Skip to main content
Log in

Tragia plukenetii-Assisted Omega-Decenol as Potential Anticancer Agent: its Isolation, Characterization, and Validation

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The second most common and lethal disease is lung cancer. To combat the negative effects of today’s synthetic medications, natural phytomedicines are required. Tragia plukenetii is a medicinal plant native to India that belongs to the Euphorbiaceae family. The purpose of this research is to isolate bioactive compounds from T. plukenetii leaves and then test them for anticancer property. A single compound (CH: ME-20:80) was separated using TLC, and an RF value of 0.55 was determined. Spectral analyses utilizing UV-Visible Spectrophotometer and FT-IR were used to examine the absorbance and functional groups. 13C-NMR and 1H-NMR studies revealed the tentative name of the purified phytochemical as omega-decenol (OD). Further antioxidant and anticancer properties of OD were tested for in vitro. In comparison to conventional L-ascorbic acid, the DPPH radical scavenging assay experiment yielded an IC50 of 147.48 g/ml. With an IC50 value of 24 µg/ml (Omega-decenol) and 32 µg/ml (doxorubicin), the MTT assay demonstrated the cytotoxic capability against the A549 lung cancer cell line. FACS revealed the cell cycle arrest of A549 at S phase compared to control with the high-dose IC50 (250 µg/ml) of omega-decenol. Twelve major compounds were detected in the active fraction using GC-MS analysis, where n-hexadecanoic acid was found as a major. Omega-decenol showed good binding affinity against EGFR, amongst other receptors in the in silico docking study. This research reveals the potent anticancer activity of the isolated compound omega-decenol from T. plukenetii leaves and provides a key path to understanding the molecular interaction in anticancer aspects against adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baumeister, S. E., Baurecht, H., Nolde, M., Alayash, Z., Gläser, S., Johansson, M., … International Lung Cancer Consortium. (2021). Cannabis use, pulmonary function, and lung cancer susceptibility: A Mendelian randomization study. Journal of Thoracic Oncology, 16(7), 1127-1135.

  2. Duma, N., Santana-Davila, R., & Molina, J. R. (2019, August). Non–small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clinic Proceedings, 94(8), 1623–1640.

  3. Khan, A. (2021). Liposomal thymoquinone, a novel drug formulation: Hope for lung cancer treatment. International Journal of Health Sciences, 15(3), 1–2.

  4. Kerrigan, K., Wang, X., Haaland, B., Adamson, B., Patel, S., Puri, S., & Akerley, W. (2021). Real world characterization of advanced non–small cell lung cancer in never smokers by actionable mutation status. Clinical Lung Cancer.

  5. Bhat, G. R., Sethi, I., Bhat, A., Verma, S., Bakshi, D., Sharma, B., & Kumar, R. (2021). Genetic evaluation of the variants using MassARRAY in non-small cell lung cancer among North Indians. Scientific reports, 11(1), 1–10.

    Article  Google Scholar 

  6. Huang, C. Y., Ju, D. T., Chang, C. F., Reddy, P. M., & Velmurugan, B. K. (2017). A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine, 7(4), 23.

  7. Anywar, G., Kakudidi, E., Byamukama, R., Mukonzo, J., Schubert, A., & Oryem-Origa, H. (2019). Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda. European Journal of Integrative Medicine, 35, 101011.

  8. Andrade, M. A., & Martins, L. M. (2019). Novel chemotherapeutic agents-the contribution of scorpionates. Current Medicinal Chemistry, 26(41), 7452–7475.

    Article  CAS  PubMed  Google Scholar 

  9. Kabir, A. (2021). Ancient thought and doses of medicinal plants: a review. Manipal Alumni Science and Health Journal, 6(2), 3.

    Google Scholar 

  10. Bonam, S. R., Manoharan, S. K., Pandy, V., Raya, A. R., Nadendla, R. R., Jagadeesan, M., & Babu, A. N. (2019). Phytochemical, in vitro antioxidant and in vivo safety evaluation of leaf extracts of Tragia plukenetii. Pharmacognosy Journal, 11 (2), 338–345.

  11. Karpakavalli, M., Sangilimuthu, A. Y., Komala, M., Mohan, S., & Sivakumar, T. (2021). Anti-oxidant and Anti-microbial activities of 2’’, 4’’-thiazolidindione derivatives of 7-flavonols. Research Journal of Pharmacy and Technology, 14(8), 4067–4076.

    Google Scholar 

  12. Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3), 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Priya, M., Sangilimuthu, A., Karpagavalli, M., & RamkumarM.,Nirmal, A. (2017). Antioxidant potential and simultaneous estimation of quercetin, rutin, and gallic acid in curcuma species. Asian Journal of Pharmaceutical and ClinicalResearch, 10(12), 387–391.

    Article  Google Scholar 

  14. Afsar, T., Razak, S., Shabbir, M., & Khan, M. R. (2018). Antioxidant activity of polyphenolic compounds isolated from ethyl-acetate fraction of Acacia hydaspica R. Parker. Chemistry Central Journal, 12(1), 1–13.

    Article  Google Scholar 

  15. Romero-Benavides, J. C., Ruano, A. L., Silva-Rivas, R., Castillo-Veintimilla, P., Vivanco-Jaramillo, S., & Bailon-Moscoso, N. (2017). Medicinal used as anthelmithes, ethnomedical, pharmacological and phytochemical studies. European Journal of Medicinal Chemistry, 129, 209–217.

  16. Gholamian-Dehkordi, N., Luther, T., Asadi-Samani, M., & Mahmoudian-Sani, M. R. (2017). An overview on natural antioxidants for oxidative stress reduction in cancers; A systematic review. Immunopathologia Persa, 3(2), e12.

  17. Khalil, S. R., Bohi, E., Khater, K. M., Abd El-fattah, S., Mahmoud, A. H., & Farag, M. R. (2020). Moringa oleifera leaves ethanolic extract influences DNA damage signaling pathways to protect liver tissue from cobalt-triggered apoptosis in rats. Ecotoxicology and Environmental Safety, 200, 110716.

    Article  CAS  PubMed  Google Scholar 

  18. Bratkov, V. M., Shkondon, A. M., & Krasteva, I. N. (2016). Flavanoids from the genus Astragalus. Phytochemistry and Biological activity. Pharmacognosy Reviews, 10(9), 11.

  19. Alaklabi, A., Arif, I. A., Ahamed, A., Kumar, R. S., & Idhayadhulla, A. (2018). Evaluation of antioxidant and anticancer activities of chemical constituents of the Saururus chinensis root extracts. Saudi Journal of Biological Sciences, 25(7), 1387–1392.

    Article  CAS  PubMed  Google Scholar 

  20. Muniyandi, K., George, E., Sathyanarayanan, S., George, B. P., Abrahamse, H., Thamburaj, S., & Thangaraj, P. (2019). Phenolics, tannins, flavonoids and anthocyanins contents influenced antioxidant and anticancer activities of Rubus fruits from Western Ghats, India. Food Science and Human Wellness, 8(1), 73–81.

    Article  Google Scholar 

  21. Shallan, M. A., Ali, M. A., Meshrf, W. A., & Marrez, D. A. (2020). In vitro antimicrobial, antioxidant and anticancer activities of globe artichoke (Cynara cardunculus var. scolymus L.) bracts and receptacles ethanolic extract. Biocatalysis and Agricultural Biotechnology, 29, 101774.

    Article  Google Scholar 

  22. Fan, X. Z., Chen, Y. F., Zhang, S. B., He, D. H., Wei, S. F., Wang, Q., … Liu, Y.Q. (2021). Centipeda minima extract sensitizes lung cancer cells to DNA-crosslinking agents via targeting Fanconi anemia pathway. Phytomedicine, 91, 153689.

  23. Narasimhan, S. (2021). Pharmacological potential of the stinging plant Tragia species: A review. Pharmacognosy Journal, 13(1), 278–284.

  24. Kalaivanan, M., Jesudoss, L., & Saravana Gandhi, A. (2016). Pharmacognostical studies on Tragia Plukenetti R Smith. International Journal of Pharmacognosy, 3(1), 10–64.

    Google Scholar 

  25. Alagar Yadav, S., Ramalingam, S., Jabamalai Raj, A., & Subban, R. (2015). Antihistamine from Tragia involucrata L. leaves. Journal of Complementary and Integrative Medicine, 12(3), 217–226.

  26. Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Latha, L. Y. (2011). Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African journal of traditional, complementary and alternative medicines. African Journal of Traditional, Complementary and Alternative Medicines, 8(1), 1–10.

  27. Patle, T. K., Shrivas, K., Kurrey, R., Upadhyay, S., Jangde, R., & Chauhan, R. (2020). Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 242, 118717.

    Article  CAS  PubMed  Google Scholar 

  28. Chethankumara, G. P., Nagaraj, K., Krishna, V., & Krishnaswamy, G. (2021). Isolation, characterization and in vitro cytotoxicity studies of bioactive compounds from Alseodaphne semecarpifolia Nees. Heliyon, 7, e07325.

  29. Hasballah, K., Sarong, M., Rusly, R., Fitria, H., Maida, D. R., & Iqhrammullah, M. (2021). Antiproliferative activity of triterpenoid and steroid compounds from ethyl acetate extract of Calotropis gigantea root bark against P388 murine leukemia cell lines. Scientia Pharmaceutica, 89(2), 21.

    Article  CAS  Google Scholar 

  30. Yadav, S. A., Ramalingam, S., Jebamalairaj, A., Subban, R., & Sundaram, K. M. (2016). Biochemical fingerprint and pharmacological applications of Barleria noctiflora Lf leaves. Journal of Complementary and Integrative Medicine, 13(4), 365–376.

    Google Scholar 

  31. Pandey, D., Gupta, A. K., & UV-Vis, F.T.-I.R. (2019). Bioactive compound in Urginea indica (Kunth.) from Bastar and its spectral analysis by HPLC, NMR and ESI-MS. SN Comprehensive Clinical Medicine, 1(4), 241–254.

    Article  CAS  Google Scholar 

  32. Lalitha, L. J., Sales, T. J., Clarance, P. P., Agastian, P., Kim, Y. O., Mahmoud,A. H., … Kim, H. J. (2020). In-vitro phytopharmacological and anticancer activity of Loranthus longiflorus Desv. Var. Falcatuskurz against the human lung cancer cells. Journal of King Saud University-Science, 32(1), 1246–1253.

  33. Mosmann, T. J. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.

  34. Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., … Boyd,M. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. JNCI: Journal of the National Cancer Institute, 83(11), 757–766.

  35. Kuete, V., Dongo Mafodong, F. L., Celik, I., & Tane, P. (2017). In-vitro cytotoxicity of compounds isolated from Desbordesia Glaucescens against human Carcinoma cell lines. South African Journal of Botany, 111, 37–43.

  36. Rubab, S., Rizwani, G. H., Bahadur, S., Shah, M., Alsamadany, H., Alzahrani, Y., … Shah, A. A. (2020). Determination of the GC–MS analysis of seed oil and assessment of pharmacokinetics of leaf extract of Camellia sinensis L. Journal of King Saud University-Science, 32(7), 3138–3144. https://doi.org/10.1016/j.jksus.2020.08.026

  37. Yadav, S. A., Ramalingam, S., Raj, A. J., & Subban, R. (2015). Antihistamine from Tragia involucrata L. leaves. Journal of Complementary and Integrative Medicine, 12(3), 217–226.

    Google Scholar 

  38. Singh, R., Bhardwaj, V. K., Das, P., & Purohit, R. (2021). A computational approach for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2. Computers in biology and medicine, 135, 104555.

  39. Si-Yuan, J. I. N. G., Zi-Dan, W. U., Zhang, T. H., Zhang, J., & Zheng-Yi, W. E. I. (2020). In vitro antitumor effect of cucurbitacin E on human lung cancer cell line and its molecular mechanism. Chinese Journal of Natural Medicines, 18(7), 483–490.

    Article  Google Scholar 

  40. Verkhivker, G. M. (2017). Leveraging structural diversity and allosteric regulatory mechanisms of protein kinases in the discovery of small molecule inhibitors. Current Medicinal Chemistry, 24(42), 4838–4872.

    CAS  PubMed  Google Scholar 

  41. Anand, K., Rajamanikandan, R., Sharma, A. S., Ilanchelian, M., Khan, F. I., Tiloke, C., … Chuturgoon, A. A. (2020). Human serum albumin interaction, in silico and anticancer evaluation of Pine-Gold nanoparticles. Process Biochemistry, 89, 98–109.

  42. Singh, J., Luqman, S., & Meena, A. (2020). Emerging role of phytochemicals in targeting predictive, prognostic, and diagnostic biomarkers of lung cancer. Food and Chemical Toxicology, 144, 111592.

    Article  CAS  PubMed  Google Scholar 

  43. Nasr, F. A., Alqahtani, A. S., Alotaibi, A. A., Noman, O. M., Al-zharani, M., Cordero,M. A. W., … Qamar, W. (2021). Assessment of anti-proliferative and apoptotic activities of Centaurothamnus maximus and GC-MS analysis of bioactive fraction. Fresenius Environmental Bulletin, 30(8), 10297–10305.

  44. Tong, T., Wang, Y., Kang, S. G., & Huang, K. (2021). Ectopic odorant receptor responding to flavor compounds: Versatile roles in health and disease. Pharmaceutics, 13(8), 1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghavam, M., Afzali, A., & Manca, M. L. (2021). Chemotype of damask rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness. Scientific Reports, 11(1), 1–7.

    Article  Google Scholar 

  46. Leo Stanley, A., Charles, A., & Ramachandran, A. (2012). Phytochemical spectral study of the medicinal plant: Tragia plukenetii Journal of Pharmacy Research, 5, 1701–1703.

    Google Scholar 

  47. Kalaivanan, M., & Jesudass, L. (2012). Pharmacological studies on ethanol extract of Tragia plukenetii R. Smith. IOSR Journal of Pharmacy, 2(6), 01–07.

    Google Scholar 

  48. Meenakshi, S. M., Rajana, N., & Brindha, P. (2005). Evaluation of wound healing activity of Tragia plukenetii: A preclinical study in albino rats. Indian Drugs, 46, 69–72.

    Google Scholar 

  49. Venkatesh, S., Rajini, T., Afrooz, H., Balaraju, P., Madhava Reddy, B., & Ramesh, M. (2014). Antihyperglycemic effects of Tragia plukenetii ethanolic extract. International Journal of Pharmaceutical Sciences and NanoTechnology, 7(2), 2436–2440.

    Article  Google Scholar 

  50. Reddy, B. S., & Rao, M. R., Vijeepallam, R., Pandy, V. (2017). Phytochemical, pharmacological and biological profile of Tragia species. African Journal of Traditional Complementary and Alternative Medicine, 14(3), 105–112.

  51. Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadasivan, C., & Haridas, M. (2012). Anti-inflammatory property of n‐hexadecanoic acid: Structural evidence and kinetic assessment. Chemical Biology & Drug Design, 80(3), 434–439.

    Article  CAS  Google Scholar 

  52. Syeda, A. M., & Riazunnisa, K. (2020). Data on GC-MS analysis, in vitro anti-oxidant and anti-microbial activity of the Catharanthus roseus and Moringa oleifera leaf extracts. Data in Brief, 29, 105258.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors pleased to acknowledge DST-FIST (File No. SR/FST/LS-1/2018/187); DST-SHRI (DST/TDT/SHRI/2022/70) and Karpagam Academy of Higher Education for supporting to carry this work. The Author Sowmya Priya Manoharan has received the research support from Central Instrumentation Facility, Karpagam Academy of Higher Education, Coimbatore.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Sowmya priya Manoharan, Balamurugan Pandian, Suvathika Gnanaselvan. The first draft of the manuscript was written by Sowmya Priya Manoharan and all the authors commented on previous version of the manuscript. Dr. Sangilimuthu Alagar Yadav read and approved the final manuscript.

Corresponding author

Correspondence to Sangilimuthu Alagar Yadav.

Ethics declarations

Ethical Approval

This is an observational study. The research ethics committee has confirmed that no ethical approval is required.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoharan, S.P., Yadav, S.A., Pandiyan, B. et al. Tragia plukenetii-Assisted Omega-Decenol as Potential Anticancer Agent: its Isolation, Characterization, and Validation. Appl Biochem Biotechnol 195, 1699–1722 (2023). https://doi.org/10.1007/s12010-022-04221-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04221-y

Keywords

Navigation