Psathyrella fruiting in the Rogue River in southern Oregon. Mycologia 102(1):93–107

    Article  CAS  PubMed  Google Scholar 

  • Friebes G, Melzer A (2009) Psathyrella amarescens in Österreich. Österr Z Pilzk 18:53–57

    Google Scholar 

  • Fries EM (1838) Epicrisis Systematis mycologici. Typographia Academica, Uppsala

    Google Scholar 

  • Fukiharu T, Shimizu K, Utsunomiya H, Raut JK, Goto R, Okamoto T, Kato M, Horigome R, Furuki T, Kinjo N (2013) Coprinopsis asiaticiphlyctidospora sp. nov., an agaric ammonia fungus from Amami and Okinawa, southern Japan. Mycoscience 55(5):355–360. https://doi.org/10.1016/j.myc.2013.12.002

    Article  Google Scholar 

  • Fukiharu T, Shimizu K, Nakajima A, Miyamoto T, Raut JK, Kinjo N (2015) Coprinopsis igarashii sp. nov., a coprophilous agaric fungus from Hokkaido, northen Japan. Mycoscience 56:413–418. https://doi.org/10.1016/j.myc.2014.12.005

    Article  Google Scholar 

  • Garcia G, Vellinga EC (2010) Une nouvella espèce de coprin sur tiges de Polygonatum multiflorum: Coprinopsis nevillei sp. nov. Bull Féd Assoc Mycol Méditerr 37:37–58

    Google Scholar 

  • Geyer CJ (1991) Markov chain Monte Carlo maximum likelihood. In: Keramidas EM (ed) Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface. Fairfax Station, Interface Foundation, pp 230–257

    Google Scholar 

  • Gierczyk B, Kujawa A, Pachlewski T, Szczepkowski A, Wójtowski M (2011) Rare species of the genus Coprinus Pers. s. lato. Acta Mycol 46(1):27–73

    Article  Google Scholar 

  • Gierczyk V, Rodriquez-Flakus P, Pietras M, Gryc M, Czerniawski W, Piatek M (2017) Coprinopsis rugosomagnispora: a distinct new coprinoid species from Poland (Central Europe). Plant Syst Evol 303:915–925. https://doi.org/10.1007/s00606-017-1418-7

    Article  Google Scholar 

  • Gonzalez del Val A, Platas G, Arenal F, Orihuela JC, Garcia M, Hernandez P, Royo I, De Pedro N, Silver LL, Young K, Vicente MF, Pelaez F (2003) Novel illudins from Coprinopsis episcopalis (syn. Coprinus episcopalis), and the distribution of illudin-like compounds among filamentous fungi. Mycol Res 107(10):1201–1209. https://doi.org/10.1017/S0953756203008487

    Article  CAS  PubMed  Google Scholar 

  • Gröger F (1984) Bemerkenswerte Psathyrella-Funde aus Thüringen. Boletus 1984(1):1–16

    Google Scholar 

  • Gröger F (1985) Ein Fund von Coprinus heterothrix in der DDR. Agarica 6(12):67–72

    Google Scholar 

  • Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 30:S162–S173. https://doi.org/10.1002/elps.200900140

    Article  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Yano T, Kishino H (1984) A new molecular clock of mitochondrial DNA and the evolution of Hominoids. Proc Japan Acad 60B:95–98

    Article  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174. https://doi.org/10.1007/BF02101694

    Article  CAS  PubMed  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109. https://doi.org/10.2307/2334940

    Article  Google Scholar 

  • Hausknecht A, Contu M (2003) The genus Galerella. A world-wide survey. Österr Z Pilzk 12:31–40

    Google Scholar 

  • Hausknecht A, Krisai-Greilhuber I (2012) Die Pilzflora der Lössgebiete im westlichen Weinviertel (Niederösterreich). Österr Z Pilzk 21:83–116

    Google Scholar 

  • Hazi J, Nagy LG, Vágvölgyi C, Papp T (2011) Coprinellus radicellus, a new species with northern distribution. Mycol Progress 10:363–371. https://doi.org/10.1007/s11557-010-0709-y

    Article  Google Scholar 

  • Held BW, Blanchette RA (2017) Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi. Fungal Biol 121(2):145–157

    Article  PubMed  Google Scholar 

  • Hongo T (1966) Notes on Japanese larger fungi (18). J Jap Bot 41:165–172

    Google Scholar 

  • Hopple JS Jr, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus Coprinus and dark spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly. Mol Phylogenet Evol 13:1–19

    Article  CAS  PubMed  Google Scholar 

  • Horak E (1968) Synopsis generum Agaricalum (Die Gattungstypen der Agaricales). Beitr KryptFl Schweiz 13:1–741

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  • Huhtinen S, Vauras J (1992) Mythicomyces corneipes, a rare agaric, in Fennoscandia. Karstenia 32:7–12

    Article  Google Scholar 

  • Hurvich C, Tsai C (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. https://doi.org/10.1093/biomet/76.2.297

    Article  Google Scholar 

  • Huson DH, Scornavacca C (2012) Dendroscope 3: An interactive viewer for rooted phylogenetic trees and networks. Syst Biol 61(6):1061–1067. https://doi.org/10.1093/sysbio/sys062

    Article  PubMed  Google Scholar 

  • Hussain S, Afshan N-u-S, Ahmad H, Khalid AN, Niazi AR (2017) Parasola malakandensis sp. nov. (Psathyrellaceae; Basidiomycota) from Malakand, Pakistan. Mycoscience 58(2):69–76. https://doi.org/10.1016/j.myc.2016.09.002

    Article  Google Scholar 

  • Hussain S, Ahmad H, Ullah S, Afshan N, Pfister DH, Sher H, Ali H, Khalid AN (2018a) The genus Parasola in Pakistan with the description of two new species. MycoKeys 30:41–60

    Article  Google Scholar 

  • Hussain S, Usman M, Afshan NS, Ahmad H, Khan J, Khalid AN (2018b) The genus Coprinellus (Basidiomycota; Agaricales) in Pakistan with the description of four new species. Mycokeys 39:41–61

    Article  Google Scholar 

  • Iglesias P, Vincente JF (2015) Aportación al catálogo de macromicetos de los Parques Naturales del Gorbea-Urkiola y zona norte de la peninsula Ibérica. Errotari 12:80–207

    Google Scholar 

  • Iglesias P, Vincente JF, Oyerzabal M (2011) Aportaciones al conocimento micológico de la isla de La Palma III. Errotari 8:159–198

    Google Scholar 

  • Iglesias P, Vincente JF, Oyerzabal M (2014) Aportaciones al catálogo micológico de la isla de Madeira (Portugal). Errotari 11:99–165

    Google Scholar 

  • Kalamees K (1981) Agaric fungi of Badhyz Nature Reserve. Folia Cryptog Estonica 15:5–8

    Google Scholar 

  • Kalamees K (1989) On the Agaricales flora of the Zaamin National Park II. Folia Cryptog Estonica 27:1–24

    Google Scholar 

  • Kasik G, Dogan HH, Öztürk C, Aktas S (2004) New Records in Coprinaceae and Bolbitaceae from Mut (Mersin) District. Turk J Bot 28:449–455

    Google Scholar 

  • Katoh K, Frith MC (2012) Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28:3144–3146. https://doi.org/10.1093/bioinformatics/bts578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2016) A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 32:1933–1942. https://doi.org/10.1093/bioinformatics/btw108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Toh H (2007) Errata – PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics 23:372–374. https://doi.org/10.1093/bioinformatics/btl592

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Toh H (2008) Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9:212. https://doi.org/10.1186/1471-2105-9-212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Toh H (2008a) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298. https://doi.org/10.1093/bib/bbn013

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900. https://doi.org/10.1093/bioinformatics/btq224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. https://doi.org/10.1093/nar/gki198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Asimenos G, Toh H (2009) Multiple Alignment of DNA Sequences with MAFFT. Methods Mol Biol 537:39–64. https://doi.org/10.1007/978-1-59745-251-9_3

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform n. pag. doi. https://doi.org/10.1093/bib/bbx108

  • Kaur H, Kaur M, Atri NS, Kaur A (2013) The Genus Psathyrella (Fr.) Quél. from India: New Records. Journal on New Biological Reports 2(1):55–63

    Google Scholar 

  • Kaya A, Uzun Y, Keles A, Demirel K (2010) Three coprinoid macrofungi taxa, new to Turkey. Turk J Bot 34:351–353

    Google Scholar 

  • Keirle M, Hemmes DE, Desjardin DE (2004) Agaricales of the Hawaiian Islands. 8. Agaricaceae: Coprinus and Podaxis; Psathyrellaceae: Coprinopsis, Coprinellus and Parasola. Fungal Divers 15:33–124

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  • Kits van Waveren E (1968) The ‘Stercorarius group’ of the genus Coprinus. Persoonia 5(2):131–176

    Google Scholar 

  • Kits van Waveren E (1971) Notes on the genus Psathyrella – II. Three new species of Psathyrella. Persoonia 6(3):295–312

    Google Scholar 

  • Kits van Waveren E (1985) The Dutch, French and British species of Psathyrella. Persoonia Suppl 2:1–300

    Google Scholar 

  • Kits van Waveren E (1995) The Berkeley & Broome species of Psathyrella in the Kew Herbarium. Kew Bull 50(2):307–325

    Article  Google Scholar 

  • Ko KS, Lim YW, Kim YH, Jung HS (2001) Phylogeographic divergences of nuclear ITS sequences in Coprinus species sensu lato. Mycol Res 105 (12):1519-1526. doi: 10.1017}S0953756201005184

  • Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiß M, Larsson K-H (2013) Towards a unified paradigm for sequence-based identification of Fungi. Mol Ecol 22(21):5272–5277. https://doi.org/10.1111/mec.12481

    Article  CAS  Google Scholar 

  • Kotlaba F (1952) Křehutička orobincová – Psathyrella typhae (Kalchbr.) Kühner in Favre v Československu. Česká Mykol 6:169–175

    Google Scholar 

  • Kreisel (1961) Pilze der Moore und Ufer Norddeutschlands II. Psathyrella typhae, Galerina mycenoides und G. clavata. Westfälische Pilzbriefe 3(1):1–6

    Google Scholar 

  • Krieglsteiner GJ, Gminder A (2010) Die Großpilze Baden-Württembergs. Band 5: Ständerpilze: Blätterpilze III. Eugen Ulmer KG, Stuttgart

  • Krieglsteiner GJ, Bender H, Enderle M (1982) Studien zur Gattung Coprinus (Pers. ex Fr.) S.F. Gray in der Bundesrepublik Deutschland. I. Z Mykol 48(1):65–88

    Google Scholar 

  • Krisai-Greilhuber I (1992) Die Makromyceten im Raum von Wien, Ökologie und Floristik. Libri Botanici 6. IHW, Eching

  • Kühner R, Romagnesi H (1953) Flore Analytique des Champignons Supérieurs. Masson et cie, Paris

    Google Scholar 

  • Kuraku S, Zmasek CM, Nishimura O, Katoh K (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res 41:W22–W28. https://doi.org/10.1093/nar/gkt389

    Article  PubMed  PubMed Central  Google Scholar 

  • La Chiusa L, Mauri F (1996) Due interessanti Coprini della Alpi Apuane. Riv Micol 3(1996):225–232

    Google Scholar 

  • Lanfear R, Calcott B, Ho SY, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29(6):1695–1701. https://doi.org/10.1093/molbev/mss020

    Article  CAS  PubMed  Google Scholar 

  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution formolecular and morphological phylogenetic analyses. Mol Biol Evol 34(3):772–773. https://doi.org/10.1093/molbev/msw260

    Article  CAS  Google Scholar 

  • Lange JE (1915) Studies in the Agarics of Denmark. II. Amanita, Lepiota, Coprinus. Dansk bot Ark 3(2):1–50

    Google Scholar 

  • Lange M, Smith AH (1953) The Coprinus ephemerus Group. Mycologia 45:747–780

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30(22):3276–3278. https://doi.org/10.1093/bioinformatics/btu531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson E, Örstadius L (2008) Fourteen coprophilous species of Psathyrella identified in the Nordic countries using morphology and nuclear rDNA sequence data. Mycol Res 112:1165–1185. https://doi.org/10.1016/j.mycres.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  • Lewis PO (2001) A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data. Syst Biol 50(6):913–925. https://doi.org/10.1080/106351501753462876

    Article  CAS  PubMed  Google Scholar 

  • Li J-L, Sun X, Chen L, Guo L-D (2016) Community structure of endophytic fungi of four mangrove species in Southern China. Mycology 7(4):180–190. https://doi.org/10.1080/21501203.2016.1258439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locquin M (1947) Études sur le genre Coprinus I. – Quelques coprins fimicoles. Bull Soc mycol Fr 63(1-2):75–88

    Google Scholar 

  • Löytynoja A (2014) Phylogeny-aware alignment with PRANK. Methods Mol Biol 1079:155–170. https://doi.org/10.1007/978-1-62703-646-7_10

    Article  PubMed  Google Scholar 

  • Löytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA 102:10557–10562. https://doi.org/10.1073/pnas.0409137102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löytynoja A, Goldman N (2008a) A model of evolution and structure for multiple sequence alignment. Philos Trans R Soc Lond B Biol Sci 363:3913–3919. https://doi.org/10.1098/rstb.2008.0170

    Article  PubMed  PubMed Central  Google Scholar 

  • Löytynoja A, Goldman N (2008b) Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320:1632–1635. https://doi.org/10.1126/science.1158395

    Article  CAS  PubMed  Google Scholar 

  • Ludwig E (2007) Pilzkompendium Bd. 2, Beschreibungen. Fungicon, Berlin

  • Maniotis J (1964) The Coprinoid state of Rhacophyllus lilacinus. Am J Bot 51:485–494

    Article  Google Scholar 

  • Melzer A (2008) Neue Funde seltener Psathyrella-Arten. Boletus 30(2):89–94

    Google Scholar 

  • Melzer A (2009a) Coprophile Tintlinge auf Alpaka-Dung. Österr Z Pilzk 18:15–24

    Google Scholar 

  • Melzer A (2009b) Alpaka-Tintlinge. Der Tintling 59:36–40

    Google Scholar 

  • Melzer A (2009c) Tintling auf Abwegen. Der Tintling 61:4–7

    Google Scholar 

  • Melzer A (2010) Geisterpilze. Der Tintling 65:7–10

    Google Scholar 

  • Melzer A (2017) Der vergessene Tintling. Der Tintling 108:7–13

    Google Scholar 

  • Melzer A (2018) Zur Kenntnis der Psathyrella spadiceogrisea - Gruppe, Teil II. Z Mykol 84(1):3–28

    Google Scholar 

  • Melzer A, Richter T, Schößler W (2016) Drei coprinoide Arten der Familie Psathyrellaceae neu in Deutschland. Z Mykol 82(2):333–348

    Google Scholar 

  • Melzer A, Ferisin G, Dovana F (2017) Coprinopsis aesontiensis, a new species found in Friuli-Venezia Giulia, Italy. Micol Veget Medit 31(2):125–132

    Google Scholar 

  • Melzer A, Kimani VW, Ullrich R (2019) Psathyrella aberdarensis, a new species of Psathyrella (Agaricales) from a Kenyan National Park. Österr Z Pilzk 27:23–30

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1091. https://doi.org/10.1063/1.1699114

    Article  CAS  Google Scholar 

  • Mifsud S (2017) Contribution to the Mycobiota and Myxogastria of the Maltese islands. Part I (2014-2016). Micol Veget Medit 32(1):3–58

    Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1-8. doi: https://doi.org/10.1109/GCE.2010.5676129

  • Moreau PA, Durand M, Durand C (2002) Coprinus albidofloccosus Locquin – Une espèce méconnue de la section Micacei. Bull mycol bot Dauphiné-Savoie 165:19–24

    Google Scholar 

  • Moreno G, Faus J (1984) Tres especies raras del genero Coprinus (Agaricales) de Cataluña, España. Cryptogamie, Mycologie 5:3–17

    Google Scholar 

  • Moreno G, Manjón JL (2010) Guía de los hongos de la Península Ibérica. Edicione Omega, Barcelona

    Google Scholar 

  • Moreno G, Heykoop M, Esqueda M, Olariaga I (2015) Another lineage of secotioid fungi is discovered: Psathyrella secotioides sp. nov. from Mexico. Mycol Progr 14:34. https://doi.org/10.1007/s11557-015-1057-8

    Article  Google Scholar 

  • Morgan AP (1908) North American species of Agaricaceae (Continued). J Mycol 14(2):64–75

    Article  Google Scholar 

  • Müller K (2005) SeqState – primer design and sequence statistics for phylogenetic DNA data sets. Applied Bioinformatics 4:65–69

    Article  PubMed  Google Scholar 

  • Müller K (2006) Incorporating information from length-mutational events into phylogenetic analysis. Mol Phyl Evol 38:667–676. https://doi.org/10.1016/j.ympev.2005.07.011

    Article  CAS  Google Scholar 

  • Muñoz G, Caballero A (2012) Contribución al conocimiento del género Psathyrella en la Península Ibérica (I). Bol Micol FAMCAL 7:37–74

    Google Scholar 

  • Muñoz G, Caballero A (2013) Contribución al conocimiento del género Psathyrella (incluidos taxones ahora transferidos a los géneros Coprinopsis y Parasola) en la Península Ibérica (II). Bol Micol FAMCAL 8:17–46

    Google Scholar 

  • Muñoz G, Sánchez L (2018) Contribución al conocimiento del género Psathyrella en la Península Ibérica (IV). Bol Micol FAMCAL 13:41–59

    Google Scholar 

  • Nagy LG (2007) Notes on taxa of Coprinus subsection Alachuani from Hungary. Österr Z Pilzk 16:167–180

    Google Scholar 

  • Nagy LG (2011) An investigation of the phylogeny and evolutionary processes of deliquescent fruiting bodies in the mushroom family Psathyrellaceae (Agaricales). Ph. D. Thesis, University of Szeged, Faculty of Science and Informatics, Department of Microbiology

  • Nagy LG, Kocsubé S, Papp T, Vágvölgyi C (2009) Phylogeny and character evolution of the coprinoid mushroom genus Parasola as inferred from LSU and ITS nrDNA sequence data. Persoonia 22:28–37. https://doi.org/10.3767/003158509X422434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy LG, Urban A, Örstadius L, Papp T, Larsson E, Vágvölgyi C (2010a) The evolution of autodigestion in the mushroom family Psathyrellaceae (Agaricales) inferred from Maximum Likelihood and Bayesian methods. Mol Phylogenet Evol 57(3):1037–1048. https://doi.org/10.1016/j.ympev.2010.08.022

    Article  PubMed  Google Scholar 

  • Nagy LG, Vágvölgyi C, Papp T (2010b) Type studies and nomenclatural revisions in Parasola (Psathyrellaceae) and related taxa. Mycotaxon 112:103–141

    Article  Google Scholar 

  • Nagy LG, Házi J, Vágvölgyi C, Papp T (2011a) Phylogeny and species delimitation in the genus Coprinellus with special emphasis on the haired species. Mycologia 104(1):254–275. https://doi.org/10.3852/11-149

    Article  PubMed  Google Scholar 

  • Nagy LG, Walther G, Hazi J, Vágvölgyi C, Papp T (2011b) Understanding the evolutionary processes of fungal fruiting bodies: correlated evolution and divergence times in the Psathyrellaceae. Syst Biol 60(3):303–317. https://doi.org/10.1093/sysbio/syr005

    Article  PubMed  Google Scholar 

  • Nagy LG, Házi J, Szappanos B, Kocsubé S, Bálint B, Rákhely G, Vágvölgyi C, Papp T (2012a) The evolution of defense mechanisms correlate with the explosive diversification of autodigesting Coprinellus mushrooms (Agaricales, Fungi). Syst Biol 61(4):595–607. https://doi.org/10.1093/sysbio/sys002

    Article  PubMed  Google Scholar 

  • Nagy LG, Kocsubé S, Csanádi Z, Kovács GM, Petkovits T, Vágvölgyi C, Papp T (2012b) Re-mind the gap! Insertion – deletion data reveal neglected phylogenetic potential of the nuclear ribosomal internal transcribed spacer (ITS) of fungi. PloS One 7(11):e49794. https://doi.org/10.1371/journal.pone.0049794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy LG, Desjardin DE, Vágvölgyi C, Kemp R, Papp T (2013a) Phylogenetic analyses of Coprinopsis sections Lanatuli and Atramentarii identify multiple species within morphologically defined taxa. Mycologia 105(1):112–124. https://doi.org/10.3852/12-136

    Article  PubMed  Google Scholar 

  • Nagy LG, Vágvölgyi C, Papp T (2013b) Morphological characterization of clades of the Psathyrellaceae (Agaricales) inferred from a multigene phylogeny. Mycol Progress 2013(12):505–517. https://doi.org/10.1007/s11557-012-0857-3

    Article  Google Scholar 

  • Nakamura T, Yamada KD, Tomii K, Katoh K (2018) Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34:2490–2492. https://doi.org/10.1093/bioinformatics/bty121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67. https://doi.org/10.1080/10635150490264699

    Article  PubMed  Google Scholar 

  • Örstadius L (2007) Studies on Psathyrella within the project Funga Nordica. Agarica 27:64–89

    Google Scholar 

  • Örstadius L, Knudsen H (2008) Psathyrella. In: Knudsen H, Vesterholt J (eds) Funga Nordica. Nordsvamp, Copenhagen, pp 586–623

    Google Scholar 

  • Örstadius L, Ryberg M, Larsson E (2015) Molecular phylogenetics and taxonomie in Psathyrellaceae (Agaricales) with focus on psathyrelloid species: introduction of three new genera and 18 new species. Mycol Prog 14(5) 25:1–42. https://doi.org/10.1007/s11557-015-1047-x

    Article  Google Scholar 

  • Orton PD (1957) Notes on British Agarics 1-5 (Observations on the genus Coprinus). Trans Brit mycol Soc 40(2):263–276

    Article  Google Scholar 

  • Orton PD (1960) New check list of British Agarics and Boleti. Part III. Notes on genera and species in the list. Tans Brit mycol Soc 43(2):159–439

    Article  Google Scholar 

  • Orton PD (1972) Notes on British Agarics: IV. Notes R bot Gdn Edinb 32(1):135–150

    Google Scholar 

  • Orton PD (1988) Notes on British Agarics. IX. Trans Brit mycol Soc 91(4):545–571

    Article  Google Scholar 

  • Orton PD, Watling R (1979) British Fungus Flora. Part 2: Coprinaceae Part 1: Coprinus. R Bot Gard, Edinburgh

  • Pacioni G (1999) Psathyrella paecilosperma, una nuova specie palmicola della sezione Spintrigerae. Micol Veg Medit 13(2):149–152

    Google Scholar 

  • Padamsee M, Matheny PB, Dentinger BT, McLaughlin DJ (2007) The mushroom family Psathyrellaceae: evidence for large-scale polyphyly of the genus Psathyrella. Mol Phylogenet Evol 46:415–429. https://doi.org/10.1016/j.ympev.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  • Peck CH (1872) Report of the Botanist (1869). A Rep NY St Mus nat Hist 24:41–108

    Google Scholar 

  • Peck CH (1906) A new species of Galera. J Mycol 12(4):148–149

    Article  Google Scholar 

  • Pegler DN (1977) A preliminary Agaric flora of East Africa. Kew Bull Addit Ser 6:1–615

    Google Scholar 

  • Pegler DN (1983) Agaric Flora of the Lesser Antilles. Kew Bull Addit Ser 9:1–668

    Google Scholar 

  • Pegler DN (1987) A revision of the Agaricales of Cuba 2. Species described by Earle and Murill. Kew Bull 42(4):855–888

    Article  Google Scholar 

  • Pegler DN, Legon NW (1994) Profiles of fungi 57, Coprinus hiascens. Mycologist 8(1):12

    Article  Google Scholar 

  • Pennington LH (1918) Coprinus Pers. in: Kauffman CH: The Agaricaceae of Michigan. Vol. I, Text. Wynkoop, Hallenbeck Crawford Co., Lansing, pp. 206–236

  • Perez-Izquierdo L, Morin E, Maurice JP, Martin F, Rincon A, Buee M (2017) A new promising phylogenetic marker to study the diversity of fungal communities: The Glycoside Hydrolase 63 gene. Mol Ecol Resour 17(6):e1–e11. https://doi.org/10.1111/1755-0998.12678

    Article  CAS  PubMed  Google Scholar 

  • Picón RM (2003) Coprinus lotinae. Une nouvelle espèce saprophyte, sur Eucalyptus, du littoral cantabrique. Docums Mycol 32(126):31–36

    Google Scholar 

  • Piel, W. H., Chan, L., Dominus, M. J., Ruan, J., Vos, R. A., and V. Tannen 2009. TreeBASE v. 2: a database of phylogenetic knowledge. In: e-BioSphere (2009)

  • Pilát A, Svrček M (1967) Revisio specierum sectionis Herbicolae Pil. et Svr. generis Coprinus (Pers. ex) S.F. Gray. Ceská Mykol 21(3):136–145

    Google Scholar 

  • Pittman YR, Valente L, Jeppesen MG, Andersen GR, Patel S, Kinzy TG (2006) Mg2+ and a Key Lysine Modulate Exchange Activity of Eukaryotic Translation Elongation Factor 1Bα. J Biol Chem 281(28):19457–19468. https://doi.org/10.1074/jbc.M601076200

    Article  CAS  PubMed  Google Scholar 

  • Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T, Natvig DO (2008) Novel root fungal consortium associated with a dominant desert grass. Appl Environ Microbiol 74(9):2805–2813. https://doi.org/10.1128/AEM.02769-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prydiuk MP (2010) New records of dung inhabiting Coprinus species in Ukraine II. Section Coprinus. Czech Mycol 62(1):43–58

    Article  Google Scholar 

  • Rannala B (2002) Identifiability of parameters in MCMC Bayesian inference of phylogeny. Syst Biol 51:754–760. https://doi.org/10.1080/10635150290102429

    Article  PubMed  Google Scholar 

  • Raut JK, Suzuki A, Fukiharu T, Shimizu K, Kawamoto S, Tanaka C (2011) Coprinopsis neophlyctidospora sp. nov., a new ammonia fungus from boreal forest in Canada. Mycotaxon 115:227–238

    Article  Google Scholar 

  • Raut JK, Fukiharu T, Shimizu K, Kawamoto S, Takeshige S, Tanaka C, Yamanaka T, Suzuki A (2015) Coprinopsis novorugosobispora (Basidiomycota, Agaricales), an ammonia fungus new to Canada. Mycosphere 6(5):612–619

    Article  Google Scholar 

  • Redhead SA, Traquair JA (1981) Coprinus sect. Herbicolae from Canada. Mycotaxon 13(2):373–404

    Google Scholar 

  • Redhead SA, Smith AH (1986) Two new genera of agarics based on Psilocybe corneipes and Phaeocollybia perplexa. Can. J. Bot. 64(3):643–647

  • Redhead SA, Vilgalys R, Moncalvo JM, Johnson J, Hopple JS Jr (2001) Coprinus Pers. and the disposition of Coprinus species sensu lato. Taxon 50:203–241

    Article  Google Scholar 

  • Reid DA (1958) New or interesting records of British hymenomycetes. II. Trans Brit Mycol Soc 41(4):419–445

    Article  Google Scholar 

  • Rejinders AFM (1979) Developmental anatomy of Coprinus. Persoonia 10(3):383–424

    Google Scholar 

  • Robinson DR, Foulds LR (1981) Comparison of phylogenetic trees. Math Biosci 53:131–147. https://doi.org/10.1016/0025-5564(81)90043-2

    Article  Google Scholar 

  • Romagnesi H (1944) Classification du genre Drosophila Quélet. Bull mens Soc linn Lyon 13(4):51–54

    Google Scholar 

  • Romagnesi H (1951) Étude de quelques Coprins (3° série). Rev Mycol 16:108–128

    Google Scholar 

  • Romagnesi H (1952) Species et formae novae ex genere Drosophila Quélet. Bull mens Soc linn Lyon 21:151–156

    Google Scholar 

  • Romagnesi H (1975) Description de quelques espèces de Drosophila Quél. (Psathyrella ss. dilat.). Bull Soc mycol Fr 91(2):137–224

    Google Scholar 

  • Romagnesi H (1976) Quelques espèces rares ou nouvelles de macromycètes 1 – Coprinacées. Bull Soc mycol Fr 92(2):198–206

    Google Scholar 

  • Romagnesi H (1982) Études complémentaires de quelques espèces de Psathyrella ss. lato (Drosophila Quélet). Bull Soc mycol Fr 98(1):5–68

    Google Scholar 

  • Romero-Olivares AL, Baptista-Rosas RC, Escalante AE, Bullock SH, Riquelme M (2013) Distribution patterns of Dikarya in arid and semiarid soils of Baja California, Mexico. Fungal Ecology 6(1):92–101. https://doi.org/10.1016/j.funeco.2012.09.004

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Roshan U, Livesay DR (2006) Probalign: multiple sequence alignment using partition function posterior probabilities. Bioinformatics 22(22):2715–2721. https://doi.org/10.1093/bioinformatics/btl472

    Article  CAS  PubMed  Google Scholar 

  • Ruiz Mateo A (2012) Coprinellus sassii una especie con poca citas mundiale presente en la peninsula Ibérica. Bol Soc Micol Madrid 36:135–140

    Google Scholar 

  • Ruiz Mateo A (2013) Aportaciones al conocimiento de la micoflora en la Comunidad de Navarra. Coprinopsis xantholepis, una especie a diferenciar de Coprinopsis phaeospora, nueva cita peninsular. Errotari 9:14–17

    Google Scholar 

  • Ruiz Mateo A, Cerdán D (2016) Aportaciones al conocimiento de la micoflora en la comunidad de Navarra, Tres especies interesantes de Coprinopsis sección Narcoticae. Errotari 13:44–56

    Google Scholar 

  • Ruiz Mateo A, Garcia Murilo S (2012) Aportaciones al conocimiento de la micoflora en la Comunidad de Navarra. Coprinellus callinus, presente an la Peninula Ibérica. Errotari 9:16–21

    Google Scholar 

  • Ruiz Mateo A, Casas R, Muñoz González G (2011) Coprinus lotinae Picón, una especie a integar es Psathyrella? Bull Soc Micol Madrid 34:21–28

    Google Scholar 

  • Ruiz Mateo A, Iglesias P, Rodriquez B, Muñoz G (2013) Coprinopsis xenobia, descripción y primeras localizaciones en España. Comparación filogenética con Coprinopsis luteocephala. Bol Micológ FAMCAL 8:63–70

    Google Scholar 

  • Rundell SM, Spakowicz DJ, Narváez-Trujillo A, Strobel SA (2015) The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic fungi of Ecuador. J Fungi 1(3):384–396. https://doi.org/10.3390/jof1030384

    Article  Google Scholar 

  • Russo P, Juuti JT, Raudaskoski M (1992) Cloning, sequence and expression of a β-tubulin-encoding gene in the homobasidiomycete Schizophyllum commune. Gene 119(2):175–182. https://doi.org/10.1016/0378-1119(92)90269-U

    Article  CAS  PubMed  Google Scholar 

  • Saccardo PA (1887) Sylloge Fungorum, vol 5. Agaricineae. P. A, Saccardo, Padua

    Google Scholar 

  • Sammut C, Melzer A (2010) Psathyrellaceae from Malta, a preliminary survey. Micol Veget Medit 27(1):33–44

    Google Scholar 

  • Schafer DJ (2012a) Keys to sections of Parasola, Coprinellus, Coprinopsis and Coprinus in Britain. Field Mycology 11(2):44–51

    Article  Google Scholar 

  • Schafer DJ (2012b) Coprinellus heterothrix and C. cinnamomeotinctus. Field Mycology 13(3):99–104

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464. https://doi.org/10.1214/aos/1176344136

    Article  Google Scholar 

  • Seok SJ, Kim YS, Kim WG, Kwon SW, Park IC (2010) Notes on Some New Species of Psathyrella. Mycobiology 38(4):323–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Shipunov A, Newcombe G, Raghavendra AK, Anderson CL (2008) Hidden diversity of endophytic fungi in an invasive plant. Am J Bot 95(9):1096–1108

    Article  PubMed  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381. https://doi.org/10.1093/sysbio/49.2.369

    Article  CAS  PubMed  Google Scholar 

  • Simmons MP, Müller K, Norton AP (2007) The relative performance of indel-coding methods in simulations. Mol Phylogenet Evol 44(2):724–740. https://doi.org/10.1016/j.ympev.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  • Singer R (1948) Diagnoses fungorum novorum Agaricalium. Sydowia 2(1-6):26–42

    Google Scholar 

  • Singer R (1951, “1949”) The Agaricales in modern taxonomy. Lilloa 22:5–832

  • Singer R (1959) New and interesting species of Basidiomycetes. VI. Mycologia 51(3):375–400

    Article  Google Scholar 

  • Singer R (1962a) The Agaricales in modern taxonomy, 2th edn. Cramer, Weinheim

    Google Scholar 

  • Singer R (1962b, “1961”) Diagnoses Fungorum novorum Agaricalium II. Sydowia 15:45–83

  • Singer R (1975) The Agaricales in modern taxonomy, 3th edn. Cramer, Vaduz

    Google Scholar 

  • Singer R (1986) The Agaricales in modern taxonomy, 4th edn. Koeltz Scientific Books, Koenigstein

    Google Scholar 

  • Smith AH (1941) Studies of North American Agarics – I. Contr Univ Mich Herb 5:1–73

    Google Scholar 

  • Smith AH (1948) Studies in the dark-spored Agarics. Mycologia 40(6):669–707

    Article  CAS  PubMed  Google Scholar 

  • Smith AH (1972) The North American species of Psathyrella. Mem N Y bot Gdn 24:1–633

    Google Scholar 

  • Smith AH, Hesler LR (1946) New and unusual dark-spored Agarics from North America. J Elisha Mitchell Sci Soc 62:177–200

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. https://doi.org/10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics, open access link: http://bioinformatics.oxfordjournals.org/content/early/2014/01/21/bioinformatics.btu033.abstract?keytype=ref&ijkey=VTEqgUJYCDcf0kP. doi: https://doi.org/10.1093/bioinformatics/btu033

  • Stöver BC, Müller KF (2010) TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7. https://doi.org/10.1186/1471-2105-11-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Strittmatter E, Obenauer H (2013) Ein Fund des Hornstieligen Scheinschwefelkopfes Mythicomyces corneipes (Fr.) Redhead & A.H. Sm. in Südwestdeutschland. Z Mykol 79(2):337–349

    Google Scholar 

  • Sugiura N (1978) Further analysis of the data by akaike’s information criterion and the finite corrections. Commun Stat Theory Methods A7:13–26. https://doi.org/10.1080/03610927808827599

    Article  Google Scholar 

  • Suzuki A, Tsuchida S, Fukada J, Tanaka C, Tsuda M, Oda T, Bougher NL, Tommerup IC, Buchanan PK, Fukiharu T, Sagara N (2002) ITS rDNA variation of the Coprinopsis phlyctidospora (syn.: Coprinus phlyctidosporus) complex in the Northern and the Southern Hemispheres. Mycoscience 43(3):229–238. https://doi.org/10.1007/S102670200033

    Article  CAS  Google Scholar 

  • Szarkándi JG, Schmidt-Stohn G, Dima B, Hussain S, Kocsubé S, Papp T, Vágvölgyi C, Nagy LG (2017) The genus Parasola: phylogeny of the genus and the description of three new species. Mycologia 109(4):620–629. https://doi.org/10.1080/00275514.2017.1386526

    Article  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan G, Muffato M, Ledergerber C, Herrero J, Goldman N, Gil M, Dessimoz C (2015) Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst Biol 64(5):778–791. https://doi.org/10.1093/sysbio/syv033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavare S (1986) Some probabilistic and statisical problems on the analysis of DNA sequences. Lect Math Life Sci 17(2):57–86

    Google Scholar 

  • Tibpromma S, Hyde KD, Jeewon R et al (2017) Fungal diversity notes 491-602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 83:1–261

    Article  Google Scholar 

  • Tóth A, Hausknecht A, Krisai-Greilhuber I, Papp T, Vágvölgyi C, Nagy LG (2013) Iteratively refined guide trees help improving alignment and phylogenetic inference in the mushroom family bolbitiaceae. PLoS ONE 8(2):e56143. https://doi.org/10.1371/journal.pone.0056143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uljé CB (1984) Coprinus amphithallus, weinig bekend en toch zo gemakkelijk. Coolia 27(4):82–83

    Google Scholar 

  • Uljé CB (1988) Over de Coprinus hemerobius - Groep. Coolia 29(2):25–31

    Google Scholar 

  • Uljé CB, Bas C (1991) Studies in Coprinus II. Subsection Setulosi of section Pseudocoprinus. Persoonia 14(3):275–339

    Google Scholar 

  • Uljé CB, Noordeloos ME (1993) Studies in Coprinus III. Coprinus section Veliformis, Subdivision and revision of subsection Nivei emend. Persoonia 15(3):257–301

    Google Scholar 

  • Uljé CB, Noordeloos ME (1997) Studies in Coprinus IV. Coprinus section Coprinus. Subdivision and revision of subsection Alachuani. Persoonia 16(3):265–333

    Google Scholar 

  • Uljé CB, Noordeloos ME (1999) Studies in Coprinus V. Coprinus section Coprinus. Revision of subsection Lanatuli Sing. Persoonia 17(2):165–199

    Google Scholar 

  • Uljé CB, Noordeloos ME (2003) Notulae ad floram agaricinam Neerlandicam XLII, additions to Coprinus subsection Setulosi. Persoonia 18(2):259–264

    Google Scholar 

  • Uljé CB, Verbeken A (2002) A new species in Coprinus subsection Setulosi. Persoonia 18(1):143–145

    Google Scholar 

  • Uljé CB, Doveri F, Noordeloos ME (2000) Additions to Coprinus subsection Lanatuli. Persoonia 17(3):465–471

    Google Scholar 

  • Vašutová M, Antonin V, Urban A (2008) Phylogenetic studies in Psathyrella focusing on sections Pennatae and Spadiceae – new evidence for the paraphyly of the genus. Mycol Res 112:1153–1164. https://doi.org/10.1016/j.mycres.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  • Versper A, Melzer A (2015) Coprinellus fuscocystidiatus L. Nagy, Házi, Papp & Vágvölgyi in Deutschland. Z Mykol 81(1):41–47

    Google Scholar 

  • Vila J, Rocabruna A (1996) Aportación al conocimiento del género Coprinus Pers. en Cataluña. II. Revista Soc Catalana Micol 19:73–90

    Google Scholar 

  • Vila J, Rocabruna A (2002) Aportación al conocimiento del género Coprinus Pers. en Cataluña IV. C. cardiasporus Bender. Revista Soc Catalana Micol 24:131–134

    Google Scholar 

  • Vizzini A, Consiglio G, Marchetti M (2019) Mythicomycetaceae fam. nov. (Agaricineae, Agaricales) for accommodating the genera Mythicomyces and Stagnicola, and Simocybe parvispora reconsidered. FUSE 3:41-56 doi.org/10.3114/fuse.2019.03.05

  • Von Bonsdorff T, Kytovuori I, Vauras J, Huhtinen S, Halme P, Rama T, Kosonen L, Jakobsson S (2014) Sienet ja Metsien Luontoarvot (Mushrooms and the Natural Value of Forests). Norrlinia 27:1–272

    Google Scholar 

  • Vos RA, Balhoff JP, Caravas JA, Holder MT, Lapp H, Maddison WP, Midford PE, Priyam A, Sukumaran J, Xia X, Stoltzfus A (2012) NeXML: rich, extensible, and verifiable representation of comparative data and metadata. Systematic Biology 61(4):675–689

    Article  PubMed  PubMed Central  Google Scholar 

  • Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154. https://doi.org/10.1016/j.simyco.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watling R (1967) Notes on some British Agarics. Notes R bot Gdn Edinb 28(1):39–56

    Google Scholar 

  • Wilhelm M (2017) Pilze in der Masaola-Halle des Züricher Zoos. Folge 16: Dunkelsporige Blätterpilze. Der Tintling 107:29–34

    Google Scholar 

  • Yagame T, Funabiki E, Nagasawa E, Fukiharu T, Iwase K (2013) Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae). Am J Bot 100(9):1823–1830

    Article  PubMed  Google Scholar 

  • Yamada KD, Tomii K, Katoh K (2016) Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees, additional information. Bioinformatics 32:3246–3251. https://doi.org/10.1093/bioinformatics/btw412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan JQ, Bau T (2017) New and newly recorded species of Psathyrella (Psathyrellaceae, Agaricales) from northeast China. Phytotaxa 321(1):139-150. doi: https://doi.org/10.11646/phytotaxa.321.1.7

  • Yan JQ, Bau T (2018) The Northeast Chinese species of Psathyrella (Agaricales, Psathyrellaceae). MycoKeys 33:85–102. https://doi.org/10.3897/mycokeys.33.24704

    Article  Google Scholar 

  • Yang Z (1993) Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10:1396–1401. https://doi.org/10.1093/oxfordjournals.molbev.a040082

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J Mol Evol 39:306–314. https://doi.org/10.1007/BF00160154

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Wang Y, Wang T, Jiang J, Botting CH, Liu H, Chen Q, Yang J, Naismith JH, Zhu X, Chen L (2016) Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun 7:12103. https://doi.org/10.1038/ncomms12103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are thankful for the information, photographs (also in Supplement S2), fresh or dry material and friendly help from “Abeja”, Claudio Angelini, Ditte Bandini, Michael Beeckmann, Hans Bender, Konstanze Bensch, Julian Branscombe, Micheline Broussal, Klaus Büchler, Emanuele Campo, David Dandria, Daniel Deschuyteneer, Matthias Dondl, Giuliano Ferisin, Gernot Friebes, Andreas Gminder, Pérez-De-Gregorio, Anton Hausknecht, Norbert Heine, Michel Heykoop, Shah Hussain, Alexander Karisch, Amandeep Kaur, Lothar Kreuer, Lothar Krieglsteiner, Irmgard Krisai-Greilhuber, Steffen Lorenz, Regina Lüdecke, Rudi Markones, Jürgen Marqua, Antonio Ruiz Mateo, Andgelo Mombert, Gabriel Moreno, Bernd Mühler, Guillermo Muñoz, Andrea Oppolzer, Leif Örstadius, Shaun Pennycook, Marcus Rave, Matthias Reul, Torsten Richter, Antonio Ruiz, Carmel Sammut, Pablo Schäfer, Robert Schaike, M. Schönfeld, Wolfgang Schößler, Rika Seibert, Karl Soop, Muhammad Usman, Andreas Vesper, Heidrun Wawrok, Karl Wehr, Gerhard Wührleitner, Jun-Qing Yan, Rainer Ziehbart, Helmut Zitzmann and Stefan Zinke. Thankfully, Pablo Alvarado performed several sequencing sessions. We are grateful for the support for program-specific problems by Kazutaka Katoh, Ari Löytynoja, Bernd Kretschmer, Rob Lanfear, Anders Larsson, Mark Miller, Sonja J. Prohaska, Alexandros Stamatakis and Ben Stöver.

Special thanks to Matthias Reul for the comprehensive help with the translation.

Author information

Authors and Affiliations

Authors

Additional information

Section Editor: Zhu-Liang Yang

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 652 kb)

ESM 2

(PDF 82059 kb)

ESM 3

(PDF 150 kb)

Appendix. Preliminary key to the genera

Appendix. Preliminary key to the genera

Below, the design of a key based on the natural system is shown. The characteristics are often not restricted to one genus. Sometimes there are overlaps with features of other genera. For the determination of the species, a key based on distinctive features, regardless of the system would be more appropriate.

1Pileipellis a cutis ...........................................Coprinopsis

1*Pileipellis a hymeniderm ............................................... 2

2(1) Pileus surface totally naked ...................................... 3

2*Pileus surface not totally naked; veil, pileocystidia, setae or hairs present .............................................................. 4

3(1) Pleurocystidia thick-walled, spores pale and ellipsoid ..................................................................... Homophron

3*Pleurocystidia thin-walled, spores dark and lentiform .................................................................... Parasola p.p.

4(2) Veil always absent .................................................... 5

4*Veil always present, but sometimes fugacious ........................................................................................ 6

5(4) Pileipellis with long brown hairs, no other elements present ....................................................... Parasola p.p.

5*Pileipellis without such hairs, but pileocystidia or setae may be present ........................................ Tulosesus p.p.

6(4) Veil not wipeable .................................................... 7

6*Veil wipeable ................................................................. 8

7(6) Spores warty ........................................... Lacrymaria

7*Spores not warty ...................................... Cystoagaricus

8(6) Veil consisting at least partially of spherical cells ....9

8*Veil without spherical cells ......................................... 15

9(8) Pileocystidia present .............................................. 10

9*Pileocystdia absent ...................................................... 13

10(9) Pileus with greenish tones .......................... Punjabia

10*Pileus without greenish tones ...................................... 11

11(10) Spores rounded-angular ................... Tulosesus p.p.

11*Spores otherwise ......................................................... 12

12(11) Pileus plicate or furrowed ............ Coprinellus p.p.

12*Pileus at most translucent striated ..................................... ................................... Psathyrella sect. Cystopsathyra p.p.

13(9) Spores strongly flattened, ouline tri- to polygonal ......................................................................... Narcissea

13*Spores otherwise ......................................................... 14

14(13) Pileus plicate or furrowed ............ Coprinellus p.p.

14*Pileus at most translucent striated ............................ .............................. Psathyrella sect. Cystopsathyra p.p.

15(8) Pileus plicate or furrowed ..................................... 16

15*Pileus at most translucent striated ............................... 17

16(15) Pileocystidia present ........................ Tulosesus p.p.

16*Pileocystidia absent .................................. Hausknechtia

17(15) Pleurocystidia absent .................... Candolleomyces

17*Pleurocystidia present ................................................. 18

18(17) Pleurocystidia with large, refractive globules .......................................................................... Typhrasa

18*Pleurocystidia otherwise .............................................. 19

19(18) Pleurocystidia predominantly spatula-shaped and strongly pediculated, often slightly thick-walled ............................................................................... Olotia

19*Pleurocystidia predominantly otherwise ..................... 20

20(19) Stipe distinctly rooting, cystidia with greenish deposits, pileocystidia or similar elements present ................................................................... Britzelmayria

20*Features not in this combination .................................. 21

21(20) Basidiocarps large, spores about 10 μm long, pale, germ pore absent or tiny .............................. Kauffmania

21*Features not in this combination .................. Psathyrella

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wächter, D., Melzer, A. Proposal for a subdivision of the family Psathyrellaceae based on a taxon-rich phylogenetic analysis with iterative multigene guide tree. Mycol Progress 19, 1151–1265 (2020). https://doi.org/10.1007/s11557-020-01606-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-020-01606-3

Keywords

Navigation