Skip to main content
Log in

Polyphasic taxonomy of four passalora-like taxa occurring on fruit and forest trees

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Species of Passalora s. lat. are phytopathogenic fungi that generally cause leaf spot diseases on a broad variety of plants throughout the world. During our investigations exploring cercosporoid fungi associated with leaf spot symptoms of fruit and forest trees in northern and north-western Iran, several passalora-like fungi were isolated from symptomatic leaves of trees belonging to the Fabaceae, Malvaceae, Rosaceae, and Ulmaceae. A polyphasic taxonomic approach applying molecular data, morphological features, and host data was employed to identify the isolates. In a multi-gene phylogenetic analysis (LSU, ITS, and RPB2), these isolates are clustered in four clades in the Mycosphaerellaceae. The taxa encompassed Paracercosporidium microsorum on Tilia platyphyllos, Prathigadoides gleditsiae-caspicae gen. et. sp. nov. on Gleditsia caspica, Pruniphilomyces circumscissus on Prunus avium and Prunus cerasus, and Sirosporium celtidis on Celtis australis. The new genus Prathigadoides and its type species Prathigadoides gleditsiae-caspicae are molecularly distinct from all phylogenetically related genera, and some characteristics of the conidiophores and conidia differ from those of the morphologically similar species Prathigada condensata on the North America Gleditsia triacanthos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

All sequence data generated in this study (Table 1) are available at GenBank (https://www.ncbi.nlm.nih.gov/genbank/). Alignments can be accessed via TreeBase (http://www.treebase.org).

References

  • Abdollahzadeh J, Groenewald JZ, Coetzee MPA, Wingfield MJ, Crous PW (2020) Evolution of lifestyles in Capnodiales. Stud Mycol 95:381–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhshi M (2019) Epitypification of Cercospora rautensis, the causal agent of leaf spot disease on Securigera varia, and its first report from Iran. Fungal SystEvol 3:157–163

  • Bakhshi M, Arzanlou M (2017) Multigene phylogeny reveals a new species and novel records and hosts in the genus Ramularia from Iran. Mycol Prog 16:703–712

    Article  Google Scholar 

  • Bakhshi M, Arzanlou M, Babai-Ahari A (2012) Comprehensive checklist of Cercosporoid fungi from Iran. Plant Pathol Quar 2:44–55

    Article  Google Scholar 

  • Bakhshi M, Arzanlou M, Babai-ahari A, Groenewald JZ, Braun U, Crous PW (2015a) Application of the consolidated species concept to Cercospora spp. from Iran. Persoonia 34:65–86

    Article  CAS  PubMed  Google Scholar 

  • Bakhshi M, Arzanlou M, Babai-Ahari A, Groenewald JZ, Crous PW (2014) Multi-gene analysis of Pseudocercospora spp. from Iran. Phytotaxa 184:245–264

    Article  Google Scholar 

  • Bakhshi M, Arzanlou M, Babai-Ahari A, Groenewald JZ, Crous PW (2015b) Is morphology in Cercospora a reliable reflection of generic affinity? Phytotaxa 213:22–34

    Article  Google Scholar 

  • Bakhshi M, Arzanlou M, Babai-ahari A, Groenewald JZ, Crous PW (2018) Novel primers improve species delimitation in Cercospora. IMA Fungus 9(2):299–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakhshi M, Arzanlou M, Zare R, Groenewald JZ, Crous PW (2019) New species of Septoria associated with leaf spot diseases in Iran. Mycologia 111(6):1056–1071

    Article  CAS  PubMed  Google Scholar 

  • Bakhshi M, Zare R (2020) Molecular confirmation of Nothopassalora personata causing leaf spot of peanut in Iran. Australas Plant Dis Notes 15(9):1–4

    Google Scholar 

  • Bakhshi M, Zare R, Jafary H, Arzanlou M, Rabbani nasab H, (2021) Phylogeny of three Ramularia species occurring on medicinal plants of the Lamiaceae. Mycol Prog 20(1):27–38

    Article  Google Scholar 

  • Braun U (1995) A monograph of Cercosporella, Ramularia and allied genera (phytopathogenic hyphomycetes):, vol 1. IHW-Verlag, Eching, p 333

    Google Scholar 

  • Braun U, Nakashima C, Bakhshi M, Zare R, Shin HD, Alves RF, Sposito M (2020) Taxonomy and phylogeny of cercosporoid ascomycetes on Diospyros spp.with special emphasis on Pseudocercospora spp. Fungal Syst Evol 6:95–127

  • Braun U, Nakashima C, Crous PW (2013) Cercosporoid fungi (Mycosphaerellaceae) 1. Species on other fungi Pteridophyta and Gymnospermae. IMA Fungus 4:265–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  • Chupp C (1954) A monograph of the fungus genus Cercospora. Ithaca, New York, p 667

    Google Scholar 

  • Clevenger J, Chu Y, Chavarro C, Botton S, Culbreath A, Isleib TG, Holbrook CC, Ozias-Akins P (2018) Mapping late leaf spot resistance in peanut (Arachis hypogaea) using QTL-seq reveals markers for marker-assisted selection. Front Plant Sci 9:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Braun U (2003) Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora. CBS Biodiversity Series No. 1. Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands, 571 pp

  • Crous PW, Braun U, Hunter GC, Wingfield MJ, Verkley GJM, Shin H-D, Nakashima C, Groenewald JZ (2013) Phylogenetic lineages in Pseudocercospora. Stud Mycol 75:37–114

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004a) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22

    Google Scholar 

  • Crous PW, Groenewald JZ, Risede JM, Simoneau P, Hywel-Jones NL (2004b) Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Stud Mycol 50:415–429

    Google Scholar 

  • Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC, Burgess TI, Andjic V, Barber PA, Groenewald JZ (2009) Unravelling Mycosphaerella: do you believe in genera? Persoonia 23:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Summerell BA, Shivas RG et al (2012) Fungal planet description sheets: 107–127. Persoonia 28:138–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Wingfield MJ, Schumacher RK, Akulov A, Bulgakov TS, Carnegie AJ, Jurjević Ž, Decock C, Denman S, Lombard L, Lawrence DP (2020) New and interesting fungi. 3. Fungal Syst Evol 6:157–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Hoog GSd, Gerrits van den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41:183–189

    Article  PubMed  Google Scholar 

  • Douanla-Meli C, Langer E, Mouafo FT (2013) Fungal endophyte diversity and community patterns in healthy and yellowing leaves of Citrus limon. Fungal Ecol 6:212–222

    Article  Google Scholar 

  • Fernandes AF, de Miranda BEC, Duarte LL, Barreto RW (2013) Passalora stromatica sp. nov. associated with leaf spots of Tithonia diversifolia in Brazil. IMA Fungus 4:201–204

    Article  PubMed Central  Google Scholar 

  • Groenewald JZ, Nakashima C, Nishikawa J, Shin H-D, Park JH, Jama AN, Groenewald M, Braun U, Crous PW (2013) Species concepts in Cercospora: spotting the weeds among the roses. Stud Mycol 75:115–170

    Article  CAS  PubMed  Google Scholar 

  • Heystek F, Wood AR, Neser S, Kistensamy Y (2011) Biological control of two Ageratina species (Asteraceae: Eupatorieae) in South Africa. Afr Entomol 19(2):208–216

    Article  Google Scholar 

  • Hyde KD, Gareth EBJ, Liu JK, Ariyawansa H, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous PW, Diederich DDQ, P, (2013) Families of Dothideomycetes. Fungal Divers 63:1–313

    Article  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Linder DH (1931) The genus Helicoceras. Ann Mo Bot Gard 18:1–8

    Article  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Maddison WP, Maddison DR (2018) Mesquite: a modular system for evolutionary analysis. Version 3.61. http://mesquiteproject.org. Accessed 20 May 2021

  • Minnis AM, Kennedy AH, Grenier DB, Rehner SA, Bischoff JF (2011) Asperisporium and Pantospora (Mycosphaerellaceae): epitypifcations and phylogenetic placement. Persoonia 27:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möller E, Bahnweg G, Sandermann H, Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20:6115–6116

    Article  PubMed  PubMed Central  Google Scholar 

  • Nylander JAA (2004) MrModeltest v 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA 95:2044–2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirnia M (2019) Host range, geographical distribution and current accepted names of cercosporoid and ramularioid species in Iran. Curr Res Environ Appl Mycol J Fungal Biol 9(1):122–163

    Article  Google Scholar 

  • Rayner RW (1970) A mycological colour chart CMI and British Mycological Society Kew, Surrey, England 34

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharnweber T, Rietschel M, Manthey M (2007) Degradation stages of the Hyrcanian forests in southern Azerbaijan. Arch Nat Schutz Landsch Forsch 46(2):133–156

    Google Scholar 

  • Schnabel A, McDonel RE, Wendel JH (2003) Phylogenetic relationships in Gleditsia (Leguminosae) based on ITS sequences. Am J Bot 90(2):310–320

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kumar S, Saini DC, Upadhyaya PP, Braun U (2013) Diversity of emopenPassaloraemclose on emopenFicusemclose. Mycol Prog 12(4):637–643

    Article  Google Scholar 

  • Stewart EL, Liu Z, Crous PW, Szabo LJ (1999) Phylogenetic relationships among some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence analysis. Mycol Res 103:1491–1499

    Article  CAS  Google Scholar 

  • Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW (2007) A multigene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 44:1204–1223

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b 10. Sunderland, Massachusetts: Sinauer Associates

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma BP, van Esse HP, Crous PW, de Wit PJGM (2005) Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol 6:379–393

    Article  CAS  PubMed  Google Scholar 

  • Videira SIR, Groenewald JZ, Nakashima C, Braun U, Barreto RW, de Wit PJGM, Crous PW (2017) Mycosphaerellaceae – chaos or clarity? Stud Mycol 87:257–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from severalemopenCryptococcusemclosespecies. J Bacteriol 172(8):4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylognetics. In: Innis MA, Gelfand DH, Sninsky JJ, White JW (eds) A guide to molecular methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Williams-Woodward JL, Copes WE (2017) Environmental factors impact temporal Passalora sequoiae conidia counts from Leyland cypress. J Phytopathol 165(7–8):538–546

    Article  Google Scholar 

  • Yousefzadeh H, Saidi A, Tayebi S, Kartoolinejad D, Naghdi R (2017) Molecular approach to determine taxonomic status of Septoria sp. causing leaf blotch ofCastanea sativa in Hyrcanian forests. J For Res 28:661–670

Download references

Acknowledgements

We acknowledge the Research Deputy of the Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran and Horticultural Science Research Institute, Citrus and Subtropical Fruits Research Center, Ramsar, Iran, for financial support.

Funding

This research was financially supported by Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO).

Author information

Authors and Affiliations

Authors

Contributions

Samples were collected by Mounes Bakhshi and Hossein Taheri. Experiments and morphological and molecular analyses were conducted by Mounes Bakhshi. Rasoul Zare contributed to the data analyses of the taxa and funding acquisition. Uwe Braun contributed to the morphological analyses of the taxa. The first draft of the manuscript was written by Mounes Bakhshi, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript and have agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mounes Bakhshi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Section editor: Gerhard Rambold

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi, M., Zare, R., Braun, U. et al. Polyphasic taxonomy of four passalora-like taxa occurring on fruit and forest trees. Mycol Progress 20, 1157–1173 (2021). https://doi.org/10.1007/s11557-021-01725-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-021-01725-5

Keywords

Navigation