Skip to main content

Advertisement

Log in

Osmotic adjustment, water relations and growth attributes of the xero-halophyte Reaumuria vermiculata L. (Tamaricaceae) in response to salt stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Reaumuria vermiculata (L.), a perennial dwarf shrub in the family of Tamaricaceae, is a salt-secreting xero-halophyte found widely in arid areas of Tunisia. In the present study, physiological attributes of R. vermiculata were investigated under salt stress. Four-month-old plants were subjected to various salinity levels (0, 100, 200, 300, 400 or 600 mM NaCl) for 30 days under greenhouse conditions. Results showed that plants grew optimally when treated with standard nutrient solution without NaCl supply. However, increasing osmolality of nutrient solutions caused a significant reduction in biomass production and relative growth rate. This reduction was more pronounced in roots than in shoots. In addition, this species was able to maintain its shoot water content at 30% of the control even when subjected to the highest salt level, whereas root water content seemed to be unaffected by salt. Shoot water potential declined significantly as osmotic potential of watering solutions was lowered and the more negative values were reached at 600 mM NaCl (−3.4 MPa). Concentrations of Na+ and Cl in the shoots of R. vermiculata were markedly increased with increasing osmolality of nutrient solutions, whereas concentration of K+ was not affected by NaCl supply. Salt excretion is an efficient mechanism of Na+ exclusion from the shoots of this species exhibiting high K+/Na+ selectivity ratio over a wide range of NaCl salinity. Proline accumulation in shoots was significantly increased with increase in salt level and may play a role in osmoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnon DI, Hoagland DR (1940) Crop production in artificial solutions and in soils with special reference to factors affecting yields and absorption of inorganic nutrient. Soil Sci 50:463–484

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Barhoumi Z, Djebali W, Smaoui A, Chaïbi W, Abdelly C (2007) Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol 164:842–850

    Article  PubMed  CAS  Google Scholar 

  • Bates S, Waldren RP, Teare ID (1973) Rapid determination of the free proline in water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Debez A, Ben Hamed K, Grignon C, Abdelly C (2004) Salinity effects on germination, growth and seed production of the halophyte Cakile maritima. Plant Soil 262:179–189

    Article  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline condition: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325

    Article  Google Scholar 

  • Glenn EP, Brown JJ (1998) Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiacecae) varieties in drying soil. Am J Bot 85:10–16

    Article  CAS  Google Scholar 

  • Gorai M, Neffati M (2007) Germination responses of Reaumuria vermiculata to salinity and temperature. Ann Appl Biol 151:53–59

    Article  Google Scholar 

  • Gorai M, Ennajeh M, Khemira H, Neffati M (2010a) Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis. Acta Physiol Plant. doi:10.1007/s11738-010-0628-1

  • Gorai M, Ennajeh M, Khemira H, Neffati M (2010b) Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmites australis plants. Flora 205:462–470

    Google Scholar 

  • Gorham J, Bristol A, Yopung EM, Wyn Jones RG, Kashour G (1990) Salt tolerance in the Triticeae: K/Na discrimination in barley. J Exp Bot 41:1095–1101

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonw Bureau Horticult Tech Com 22:431–446

    Google Scholar 

  • Hogarth PJ (1999) The Biology of Mangroves. Oxford University Press, NewYork

    Google Scholar 

  • Hunt R (1990) Basic growth analysis. Plant growth analysis for beginners. Unwin Hyman, London

    Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485

    Article  PubMed  CAS  Google Scholar 

  • Jacobson L (1951) Maintenance of iron supply in nutrient solutions by a single addition of ferric-potassium-ethylene-diamine-tetracetate. Plant Physiol 26:411–413

    Article  PubMed  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R (2007) Alterations in germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S Afr J Bot 73:190–195

    Article  Google Scholar 

  • Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56:136–146

    Article  CAS  Google Scholar 

  • Le Houérou HN (1993) Salt tolerant plants for the arid regions of the Mediterranean isoclimatic zone. In: Lieth H, Al-Masoom A (eds) Towards the rational use of high salinity tolerant plants. Kluwer, Dordrecht, pp 403–422

    Google Scholar 

  • Le Houérou HN (1995) Forage halophytes in the Mediterranean basin. In: Choukr-Allah R, Malcom CV, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker, New York, pp 115–135

    Google Scholar 

  • Liu YB, Wang G, Liu J, Zhao X, Tan HJ, Li XR (2007) Anatomical, morphological and metabolic acclimation in the resurrection plant Reaumuria soongorica during dehydration and rehydration. J Arid Environ 70:183–194

    Article  Google Scholar 

  • M’rah S, Ouerghi Z, Berthomieu C, Havaux M, Jungas C, Hajji M, Grignon C, Lachaâl M (2006) Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J Plant Physiol 163:1022–1031

    Article  PubMed  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ Nutrition toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:112–133

    Article  Google Scholar 

  • Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Passioura JB (1984) Hydraulic resistance of plants. III. Effects of NaCl in barley and lupin. Aust J Plant Physiol 11:351–359

    Article  CAS  Google Scholar 

  • Naidoo G, Somaru R, Achar P (2008) Morphological and physiological responses of the halophyte, Odyssea paucinervis (Staph) (Poaceae), to salinity. Flora 203:437–447

    Google Scholar 

  • Oertli JJ (1968) Extra cellular salt accumulation, a possible mechanism of salt injury in plants. Agrochimica 12:461–469

    Google Scholar 

  • Owens S (2001) Salt of the earth. Genetic engineering may help to reclaim agricultural land lost due to salinisation. EMBO Rep 2:877–879

    PubMed  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Pottier-Alapetite G (1979) Flore de la Tunisie. Angiosperme-Dicotylédones. Vol. I: Apétales-Dialypétales. Ministère de l’Enseignement Supérieur et de la Recherche Scientifique et le Ministère de l’Agriculture, Tunis

    Google Scholar 

  • Ramadan T (1998) Ecophysiology of salt excretion in the xero-halophyte Reaumuria hirtella. New Phytol 139:273–281

    Article  CAS  Google Scholar 

  • Ramadan T (2001) Dynamics of salt secretion by Sporobolus spicatus (Vahl) Kunth from sites of differing salinity. Ann Bot 87:259–266

    Article  Google Scholar 

  • Robyt JF, White BJ (1987) Biochemical techniques—theory and practice. Books/Cole Publishing Company, Monterey, pp 267–275

    Google Scholar 

  • Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochem Biophys Acta 1469:1–30

    PubMed  CAS  Google Scholar 

  • Saadallah K, Drevon JJ, Abdelly C (2001) Nodulation et croissance nodulaire chez le haricot (Phaseolus vulgaris) sous contrainte saline. Agronomie 21:627–634

    Article  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Henningsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  PubMed  CAS  Google Scholar 

  • Shachtman D, Munns R, White Cross MI (1991) Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Sci 31:992–997

    Article  Google Scholar 

  • Singh AK, Dubey RS (1995) Changes in chlorophyll a and b contents and activities of photosystems I and II in rice seedlings induced by NaCl. Photosynthetica 31:489–499

    CAS  Google Scholar 

  • Speer M, Kaiser WM (1991) Ion relations of symplastic and apoplastic space in leaves from Spinacia oloraceae L. and Pisum sativum L. under salinity. Plant Physiol 97:990–997

    Article  PubMed  CAS  Google Scholar 

  • SPSS (2002) SPSS 11.5 for Windows Update. SPSS Inc, Chicago

    Google Scholar 

  • Sultana N, Ikeda T, Itoh R (1999) Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ Exp Bot 42:211–220

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Wolf O, Munns R, Tounet ML, Jeschke WD (1991) The role of the stem in the partitioning of Na+ and K+ in salt-treated barley. J Exp Bot 42:697–704

    Article  CAS  Google Scholar 

  • Yeo AR (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Gorai.

Additional information

Communicated by R. Aroca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorai, M., Neffati, M. Osmotic adjustment, water relations and growth attributes of the xero-halophyte Reaumuria vermiculata L. (Tamaricaceae) in response to salt stress. Acta Physiol Plant 33, 1425–1433 (2011). https://doi.org/10.1007/s11738-010-0677-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0677-5

Keywords

Navigation