Skip to main content
Log in

Fabrication, Characterization, and Antifungal Assessment of Oregano Essential Oil-Loaded Nano-silica Against Curvularia lunata in Brown Rot of Agaricus bisporus Storage

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, we developed oregano essential oil-mesoporous nano-silica (OEO-MSNPs), a new and safe eco-friendly antifungal system. MSNPs showed ordered mesoporous structures by TEM, which can provide space for loading OEO. The FTIR characterization of MSNPs and OEO-MSNPs showed that OEO was successfully embedded into the MSNPs. The loading rate of OEO-MSNPs to OEO reached about 60%, and OEO-MSNPs had better antifungal activity against the mold (Curvularia lunata MF380802.1) found in postharvest decayed Agaricus bisporus. The antifungal effects of OEO-MSNPs against Curvularia lunata MF380802.1 (C. lunata) were investigated. Then, our results showed that the antifungal effect of OEO-MSNPs had a minimum inhibitory concentration (MIC) and a minimum fungicidal concentration (MFC) at 0.20 mg/mL and 0.40 mg/mL, respectively. Furthermore, the integrity of cell membranes and nuclear membranes of C. lunata was destroyed during the interaction with OEO-MSNPs, resulting in the exudation of nucleic acids, proteins, and other substances in vitro. This work provides a theoretical basis for the development of effective treatments to address the infection of C. lunata during the storage and preservation of Agaricus bisporus. This newly developed method for encapsulating EOs in MSNPs has potential application in the design of effective antimicrobial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abaza, S. F., Elbialy, N. S., & Mohamed, N. (2021). Incorporating silver nanoshell-coated mesoporous silica nanoparticles improves physicochemical and antimicrobial properties of chitosan films. International Journal of Biological Macromolecules, 189, 792–801. https://doi.org/10.1016/j.ijbiomac.2021.08.161

    Article  CAS  PubMed  Google Scholar 

  • Abdul Razak, N. A., Othman, N. H., Mat Shayuti, M. S., Jumahat, A., Sapiai, N., & Lau, W. J. (2022). Agricultural and industrial waste-derived mesoporous silica nanoparticles: A review on chemical synthesis route. Journal of Environmental Chemical Engineering, 10, 107322. https://doi.org/10.1016/j.jece.2022.107322

  • Artiga-Artigas, M., de Abreu-Martins, H. H., Zeeb, B., Piccoli, R. H., Martín-Belloso, O., & Salvia-Trujillo, L. (2020). Antimicrobial kinetics of nanoemulsions stabilized with protein: Pectin electrostatic complexes. Food and Bioprocess Technology, 13, 1893–1907. https://doi.org/10.1007/s11947-020-02531-9

    Article  CAS  Google Scholar 

  • Aslani, M. A., Harighi, B., & Abdollahzadeh, J. (2018). Screening of endofungal bacteria isolated from wild growing mushrooms as potential biological control agents against brown blotch and internal stipe necrosis diseases of Agaricus bisporus. Biological Control, 119, 20–26. https://doi.org/10.1016/j.biocontrol.2018.01

    Article  Google Scholar 

  • Ayón Reyna, L. E., Uriarte Gastelum, Y. G., Camacho Díaz, B. H., Tapia Maruri, D., Lopez Lopez, M. E., Lopez Velazquez, J. G., & Vega Garcia, M. O. (2022). Antifungal activity of a chitosan and mint essential oil coating on the development of Colletotrichum gloeosporioides in papaya using macroscopic and microscopic analysis. Food and Bioprocess Technology, 15(2), 368–378. https://doi.org/10.1007/s11947-022-02764-w

    Article  CAS  Google Scholar 

  • Balaure, P. C., Boarca, B., Popescu, R. C., Savu, D., Trusca, R., Vasile, B. S., Grumezescu, A. M., Holban, A. M., Bolocan, A., & Andronescu, E. (2017). Bioactive mesoporous silica nanostructures with anti-microbial and anti-biofilm properties. International Journal of Pharmaceutics, 531(1), 35–46. https://doi.org/10.1016/j.ijpharm.2017.08.062

    Article  CAS  PubMed  Google Scholar 

  • Bai, S., Liu, X., Xu, L., Xuan, J., Liu, Y., Shao, Y., Xin, Y., Li, X., & Fan, L. (2022). Enhancement of corrosion resistance and lubricating performance of electrodeposited Ni-Co coating composited with mesoporous silica nanoparticles and silicone oil impregnation. Materials Chemistry and Physics, 282, 125929. https://doi.org/10.1016/j.matchemphys.2022.125929

  • Balan, G. C., Paulo, A. F. S., Correa, L. G., Alvim, I. D., Ueno, C. T., Coelho, A. R., Ströher, G. R., Yamashita, F., Sakanaka, L. S., & Shirai, M. A. (2021). Production of wheat flour/PBAT active films incorporated with oregano oil microparticles and its application in fresh pastry conservation. Food and Bioprocess Technology, 14(8), 1587–1599. https://doi.org/10.1007/s11947-021-02659-2

    Article  CAS  Google Scholar 

  • Breitschwerdt, E. B., Linder, K. L., Day, M. J., Maggi, R. G., Chomel, B. B., & Kempf, V. A. J. (2013). Koch’s postulates and the pathogenesis of infectious disease causation associated with Bartonella species. Journal of Comparative Pathology, 148(2–3), 115–125. https://doi.org/10.1016/j.jcpa.2012.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton, K., & Deakin, G. (2021). Viral diseases of Agaricus bisporus, the button mushroom. Encyclopedia of Virology (fourth Edition), 4, 528–533. https://doi.org/10.1016/B978-0-12-809633-8.21515-X

    Article  Google Scholar 

  • Cai, M., Wang, Y., Wang, R., Li, M., Zhang, W., Yu, J., & Hua, R. (2022). Antibacterial and antibiofilm activities of chitosan nanoparticles loaded with Ocimum basilicum L. essential oil. International Journal of Biological Macromolecules, 202, 122–129. https://doi.org/10.1016/j.ijbiomac.2022.01.066

    Article  CAS  PubMed  Google Scholar 

  • Cai, J., Yang, D., & Wang, Q. (2023). Preparation and characterization of chitosan nanoparticles loaded with Athyrium sinense essential oil with antibacterial properties against Pectobacterium carotovorum subsp. carotovorum. Industrial Crops and Products, 195, 116382. https://doi.org/10.1016/j.indcrop.2023.116382

  • Caillol, S., Boutevin, B., & Auvergne, R. (2021). Eugenol, a developing asset in biobased epoxy resins. Polymer, 223, 123663. https://doi.org/10.1016/j.polymer.2021.123663

  • Chang, J., Liu, S., Shi, J., Guo, N., Zhang, H., & Chen, J. (2020). A new Curvularia lunata variety discovered in Huanghuaihai Region in China. Journal of Integrative Agriculture, 19(2), 551–560. https://doi.org/10.1016/S2095-3119(19)62655-9

    Article  CAS  Google Scholar 

  • Chaudhari, A. K., Singh, V. K., Das, S., Singh, B. K., & Dubey, N. K. (2020). Antimicrobial, aflatoxin B1 inhibitory and lipid oxidation suppressing potential of anethole-based chitosan nanoemulsion as novel preservative for protection of stored maize. Food and Bioprocess Technology, 13, 1462–1477. https://doi.org/10.1007/s11947-020-02479-w

    Article  CAS  Google Scholar 

  • Chen, Q., Li, M., Ding, W., Tao, M., Li, M., Qi, Q., Li, Y., Li, J., & Zhang, L. (2020). Effects of high N2/CO2 in package treatment on polyamine-derived 4-aminobutyrate (GABA) biosynthesis in cold-stored white mushrooms (Agaricus bisporus). Postharvest Biology and Technology, 162, 111093. https://doi.org/10.1016/j.postharvbio.2019.111093

  • Chen, C., Chen, W., Dai, F., Yang, F., & Xie, J. (2022). Development of packaging films with gas selective permeability based on poly (butylene adipate-co-terephthalate)/poly (butylene Succinate) and its application in the storage of white mushroom (Agaricus bisporus). Food and Bioprocess Technology, 15(6), 1268–1283. https://doi.org/10.1007/s11947-022-02794-4

    Article  CAS  Google Scholar 

  • Cheng, M., Wang, J., Zhang, R., Kong, R., Lu, W., & Wang, X. (2019). Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. International Journal of Biological Macromolecules, 141, 259–267. https://doi.org/10.1016/j.ijbiomac.2019.08.215

    Article  CAS  PubMed  Google Scholar 

  • Cheng, M., Kong, R., Zhang, R., Wang, X., Wang, J., & Chen, M. (2021). Effect of glyoxal concentration on the properties of corn starch/poly(vinyl alcohol)/carvacrol nanoemulsion active films. Industrial Crops and Products, 171, 113864. https://doi.org/10.1016/j.indcrop.2021.113864

  • Churklam, W., Chaturongakul, S., Ngamwongsatit, B., & Aunpad, R. (2020). The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage. Food Control, 108, 106864. https://doi.org/10.1016/j.foodcont.2019.106864

  • Cui, H., Zhang, C., Li, C., & Lin, L. (2019). Antibacterial mechanism of oregano essential oil. Industrial Crops and Products, 139, 111498. https://doi.org/10.1016/j.indcrop.2019.111498

  • Cui, Y., Cheng, M., Han, M., Zhang, R., & Wang, X. (2021). Characterization and release kinetics study of potato starch nanocomposite films containing mesoporous nano-silica incorporated with Thyme essential oil. International Journal of Biological Macromolecules, 184, 566–573. https://doi.org/10.1016/j.ijbiomac.2021.06.134

    Article  CAS  PubMed  Google Scholar 

  • Cruz, H. J. M., Boffo, E. F., & Geris, R. (2020). Perylenequinones from Curvularia lunata. Biochemical Systematics and Ecology, 92, 104086. https://doi.org/10.1016/j.bse.2020.104086

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2021). Anethum graveolens essential oil encapsulation in chitosan nanomatrix: Investigations on in vitro release behavior, organoleptic attributes, and efficacy as potential delivery vehicles against biodeterioration of rice (Oryza sativa L.). Food and Bioprocess Technology, 14, 831–853. https://doi.org/10.1007/s11947-021-02589-z

    Article  CAS  Google Scholar 

  • Davidenco, V., Pelissero, P. J., Argüello, J. A., & Vega, C. R. C. (2020). Ecophysiological determinants of Oregano productivity: Effects of plant’s canopy architecture on radiation capture and use, biomass partitioning and essential oil yield. Scientia Horticulturae, 272, 109553. https://doi.org/10.1016/j.scienta.2020.109553

  • Elshafie, H. S., Devescovi, G., Venturi, V., Camele, I., & Bufo, S. A. (2019). Study of the regulatory role of N-acyl homoserine lactones mediated quorum sensing in the biological activity of Burkholderia gladioli pv. agaricicola causing soft rot of Agaricus spp. Frontiers in Microbiology, 10, 2695. https://doi.org/10.3389/fmicb.2019.02695

  • Elshafie, H. S. (2022). Plant essential oil with biological activity. Plants, 11(7), 980. https://doi.org/10.3390/plants11070980

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Aroca, T., Doyle, V., Singh, R., Price, T., & Collins, K. (2018). First report of curvularia leaf spot of corn, caused by curvularia lunata, in the United States. Plant Health Progress, 19, 140–142. https://doi.org/10.1094/PHP-02-18-0008-BR

    Article  Google Scholar 

  • Ghasemi, S., Harighi, B., Azizi, A., & Mojarrab, M. (2020). Reduction of brown blotch disease and tyrosinase activity in Agaricus bisporus infected by Pseudomonas tolaasii upon treatment with endofungal bacteria. Physiological and Molecular Plant Pathology, 110, 101474. https://doi.org/10.1016/j.pmpp.2020.101474

  • Goltapeh, E. M., & Danesh, Y. R. (2006). Pathogenic interactions between Trichoderma species and Agaricus bisporus. Journal of Agricultural Technology, 2(1), 29–37. https://doi.org/10.1002/anie.201206658

    Article  CAS  Google Scholar 

  • Graupner, K., Scherlach, K., Bretschneider, T., Lackner, G., Roth, M., Gross, H., & Hertweck, C. (2012). Imaging mass spectrometry and genome mining reveal highly antifungal virulence factor of mushroom soft rot pathogen. Angewandte Chemie International Edition, 51(52), 13173–13177. https://doi.org/10.1002/anie.201206658

    Article  CAS  PubMed  Google Scholar 

  • Gürbüz, M., & İrem Omurtag Korkmaz, B. (2022). The anti-campylobacter activity of eugenol and its potential for poultry meat safety: A review. Food Chemistry, 394, 133519. https://doi.org/10.1016/j.foodchem.2022.133519

  • Hu, W., Li, C., Dai, J., Cui, H., & Lin, L. (2019). Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Industrial Crops and Products, 130, 34–41. https://doi.org/10.1016/j.indcrop.2018.12.078

    Article  CAS  Google Scholar 

  • Hu, Z., Yuan, K., Zhou, Q., Lu, C., Du, L., & Liu, F. (2021). Mechanism of antifungal activity of Perilla frutescens essential oil against Aspergillus flavus by transcriptomic analysis. Food Control, 123, 107703. https://doi.org/10.1016/j.foodcont.2020.107703

  • Janatova, A., Bernardos, A., Smid, J., Frankova, A., Lhotka, M., Kourimská, L., Pulkrabek, J., & Kloucek, P. (2015). Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Industrial Crops and Products, 67, 216–220. https://doi.org/10.1016/j.indcrop.2015.01.019

    Article  CAS  Google Scholar 

  • Jugreet, B. S., & Mahomoodally, M. F. (2020). Essential oils from 9 exotic and endemic medicinal plants from Mauritius shows in vitro antibacterial and antibiotic potentiating activities. South African Journal of Botany, 132(1), 355–362. https://doi.org/10.1016/j.sajb.2020.05.001

    Article  CAS  Google Scholar 

  • Kaboudi, Z., Peighambardoust, S. H., Nourbakhsh, H., & Soltanzadeh, M. (2023). Nanoencapsulation of Chavir (Ferulago angulata) essential oil in chitosan carrier: Investigating physicochemical, morphological, thermal, antimicrobial and release profile of obtained nanoparticles. International Journal of Biological Macromolecules, 237, 123963. https://doi.org/10.1016/j.ijbiomac.2023.12396

  • Kachur, K., & Suntres, Z. (2020). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition, 60(18), 3042–3053. https://doi.org/10.1080/10408398.2019.1675585

    Article  CAS  PubMed  Google Scholar 

  • Karagozlu, M., Ocak, B., & Özdestan-Ocak, Ö. (2021). Effect of tannic acid concentration on the physicochemical, thermal, and antioxidant properties of gelatin/gum Arabic–walled microcapsules containing Origanum onites L. essential oil. Food and Bioprocess Technology, 14, 1231–1243. https://doi.org/10.1007/s11947-021-02633-y

    Article  CAS  Google Scholar 

  • Kertesz, M. A., & Thai, M. (2018). Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Applied Microbiology and Biotechnology, 102, 1639–1650. https://doi.org/10.1007/s00253-018-8777-z

    Article  CAS  Google Scholar 

  • Kujur, A., Kumar, A., Singh, P. P., & Prakash, B. (2021a). Fabrication, characterization, and antifungal assessment of jasmine essential oil-loaded chitosan nanomatrix against Aspergillus flavus in food system. Food and Bioprocess Technology, 14, 554–571. https://doi.org/10.1007/s11947-021-02592-4

    Article  CAS  Google Scholar 

  • Kujur, A., Kumar, A., & Prakash, B. (2021b). Elucidation of antifungal and aflatoxin B1 inhibitory mode of action of Eugenia caryophyllata L. essential oil loaded chitosan nanomatrix against Aspergillus flavus. Pesticide Biochemistry and Physiology, 172(1), 104755. https://doi.org/10.1016/j.pestbp.2020.104755

  • Kusai, N. A., Azmi, M. Z., & M., Zulkifly, S., Yusof, M. T., & Mohd Zainudin, N. A. I. (2016). Morphological and molecular characterization of Curvularia and related species associated with leaf spot disease of rice in Peninsular Malaysia. Rendiconti Lincei, 27, 205–214. https://doi.org/10.1007/s12210-015-0458-6

    Article  Google Scholar 

  • Lai, H., Liu, Y., Huang, G., Chen, Y., Song, Y., Ma, Y., & Yue, P. (2021). Fabrication and antibacterial evaluation of peppermint oil-loaded composite microcapsules by chitosan-decorated silica nanoparticles stabilized Pickering emulsion templating. International Journal of Biological Macromolecules, 183, 2314–2325. https://doi.org/10.1016/j.ijbiomac.2021.05.198

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Zheng, F., Mohammadi, R., Jazebizadeh, M. H., Semiromi, D. (2022). Performance evaluation of polyamide reverse osmosis membranes incorporated silica nanoparticles for concentrating peach juice: An invitro evaluation. Food Bioscience, 48, 101814. https://doi.org/10.1016/j.fbio.2022.101814

  • Lin, X., & Sun, D. (2019). Research advances in browning of button mushroom (Agaricus bisporus): Affecting factors and controlling methods. Trends in Food Science and Technology, 90, 63–75. https://doi.org/10.1016/j.tifs.2019.05.007

    Article  CAS  Google Scholar 

  • Liu, X., Sun, Y., Shen, J., Sung, H., Xu, J., & Chai, Y. (2022). Strontium doped mesoporous silica nanoparticles accelerate osteogenesis and angiogenesis in distraction osteogenesis by activation of Wnt pathway. Nanomedicine: Nanotechnology, Biology and Medicine, 41, 102496. https://doi.org/10.1016/j.nano.2021.102496

  • Lu, W., Chen, M., Cheng, M., Yan, X., Zhang, R., Kong, R., Wang, J., & Wang, X. (2021). Development of antioxidant and antimicrobial bioactive films based on Oregano essential oil/mesoporous nano-silica/sodium alginate. Food Packaging and Shelf Life, 29, 100691. https://doi.org/10.1016/j.fpsl.2021.100691

  • Luo, Y., Su, J., Guo, S., Cao, Z., Liu, Z., Wu, S., Mao, Y., Zheng, Y., Shen, W., Li, T., & Ge, X. (2022). Preparation of humidity-responsive cinnamon essential oil nanomicelles and its effect on postharvest quality of strawberries. Food and Bioprocess Technology, 15(12), 2723–2736. https://doi.org/10.1007/s11947-022-02906-0

    Article  CAS  Google Scholar 

  • Lv, H., Wei, H., Qi, Y., Zhang, Y., Cao, S., Yang, F., Li, M., & Shen, H. (2013). Pathogen identification from soft rot disease of onion bulbs in Jiayuguan. Gansu province. Acta Prataculturae Sinica, 22, 153–159. https://doi.org/10.11686/cyxb20130419

  • Mang, S. M., Marcone, C., Maxim, A., & Camele, I. (2022). Investigations on fungi isolated from apple trees with die-back symptoms from Basilicata Region (Southern Italy). Plants, 11(10), 1374. https://doi.org/10.3390/plants11101374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marand, S. A., Alizadeh Khaledabad, M., & Almasi, H. (2021). Optimization and characterization of Plantago major seed gum/nanoclay/Foeniculum vulgare essential oil active nanocomposite films and their application in preservation of local butter. Food and Bioprocess Technology, 14, 2302–2322. https://doi.org/10.1007/s11947-021-02724-w

    Article  CAS  Google Scholar 

  • Mehrparvar, M., Goltapeh, E. M., Safaie, N., Ashkani, S., & Hedesh, R. M. (2016). Antifungal activity of essential oils against mycelial growth of Lecanicillium fungicola var. fungicola and Agaricus bisporus. Industrial Crops and Products, 84, 391–398. https://doi.org/10.1016/j.indcrop.2016.02.012

    Article  CAS  Google Scholar 

  • Memar, M. Y., Raei, P., Alizadeh, N., Aghdam, M. A., & Kafil, H. S. (2017). Carvacrol and thymol: Strong antimicrobial agents against resistant isolates. Reviews and Research in Medical Microbiology, 28(2), 63–68. https://doi.org/10.1097/MRM.0000000000000100

    Article  Google Scholar 

  • Mondéjar-López, M., Rubio-Moraga, A., López-Jimenez, A. J., García Martínez, J. C., Ahrazem, O., Gómez-Gómez, L., & Niza, E. (2022). Chitosan nanoparticles loaded with garlic essential oil: A new alternative to tebuconazole as seed dressing agent. Carbohydrate Polymers, 277, 118815. https://doi.org/10.1016/j.carbpol.2021.118815

  • Munhuweyi, K., Caleb, O. J., van Reenen, A. J., & Opara, U. L. (2018). Physical and antifungal properties of β-cyclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils. LWT-Food Science and Technology, 87, 413–422. https://doi.org/10.1016/j.lwt.2017.09.012

    Article  CAS  Google Scholar 

  • Munsch, P., & Alatossava, T. (2002). Several pseudomonads, associated with the cultivated mushrooms Agaricus bisporus or Pleurotus sp. are hemolytic. Microbiological Research, 157(4), 311–315. https://doi.org/10.1078/0944-5013-00159

  • Park, D. H., Park, J. J., Olawuyi, I. F., & Lee, W. Y. (2020). Quality of White mushroom (Agaricus bisporus) under argon- and nitrogen based controlled atmosphere storage. Scientia Horticulturae, 265, 109229. https://doi.org/10.1016/j.scienta.2020.109229

  • Plati, F., & Paraskevopoulou, A. (2022). Micro-and nano-encapsulation as tools for essential oils advantages’ exploitation in food applications: The case of oregano essential oil. Food and Bioprocess Technology, 15(5), 949–977. https://doi.org/10.1007/s11947-021-02746-4

    Article  CAS  Google Scholar 

  • Qiu, L., Zhang, M., Adhikari, B., & Chang, L. (2023). Microencapsulation of rose essential oil using perilla protein isolate-sodium alginate complex coacervates and application of microcapsules to preserve ground beef. Food and Bioprocess Technology, 16(2), 368–381. https://doi.org/10.1007/s11947-022-02944-8

    Article  CAS  Google Scholar 

  • Radi, M., Ahmadi, H., & Amiri, S. (2022). Effect of cinnamon essential oil-loaded nanostructured lipid carriers (NLC) against Penicillium citrinum and Penicillium expansum involved in tangerine decay. Food and Bioprocess Technology, 15(2), 306–318. https://doi.org/10.1007/s11947-021-02737-5

    Article  CAS  Google Scholar 

  • Rathod, N. B., Kulawik, P., Ozogul, F., Regenstein, J. M., & Ozogul, Y. (2021). Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends in Food Science and Technology, 116, 733–748. https://doi.org/10.1016/j.tifs.2021.08.023

    Article  CAS  Google Scholar 

  • Sattary, M., Amini, J., & Hallaj, R. (2020). Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanoparticles against wheat’s take-all disease. Pesticide Biochemistry and Physiology, 170, 104696. https://doi.org/10.1016/j.pestbp.2020.104696

  • Shankar, S., Khodaei, D., & Lacroix, M. (2021). Effect of chitosan/essential oils/silver nanoparticles composite films packaging and gamma irradiation on shelf life of strawberries. Food Hydrocolloids, 117, 106750. https://doi.org/10.1016/j.foodhyd.2021.106750

  • Shen, Y., Zhou, J., Yang, C., Chen, Y., Yang, Y., Zhou, C., Wang, L., Xia, G., Yu, X., & Yang, H. (2022). Preparation and characterization of oregano essential oil-loaded Dioscorea zingiberensis starch film with antioxidant and antibacterial activity and its application in chicken preservation. International Journal of Biological Macromolecules, 212, 20–30. https://doi.org/10.1016/j.ijbiomac.2022.05.114

    Article  CAS  PubMed  Google Scholar 

  • Singh, B. K., Tiwari, S., Maurya, A., Das, S., Singh, V. K., & Dubey, N. K. (2023). Chitosan-based nanoencapsulation of Ocimum americanum essential oil as safe green preservative against fungi infesting stored millets, aflatoxin B1 contamination, and lipid peroxidation. Food and Bioprocess Technology, 1–22. https://doi.org/10.1007/s11947-023-03008-1

  • Smith, F. E. V. (1924). Three diseases of cultivated mushrooms. Transactions of the British Mycological Society, 10(1–2), 81–97. https://doi.org/10.1016/S0007-1536(24)80007-4

    Article  Google Scholar 

  • Srivastava, A. K., Kumar, A., Saroj, A., Singh, S., Lal, R. K., & Samad, A. (2015). New report of a sweet basil leaf blight caused by Cochliobolus lunatus in India. Plant Disease, 99, 419–419. https://doi.org/10.1094/PDIS-08-14-0841-PDN

    Article  CAS  PubMed  Google Scholar 

  • Sumangala, K., & Patil, M. B. (2010). Cultural and physiological studies on Curvularia lunata, a casual agent of grain discolouration in rice. International Journal of Plant Protection, 3(2), 238–241.

    Google Scholar 

  • Tavares, L., & Noreña, C. P. Z. (2020). Encapsulation of ginger essential oil using complex coacervation method: Coacervate formation, rheological property, and physicochemical characterization. Food and Bioprocess Technology, 13, 1405–1420. https://doi.org/10.1007/s11947-020-02480-3

    Article  CAS  Google Scholar 

  • Tiwari, S., Upadhyay, N., Singh, B. K., Singh, V. K., & Dubey, N. K. (2022). Facile fabrication of nanoformulated cinnamomum glaucescens essential oil as a novel green strategy to boost potency against food borne fungi, aflatoxin synthesis, and lipid oxidation. Food and Bioprocess Technology, 15, 319–337. https://doi.org/10.1007/s11947-021-02739-3

    Article  CAS  Google Scholar 

  • Tomiotto-Pellissier, F., Bortoleti, B. T. D. S., Concato, V. M., Ganaza, A. F. M., Quasne, A. C., Ricci, B., Dolce e Carvalho, P. V., Della Colleta, G. H., Lazarin-Bidóia, D., Silva, T. F., Gonçalves, M. D., Kobayashi, R. K. T., Nakazato, G., Costa, I. N., Conchon-Costa, I., Miranda-Sapla, M. M., & Pavanelli, W. R. (2022). The cytotoxic and anti-leishmanial activity of Oregano (Origanum vulgare) essential oil: An in vitro, in vivo, and in silico study. Industrial Crops and Products, 187, 115367. https://doi.org/10.1016/j.indcrop.2022.115367

  • Vahidimehr, A., Khiabani, M. S., Mokarram, R. R., Kafil, H. S., Ghiasifar, S., & Vahidimehr, A. (2020). Saccharomyces cerevisiae and Lactobacillus rhamnosus cell walls immobilized on nano-silica entrapped in alginate as aflatoxin M1 binders. International Journal of Biological Macromolecules, 164, 1080–1086. https://doi.org/10.1016/j.ijbiomac.2020.07.089

    Article  CAS  PubMed  Google Scholar 

  • Villanova, V., Galasso, C., Fiorini, F., Lima, S., Brönstrup, M., Sansone, C., Brunet, C., Brucato, A., & Scargiali, F. (2021). Biological and chemical characterization of new isolated halophilic microorganisms from saltern ponds of Trapani, Sicily. Algal Research, 54, 102192. https://doi.org/10.1016/j.algal.2021.102192

  • Wang, F., You, H., Guo, Y., Wei, Y., Xia, P., Yang, Z., Ren, M., Guo, H., Han, R., & Yang, D. (2020). Essential oils from three kinds of fingered citrons and their antibacterial activities. Industrial Crops and Products, 147, 112172. https://doi.org/10.1016/j.indcrop.2020.112172

  • Wardana, A. A., Kingwascharapong, P., Wigati, L. P., Tanaka, F., & Tanaka, F. (2022). The antifungal effect against Penicillium italicum and characterization of fruit coating from chitosan/ZnO nanoparticle/Indonesian sandalwood essential oil composites. Food Packaging and Shelf Life, 32, 100849. https://doi.org/10.1016/j.fpsl.2022.100849

  • White, K. E., Reeves, J. B., & Coale, F. J. (2016). Cell wall compositional changes during incubation of plant roots measured by mid-infrared diffuse reflectance spectroscopy and fiber analysis. Geoderma, 264, 205–213. https://doi.org/10.1016/j.geoderma.2015.10.018

    Article  CAS  Google Scholar 

  • Wu, M., Zhou, Z., Yang, J., Zhang, M., Cai, F., & Lu, P. (2021). ZnO nanoparticles stabilized oregano essential oil Pickering emulsion for functional cellulose nanofibrils packaging films with antimicrobial and antioxidant activity. International Journal of Biological Macromolecules, 190, 433–440. https://doi.org/10.1016/j.ijbiomac.2021.08.210

    Article  CAS  Google Scholar 

  • Xu, L., Xu, X., Xu, Y., Huang, M., & Li, Y. (2023). Fabrication and immediate release characterization of UV responded oregano essential oil loaded microcapsules by chitosan-decorated titanium dioxide. Food Chemistry, 400, 133965. https://doi.org/10.1016/j.foodchem.2022.133965

  • Yan, X., Cheng, M., Zhao, P., Wang, Y., Chen, M., Wang, X., & Wang, J. (2022). Fabrication and characterization of oxidized esterified tapioca starch films encapsulating oregano essential oil with mesoporous nanosilica. Industrial Crops and Products, 184, 115033. https://doi.org/10.1016/j.indcrop.2022.115033

  • Yang, R., Miao, J., Shen, Y., Cai, N., Wan, C., Zou, L., Chen, C., & Chen, J. (2021). Antifungal effect of cinnamaldehyde, eugenol and carvacrol nanoemulsion against Penicillium digitatum and application in postharvest preservation of citrus fruit. LWT-Food Science and Technology, 141, 110924. https://doi.org/10.1016/j.lwt.2021.110924

  • Yang, S., Zhao, L., Ding, S., Tang, S., Chen, C., Zhang, H., Xu, C., & Xie, H. (2022). Study on burrowing nematode, Radopholus similis, pathogenicity test system in tobacco as host. Journal of Integrative Agriculture, 21(9), 2652–2664. https://doi.org/10.1016/j.jia.2022.07.021

    Article  Google Scholar 

  • Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282–289. https://doi.org/10.1016/j.foodcont.2015.05.032

    Article  CAS  Google Scholar 

  • Zhang, R., Cheng, M., Wang, X., & Wang, J. (2019). Bioactive mesoporous nano-silica/potato starch films against molds commonly found in post-harvest white mushrooms. Food Hydrocolloids, 95, 517–525. https://doi.org/10.1016/j.foodhyd.2019.04.060

    Article  CAS  Google Scholar 

  • Zhu, H., Du, M., Fox, L., & Zhu, M. J. (2016). Bactericidal effects of Cinnamon cassia oil against bovine mastitis bacterial pathogens. Food Control, 66, 291–299. https://doi.org/10.1016/j.foodcont.2016.02.013

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2021MC015) and the National Natural Science Foundation of China (31972144).

Author information

Authors and Affiliations

Authors

Contributions

Meng Cheng: validation, methodology, visualization, data curation, writing — original draft. Xiaoran Yan: conceptualization, data curation. Xiangyou Wang: resources, funding acquisition. Yirong Wang: conceptualization. Peixin Zhao: software. Juan Wang: investigation, supervision, funding acquisition.

Corresponding author

Correspondence to Juan Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 119 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Yan, X., Wang, X. et al. Fabrication, Characterization, and Antifungal Assessment of Oregano Essential Oil-Loaded Nano-silica Against Curvularia lunata in Brown Rot of Agaricus bisporus Storage. Food Bioprocess Technol 16, 2921–2934 (2023). https://doi.org/10.1007/s11947-023-03125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03125-x

Keywords

Navigation