Skip to main content

Advertisement

Log in

Bioactive Analysis of Antibacterial Efficacy and Antioxidant Potential of Aloe barbadensis Miller Leaf Extracts and Exploration of Secondary Metabolites Using GC–MS Profiling

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aloe barbadensis Miller (ABM) is a traditional medicinal plant all over the world. Numerous studies were conducted to exhibit its medicinal properties and most of them were concentrated on its metabolites against human pathogens. The current research work evaluates the attributes of different polar-based extracts (ethanol, methanol, ethyl acetate, acetone, hexane, and petroleum ether) of dried Aloe barbadensis leaf (ABL) to investigate its phytochemical constituents, antioxidant potential (DPPH, ABTS), phenolic, tannin, flavonoid contents, identification of bioactive compounds, and functional groups by gas chromatography–mass spectrometry (GC–MS) and fourier transform infrared spectroscopy (FT-IR) respectively, and comparing antibacterial efficacy against human pathogens, aquatic bacterial pathogens, and zoonotic bacteria associated with fish and human. The present results showed that the methanolic extract of ABL showed higher antioxidant activity (DPPH-59.73 ± 2.01%; ABTS-74.1 ± 1.29%), total phenolic (10.660 ± 1.242 mg GAE/g), tannin (7.158 ± 0.668 mg TAE/g), and flavonoid content (49.545 ± 1.928 µg QE/g) than that of other solvent extracts. Non-polar solvents hexane and petroleum ether exhibited lesser activity among the extracts. In the case of antibacterial activity, higher inhibition zone was recorded in methanol extract of ABL (25.00 ± 0.70 mm) against Aeromonas salmonicida. Variations in antibacterial activity were observed depending on solvents and extracts. In the current study, polar solvents revealed higher antibacterial activity when compared to the non-polar and the mid-polar solvents. Diverse crucial bioactive compounds were detected in GC–MS analysis. The vital compounds were hexadecanoic acid (30.69%) and 2-pentanone, 4-hydroxy-4-methyl (23.77%) which are responsible for higher antioxidant and antibacterial activity. Similar functional groups were identified in all the solvent extracts of ABL with slight variations in the FT-IR analysis. Polar-based solvent extraction influenced the elution of phytocompounds more than that of the other solvents used in this study. The obtained results suggested that the ABM could be an excellent source for antioxidant and antibacterial activities and can also serve as a potential source of effective bioactive compounds to combat human as well as aquatic pathogens.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article for publication.

References

  1. Xiao, J., Chen, S., Chen, Y., & Su, J. (2022). The potential health benefits of aloin from genus Aloe. Phytotherapy Research, 36(2), 873–890. https://doi.org/10.1002/ptr.7371

    Article  PubMed  Google Scholar 

  2. Bendjedid, S., Lekmine, S., Tadjine, A., Djelloul, R., & Bensouici, C. (2021). Analysis of phytochemical constituents, antibacterial, antioxidant, photoprotective activities and cytotoxic effect of leaves extracts and fractions of Aloe vera. Biocatalysis and Agricultural Biotechnology, 33, 101991. https://doi.org/10.1016/j.bcab.2021.101991

    Article  CAS  Google Scholar 

  3. Gupta, S., Sharma, S. K., & Kumar, A. (2019). Biosorption of Ni (II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder. Water Science and Engineering, 12(1), 27–36. https://doi.org/10.1016/j.wse.2019.04.003

    Article  CAS  Google Scholar 

  4. Chinchilla, N., Carrera, C., Durán, A. G., Macías, M., Torres, A., & Macías, F. A. (2013). Aloe barbadensis: How a miraculous plant becomes reality. Phytochemistry Reviews, 12(4), 581–602. https://doi.org/10.1007/s11101-013-9323-3

    Article  CAS  Google Scholar 

  5. Grindlay, D., & Reynolds, T. (1986). The Aloe vera phenomenon: A review of the properties and modern uses of the leaf parenchyma gel. Journal of Ethnopharmacology, 16(2–3), 117–151. https://doi.org/10.1016/0378-8741(86)90085-1

    Article  CAS  PubMed  Google Scholar 

  6. Hu, Y., Xu, J., & Hu, Q. (2003). Evaluation of antioxidant potential of Aloe vera (Aloe barbadensis Miller) extracts. Journal of Agricultural and Food Chemistry, 51(26), 7788–7791. https://doi.org/10.1021/jf034255i

    Article  CAS  PubMed  Google Scholar 

  7. Radha, M. H., & Laxmipriya, N. P. (2015). Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. Journal of Traditional and Complementary Medicine, 5(1), 21–26. https://doi.org/10.1016/j.jtcme.2014.10.006

    Article  PubMed  Google Scholar 

  8. Mandrioli, R., Mercolini, L., Ferranti, A., Fanali, S., & Raggi, M. A. (2011). Determination of aloe emodin in Aloe vera extracts and commercial formulations by HPLC with tandem UV absorption and fluorescence detection. Food Chemistry, 126(1), 387–393. https://doi.org/10.1016/j.foodchem.2010.10.112

    Article  CAS  Google Scholar 

  9. Kaparakou, E. H., Kanakis, C. D., Gerogianni, M., Maniati, M., Vekrellis, K., Skotti, E., & Tarantilis, P. A. (2021). Quantitative determination of aloin, antioxidant activity, and toxicity of Aloe vera leaf gel products from Greece. Journal of the Science of Food and Agriculture, 101(2), 414–423. https://doi.org/10.1002/jsfa.10650

    Article  CAS  PubMed  Google Scholar 

  10. Ahlawat, K. S., & Khatkar, B. S. (2011). Processing, food applications and safety of aloe vera products: A review. Journal of Food Science and Technology, 48(5), 525–533. https://doi.org/10.1007/s13197-011-0229-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boudreau, M. D., & Beland, F. A. (2006). An evaluation of the biological and toxicological properties of Aloe barbadensis (miller), Aloe vera. Journal of Environmental Science and Health Part C, 24(1), 103–154. https://doi.org/10.1080/10590500600614303

    Article  CAS  Google Scholar 

  12. Kumar, S., Yadav, M., Yadav, A., & Yadav, J. P. (2017). Impact of spatial and climatic conditions on phytochemical diversity and in vitro antioxidant activity of Indian Aloe vera (L.) Burm. f. South African Journal of Botany, 111, 50–59. https://doi.org/10.1016/j.sajb.2017.03.012

    Article  CAS  Google Scholar 

  13. Soltanizadeh, N., & Ghiasi-Esfahani, H. (2015). Qualitative improvement of low meat beef burger using Aloe vera. Meat Science, 99, 75–80. https://doi.org/10.1016/j.meatsci.2014.09.002

    Article  PubMed  Google Scholar 

  14. Pandey, R., & Mishra, A. (2010). Antibacterial activities of crude extract of Aloe barbadensis to clinically isolated bacterial pathogens. Applied Biochemistry and Biotechnology, 160(5), 1356–1361. https://doi.org/10.1007/s12010-009-8577-0

    Article  CAS  PubMed  Google Scholar 

  15. Zanuzzo, F. S., Sabioni, R. E., Montoya, L. N. F., Favero, G., & Urbinati, E. C. (2017). Aloe vera enhances the innate immune response of pacu (Piaractus mesopotamicus) after transport stress and combined heat killed Aeromonas hydrophila infection. Fish & Shellfish Immunology, 65, 198–205. https://doi.org/10.1016/j.fsi.2017.04.013

    Article  CAS  Google Scholar 

  16. Valverde, J. M., Valero, D., Martínez-Romero, D., Guillén, F., Castillo, S., & Serrano, M. (2005). Novel edible coating based on Aloe vera gel to maintain table grape quality and safety. Journal of Agricultural and Food Chemistry, 53(20), 7807–7813. https://doi.org/10.1021/jf050962v

    Article  CAS  PubMed  Google Scholar 

  17. Laux, A., Hamman, J., Svitina, H., Wrzesinski, K., & Gouws, C. (2022). In vitro evaluation of the anti-melanoma effects (A375 cell line) of the gel and whole leaf extracts from selected aloe species. Journal of Herbal Medicine, 31, 100539. https://doi.org/10.1016/j.hermed.2022.100539

    Article  Google Scholar 

  18. Kupnik, K., Primožič, M., Knez, Ž, & Leitgeb, M. (2021). Antimicrobial efficiency of Aloe arborescens and Aloe barbadensis natural and commercial products. Plants, 10(1), 92. https://doi.org/10.3390/plants10010092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Herraiz, T., & Galisteo, J. (2004). Endogenous and dietary indoles: A class of antioxidants and radical scavengers in the ABTS assay. Free Radical Research, 38(3), 323–331. https://doi.org/10.1080/10611860310001648167

    Article  CAS  PubMed  Google Scholar 

  20. Nejatzadeh-Barandozi, F. (2013). Antibacterial activities and antioxidant capacity of Aloe vera. Organic and Medicinal Chemistry Letters, 3(1), 1–8.

    Article  Google Scholar 

  21. Chun-hui, L., Chang-hai, W., Zhi-liang, X., & Yi, W. (2007). Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water. Process Biochemistry, 42(6), 961–970. https://doi.org/10.1016/j.procbio.2007.03.004

    Article  CAS  Google Scholar 

  22. Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms22094642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aruoma, O. I. (1998). Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists’ Society, 75(2), 199–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nardini, M., & Garaguso, I. (2020). Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chemistry, 305, 125437. https://doi.org/10.1016/j.foodchem.2019.125437

    Article  CAS  PubMed  Google Scholar 

  25. Barua, C. C., Sen, S., Das, A. S., Talukdar, A., Hazarika, N. J., Barua, A. G., Barua, A. M., & Barua, I. A. (2014). A comparative study of the in vitro antioxidant property of different extracts of Acorus calamus Linn. Journal of Natural Product and Plant Resources, 4(1), 8–18.

    Google Scholar 

  26. Chaves, N., Santiago, A., & Alías, J. C. (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants, 9(1), 76. https://doi.org/10.3390/antiox9010076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, Y., Jiang, Z., Lu, H., Xu, Z., Tong, R., Shi, J., & Jia, G. (2019). Recent advances of natural polyphenols activators for Keap1-Nrf2 signaling pathway. Chemistry & Biodiversity, 16(11), e1900400. https://doi.org/10.1002/cbdv.201900400

    Article  CAS  Google Scholar 

  28. Stagos, D. (2019). Antioxidant activity of polyphenolic plant extracts. Antioxidants, 9(1), 19. https://doi.org/10.3390/antiox9010019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sirdaarta, J., & Cock, I. E. (2010). Effect of Aloe barbadensis Miller juice on oxidative stress biomarkers in aerobic cells using Artemia franciscana as a model. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 24(3), 360–364. https://doi.org/10.1002/ptr.2946

    Article  CAS  Google Scholar 

  30. Lucini, L., Pellizzoni, M., Pellegrino, R., Molinari, G. P., & Colla, G. (2015). Phytochemical constituents and in vitro radical scavenging activity of different Aloe species. Food Chemistry, 170, 501–507. https://doi.org/10.1016/j.foodchem.2014.08.034

    Article  CAS  PubMed  Google Scholar 

  31. Behmanesh, M. A., Najafzadehvarzi, H., & Poormoosavi, S. M. (2018). Protective effect of aloe vera extract against bisphenol a induced testicular toxicity in wistar rats. Cell Journal (Yakhteh), 20(2), 278. https://doi.org/10.22074/cellj.2018.5256

    Article  Google Scholar 

  32. Akinloye, D. I., Ugbaja, R. N., & Dosumu, O. A. (2019). Appraisal of the antioxidative potential of Aloe barbadensis M. On alcohol-induced oxidative stress. Folia Veterinaria, 63(3), 34–46. https://doi.org/10.2478/fv-2019-0025

    Article  CAS  Google Scholar 

  33. Leitgeb, M., Kupnik, K., Knez, Ž, & Primožič, M. (2021). Enzymatic and antimicrobial activity of biologically active samples from Aloe arborescens and Aloe barbadensis. Biology, 10(8), 765. https://doi.org/10.3390/biology10080765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ng, Z. X., Yong, P. H., & Lim, S. Y. (2020). Customized drying treatments increased the extraction of phytochemicals and antioxidant activity from economically viable medicinal plants. Industrial Crops and Products, 155, 112815. https://doi.org/10.1016/j.indcrop.2020.112815

    Article  CAS  Google Scholar 

  35. Habeeb, F., Shakir, E., Bradbury, F., Cameron, P., Taravati, M. R., Drummond, A. J., Gray, A. I., & Ferro, V. A. (2007). Screening methods used to determine the anti-microbial properties of Aloe vera inner gel. Methods, 42(4), 315–320. https://doi.org/10.1016/j.ymeth.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  36. Cellini, L., Di Bartolomeo, S., Di Campli, E., Genovese, S., Locatelli, M., & Di Giulio, M. (2014). In vitro activity of aloe vera inner gel against Helicobacter pylori strains. Letters in Applied Microbiology, 59(1), 43–48. https://doi.org/10.1111/lam.12241

    Article  CAS  PubMed  Google Scholar 

  37. Chacón, O., Forno, N., Lapierre, L., Muñoz, R., Fresno, M., & San Martín, B. (2019). Effect of Aloe barbadensis Miller (Aloe vera) associated with beta-lactam antibiotics on the occurrence of resistance in strains of Staphylococcus aureus and Streptococcus uberis. European Journal of Integrative Medicine, 32, 100996. https://doi.org/10.1016/j.eujim.2019.100996

    Article  Google Scholar 

  38. Hajiahmadi, M., Faghri, J., Salehi, Z., & Heidari, F. (2021). Comparative evaluation of antibacterial effect of propolis and aloe vera, xylitol, and Cpp-Acp gels on Streptococcus mutans and Lactobacillus in vitro. International Journal of Dentistry, 5842600. https://doi.org/10.1155/2021/5842600

  39. Kumar, S., Kalita, S., Das, A., Kumar, P., Singh, S., Katiyar, V., & Mukherjee, A. (2022). Aloe vera: A contemporary overview on scope and prospects in food preservation and packaging. Progress in Organic Coatings, 166, 106799. https://doi.org/10.1016/j.porgcoat.2022.106799

    Article  CAS  Google Scholar 

  40. Quispe, C., Villalobos, M., Bórquez, J., & Simirgiotis, M. (2018). Chemical composition and antioxidant activity of aloe vera from the Pica Oasis (Tarapacá, Chile) by UHPLC-Q/Orbitrap/MS/MS. Journal of chemistry, 1–12. https://doi.org/10.1155/2018/6123850

  41. Radušienė, J., Karpavičienė, B., & Stanius, Ž. (2012). Effect of external and internal factors on secondary metabolites accumulation in St. John’s worth. Botanica Lithuanica, 18(2), 101–108. https://doi.org/10.2478/v10279-012-0012-8

    Article  Google Scholar 

  42. Badreddine, A. (2016). Preparation and characterization of extracts of Argania spinosa and argan oil and evaluation of their neuroprotective effects in vivo and in vitro (Doctoral dissertation, University of Burgundy, Dijon).

  43. Harbone, J. B. (1973). Phytochemical methods: A guide to modern techniques of plant analysis (1st ed., p. 279). Chapman and Hall.

    Google Scholar 

  44. Salar, R. K., Certik, M., & Brezova, V. (2012). Modulation of phenolic content and antioxidant activity of maize by solid state fermentation with Thamnidium elegans CCF 1456. Biotechnology and Bioprocess Engineering, 17(1), 109–116. https://doi.org/10.1007/s12257-011-0455-2

    Article  CAS  Google Scholar 

  45. Amorim, E. L., Nascimento, J. E., Monteiro, J. M., Peixoto Sobrinho, T. J. S., Araújo, T. A., & Albuquerque, U. P. (2008). A simple and accurate procedure for the determination of tannin and flavonoid levels and some applications in ethnobotany and ethnopharmacology. Functional Ecosystems and Communities, 2(1), 88–94.

    Google Scholar 

  46. Lamaison, J. L., & Carnat, A. (1990). Teneurs en Principaux Flavonoides des fleurs et des feuilles de Crataegus monogyna Jacq et de Crataegus laevigata (Poiret) DC. (Rosaceae) Pharm. Acta Helv, 65, 315–320.

    CAS  Google Scholar 

  47. Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  48. Arumugam, M., Manikandan, D. B., Sridhar, A., Palaniyappan, S., Jayaraman, S., & Ramasamy, T. (2022). GC–MS based metabolomics strategy for cost-effective valorization of agricultural waste: Groundnut shell extracts and their biological inhibitory potential. Waste and Biomass Valorization, 13(10), 4179–4209. https://doi.org/10.1007/s12649-022-01768-z

  49. Logaranjan, K., Raiza, A. J., Gopinath, S. C., Chen, Y., & Pandian, K. (2016). Shape-and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity. Nanoscale Research Letters, 11(1), 1–9. https://doi.org/10.1186/s11671-016-1725-x

    Article  CAS  Google Scholar 

  50. Chakansin, C., Yostaworakul, J., Warin, C., Kulthong, K., & Boonrungsiman, S. (2022). Resazurin rapid screening for antibacterial activities of organic and inorganic nanoparticles: Potential, limitations and precautions. Analytical Biochemistry, 637, 114449. https://doi.org/10.1016/j.ab.2021.114449

    Article  CAS  PubMed  Google Scholar 

  51. Benzidia, B., Barbouchi, M., Hammouch, H., Belahbib, N., Zouarhi, M., Erramli, H., Daoud, N. A., Badrane, N., & Hajjaji, N. (2019). Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera (L.) Burm. F. Journal of King Saud University-Science, 31(4), 1175–1181. https://doi.org/10.1016/j.jksus.2018.05.022

    Article  Google Scholar 

  52. Ahmed, M., & Hussain, F. (2013). Chemical composition and biochemical activity of Aloe vera (Aloe barbadensis Miller) leaves. International Journal of Chemical and Biological Sciences Sci, 3, 29–33.

    Google Scholar 

  53. Minjares-Fuentes, J. R., & Femenia, A. (2017). Effect of processing on the bioactive polysaccharides and phenolic compounds from Aloe vera (Aloe barbadensis Miller). Dietary Fibre Functionality in Food and Nutraceuticals: From Plant to Gut, 263–287.

  54. López, Z., Núñez-Jinez, G., Avalos-Navarro, G., Rivera, G., Salazar-Flores, J., Ramírez, J.A., Ayil-Gutiérrez, B.A. & Knauth, P. (2017). Antioxidant and cytotoxicological effects of Aloe vera food supplements. Journal of Food Quality, 7636237. https://doi.org/10.1155/2017/7636237

  55. Miranda, M., Vega-Gálvez, A., García, P., Di Scala, K., Shi, J., Xue, S., & Uribe, E. (2010). Effect of temperature on structural properties of Aloe vera (Aloe barbadensis Miller) gel and Weibull distribution for modelling drying process. Food and Bioproducts Processing, 88(2–3), 138–144. https://doi.org/10.1016/j.fbp.2009.06.001

    Article  CAS  Google Scholar 

  56. Yadav, M., Chatterji, S., Gupta, S. K., & Watal, G. (2014). Preliminary phytochemical screening of six medicinal plants used in traditional medicine. International Journal of Pharmacy and Pharmaceutical Sciences, 6(5), 539–542.

    Google Scholar 

  57. Kumari, M., & Jain, S. (2012). Tannins: An antinutrient with positive effect to manage diabetes. Research Journal of Recent Sciences, 1(12), 1–8.

    Google Scholar 

  58. Han, X., Shen, T., & Lou, H. (2007). Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, 8(9), 950–988. https://doi.org/10.3390/i8090950

    Article  CAS  PubMed Central  Google Scholar 

  59. Alqethami, A., & Aldhebiani, A. Y. (2021). Medicinal plants used in Jeddah, Saudi Arabia: Phytochemical screening. Saudi Journal of Biological Sciences, 28(1), 805–812. https://doi.org/10.1016/j.sjbs.2020.11.013

    Article  CAS  PubMed  Google Scholar 

  60. Iqbal, E., Lim, L. B., Salim, K. A., Faizi, S., Ahmed, A., & Mohamed, A. J. (2018). Isolation and characterization of aristolactam alkaloids from the stem bark of Goniothalamus velutinus (Airy Shaw) and their biological activities. Journal of King Saud University-Science, 30(1), 41–48. https://doi.org/10.1016/j.jksus.2016.12.008

    Article  Google Scholar 

  61. Khanam, Z., Wen, C. S., & Bhat, I. U. H. (2015). Phytochemical screening and antimicrobial activity of root and stem extracts of wild Eurycoma longifolia Jack (Tongkat Ali). Journal of King Saud University-Science, 27(1), 23–30. https://doi.org/10.1016/j.jksus.2014.04.006

    Article  Google Scholar 

  62. Thirumurugan, K., Shihabudeen, M. S., & Hansi, P. D. (2010). Antimicrobial activity and phytochemical analysis of selected Indian folk medicinal plants. Steroids, 1(7), 430–34.

    Google Scholar 

  63. Lalnundanga, N. L., & Lalrinkima, R. (2012). Phytochemical analysis of the methanol extract of root bark of Hiptage benghalensis (L.) Kurz. Science Vision, 12, 8–10.

    Google Scholar 

  64. Muthukumaran, P., Divya, R., Indhumathi, E., & Keerthika, C. (2018). Total phenolic and flavonoid content of membrane processed Aloe vera extract: A comparative study. International Food Research Journal, 25(4), 1450–1456.

    CAS  Google Scholar 

  65. Ray, A., Dutta Gupta, S., & Ghosh, S. (2013). Isolation and characterization of potent bioactive fraction with antioxidant and UV absorbing activity from Aloe barbadensis Miller gel. Journal of Plant Biochemistry and Biotechnology, 22(4), 483–487. https://doi.org/10.1007/s13562-012-0178-2

    Article  CAS  Google Scholar 

  66. Nejatzadeh-Barandozi, F., & Enferadi, S. T. (2012). FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment. Organic and Medicinal Chemistry Letters, 2(1), 1–9. https://doi.org/10.1186/2191-2858-2-33

    Article  CAS  Google Scholar 

  67. Minjares-Fuentes, R., Femenia, A., Comas-Serra, F., Rosselló, C., Rodríguez-González, V. M., González-Laredo, R. F., Gallegos-Infante, J. A., & Medina-Torres, L. (2016). Effect of different drying procedures on physicochemical properties and flow behavior of Aloe vera (Aloe barbadensis Miller) gel. LWT, 74, 378–386. https://doi.org/10.1016/j.lwt.2016.07.060

    Article  CAS  Google Scholar 

  68. Kiran, P., & Rao, P. S. (2016). Development and characterization of reconstituted hydrogel from Aloe vera (Aloe barbadensis Miller) powder. Journal of Food Measurement and Characterization, 10(3), 411–424. https://doi.org/10.1007/s11694-016-9320-5

    Article  Google Scholar 

  69. Liu, C., Cui, Y., Pi, F., Cheng, Y., Guo, Y., & Qian, H. (2019). Extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, a polysaccharide from aloe vera: A review. Molecules, 24(8), 1554. https://doi.org/10.3390/molecules24081554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64(1), 3–19. https://doi.org/10.1016/S0031-9422(03)00300-5

    Article  CAS  PubMed  Google Scholar 

  71. Costa, T. D. S. A., Vieira, R. F., Bizzo, H. R., Silveira, D., & Gimenes, M. A. (2012). Secondary metabolites. In S. Dhanarasu (Ed.), Chromatography and its applications (pp. 131–164)Croatia: InTech Publishers. https://doi.org/10.5772/35705

  72. Gomathi, S., Firdous, J., Shanmugapriya, A., Varalakshmi, B., Karpagam, T., Bharathi, V., Anitha, P., & Mahalakshmi, P. (2021). Antibacterial action of Pedilanthus tithymaloides leaves extract and FTIR Phytochemical Finger printing. Research Journal of Pharmacy and Technology, 14(4). https://doi.org/10.52711/0974-360X.2021.00358

  73. Venkatramanan, M., Sankar Ganesh, P., Senthil, R., Akshay, J., Veera Ravi, A., Langeswaran, K., Vadivelu, J., Nagarajan, S., Rajendran, K., & Shankar, E. M. (2020). Inhibition of quorum sensing and biofilm formation in Chromobacterium violaceum by fruit extracts of Passiflora edulis. ACS Omega, 5(40), 25605–25616. https://doi.org/10.1021/acsomega.0c02483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lalitha, S., Parthipan, B., & Mohan, V. R. (2015). Determination of bioactive components of Psychotria nilgiriensis Deb & Gang (Rubiaceae) by GC-MS analysis. International Journal of Pharmacognosy and Phytochemical Research, 7, 802–809.

    Google Scholar 

  75. Havlicekova, Z., Jesenak, M., Banovcin, P., & Kuchta, M. (2015). Beta-palmitate–A natural component of human milk in supplemental milk formulas. Nutrition Journal, 15(1), 1–8. https://doi.org/10.1186/s12937-016-0145-1

    Article  CAS  Google Scholar 

  76. Litmanovitz, I., Bar-Yoseph, F., Lifshitz, Y., Davidson, K., Eliakim, A., Regev, R. H., & Nemet, D. (2014). Reduced crying in term infants fed high beta-palmitate formula: A double-blind randomized clinical trial. BMC Pediatrics, 14(1), 1–6. https://doi.org/10.1186/1471-2431-14-152

    Article  CAS  Google Scholar 

  77. Yu, J., Lei, J., Yu, H., Cai, X., & Zou, G. (2004). Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry, 65(7), 881–884. https://doi.org/10.1016/j.phytochem.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  78. Srivastava, S., Sreerama, Y. N., & Dharmaraj, U. (2021). Effect of processing on squalene content of grain amaranth fractions. Journal of Cereal Science, 100, 103218. https://doi.org/10.1016/j.jcs.2021.103218

    Article  CAS  Google Scholar 

  79. Wu, F., Wei, Q., Yang, M., Deng, R., & Liu, S. (2021). Analysis of chemical components in two tree species of magnoliaceae, Magnolia sumatrana var. glauca (Blume) Figlar & Noot and Magnolia hypolampra (Dandy) Figlar. Natural Product Research, 37(2), 328–332. https://doi.org/10.1080/14786419.2021.1958216

  80. Akpuaka, A., Ekwenchi, M. M., Dashak, D. A., & Dildar, A. (2013). Biological activities of characterized isolates of n-hexane extract of Azadirachta indica A. Juss (Neem) leaves. Nature and Science, 11(5), 141–147.

    Google Scholar 

  81. Gajera, H. P., Hirpara, D. G., Savaliya, D. D., & Golakiya, B. A. (2020). Extracellular metabolomics of Trichoderma biocontroller for antifungal action to restrain Rhizoctonia solani Kuhn in cotton. Physiological and Molecular Plant Pathology, 112, 101547. https://doi.org/10.1016/j.pmpp.2020.101547

    Article  CAS  Google Scholar 

  82. Adeosun, C. B., Olaseinde, S., Opeifa, A. O., & Atolani, O. (2013). Essential oil from the stem bark of Cordia sebestena scavenges free radicals. Journal of Acute Medicine, 3(4), 138–141. https://doi.org/10.1016/j.jacme.2013.07.002

    Article  Google Scholar 

  83. Lalel, H. J., Singh, Z., & Tan, S. C. (2003). Glycosidically-bound aroma volatile compounds in the skin and pulp of ‘Kensington Pride’mango fruit at different stages of maturity. Postharvest Biology and Technology, 29(2), 205–218. https://doi.org/10.1016/S0925-5214(02)00250-8

    Article  CAS  Google Scholar 

  84. Al Bratty, M., Makeen, H.A., Alhazmi, H.A., Syame, S.M., Abdalla, A.N., Homeida, H.E., Sultana, S., Ahsan, W., & Khalid, A. (2020). Phytochemical, cytotoxic, and antimicrobial evaluation of the fruits of miswak plant, Salvadora persica L. Journal of Chemistry, 1–11. https://doi.org/10.1155/2020/4521951

  85. Laparra, J. M., & Sanz, Y. (2010). Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacological Research, 61(3), 219–225. https://doi.org/10.1016/j.phrs.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  86. Hashem, N. M., Soltan, Y. A., El-Desoky, N. I., Morsy, A. S., & Sallam, S. M. A. (2019). Effects of Moringa oleifera extracts and monensin on performance of growing rabbits. Livestock Science, 228, 136–143. https://doi.org/10.1016/j.livsci.2019.08.012

    Article  Google Scholar 

  87. Arimura, G. I., Matsui, K., & Takabayashi, J. (2009). Chemical and molecular ecology of herbivore-induced plant volatiles: Proximate factors and their ultimate functions. Plant and Cell Physiology, 50(5), 911–923. https://doi.org/10.1093/pcp/pcp030

    Article  CAS  PubMed  Google Scholar 

  88. Najar, B., Ferri, B., Cioni, P. L., & Pistelli, L. (2020). Viburnum tinus L.: Investigation on its spontaneous emission at different phenological stages. Biochemical Systematics and Ecology, 89, 104013. https://doi.org/10.1016/j.bse.2020.104013

    Article  CAS  Google Scholar 

  89. Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579(1–2), 200–213. https://doi.org/10.1016/j.mrfmmm.2005.03.023

    Article  CAS  PubMed  Google Scholar 

  90. Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4), 96. https://doi.org/10.3390/plants8040096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Siddhuraju, P., & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51(8), 2144–2155. https://doi.org/10.1021/jf020444+

    Article  CAS  PubMed  Google Scholar 

  92. Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), 300–312. https://doi.org/10.1016/j.tifs.2005.12.004

    Article  CAS  Google Scholar 

  93. Arumugam, M., Manikandan, D. B., Mohan, S., Sridhar, A., Veeran, S., Jayaraman, S., & Ramasamy, T. (2022). Correction to: Comprehensive metabolite profiling and therapeutic potential of black gram (Vigna mungo) pods: Conversion of biowaste to wealth approach. Biomass Conversion and Biorefinery, 1–32. https://doi.org/10.1007/s13399-022-02806-5

  94. Lee, K. Y., Weintraub, S. T., & Yu, B. P. (2000). Isolation and identification of a phenolic antioxidant from Aloe barbadensis. Free Radical Biology and Medicine, 28(2), 261–265. https://doi.org/10.1016/S0891-5849(99)00235-X

    Article  CAS  PubMed  Google Scholar 

  95. Dhivya, R., & Manimegalai, K. (2013). Preliminary phytochemical screening and GC-MS profiling of ethanolic flower extract of Calotropis gigantea Linn. (Apocynaceae). Journal of Pharmacognosy and Phytochemistry, 2(3), 28–32.

    Google Scholar 

  96. Barbehenn, R. V., & Constabel, C. P. (2011). Tannins in plant–herbivore interactions. Phytochemistry, 72(13), 1551–1565. https://doi.org/10.1016/j.phytochem.2011.01.040

    Article  CAS  PubMed  Google Scholar 

  97. de Hoyos-Martinez, P. L., Merle, J., Labidi, J., & Charrier–El Bouhtoury, F. (2019). Tannins extraction: A key point for their valorization and cleaner production. Journal of Cleaner Production, 206, 1138–1155. https://doi.org/10.1016/j.jclepro.2018.09.243

    Article  CAS  Google Scholar 

  98. Shirmohammadli, Y., Efhamisisi, D., & Pizzi, A. (2018). Tannins as a sustainable raw material for green chemistry: A review. Industrial Crops and Products, 126, 316–332. https://doi.org/10.1016/j.indcrop.2018.10.034

    Article  CAS  Google Scholar 

  99. Wintola, O. A., & Afolayan, A. J. (2011). Phytochemical constituents and antioxidant activities of the whole leaf extract of Aloe ferox Mill. Pharmacognosy Magazine, 7(28), 325. https://doi.org/10.4103/0973-1296.90414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Baradaran, A., Nasri, H., Nematbakhsh, M., & Rafieian-Kopaei, M. (2014). Antioxidant activity and preventive effect of aqueous leaf extract of Aloe Vera on gentamicin-induced nephrotoxicity in male Wistar rats. La Clinica Terapeutica, 165(1), 7–11. https://doi.org/10.7471/ct.2014.1653

    Article  CAS  PubMed  Google Scholar 

  101. Usman, R. B., Adamu, M., Isyaku, I. M., & Bala, H. A. (2020). Quantitative and qualitative phytochemicals and proximate analysis of Aloe vera (Aloe barbadensis miller). International Journal on Advanced Science, Engineering and Information Technology, 6(1), 95–104.

    Google Scholar 

  102. Dash, G. K., Bal, S. K., Annapurna, M. M., & Suresh, P. (2008). Studies on the hypoglycaemic activity of Hemidesmus indicus r. Br. Roots. Pharmacognosy Magazine, 4(16), 221–225.

    Google Scholar 

  103. Tsao, R., & Yang, R. (2003). Optimization of a new mobile phase to know the complex and real polyphenolic composition: Towards a total phenolic index using high-performance liquid chromatography. Journal of Chromatography A, 1018(1), 29–40. https://doi.org/10.1016/j.chroma.2003.08.034

    Article  CAS  PubMed  Google Scholar 

  104. Kumar, A., Mahajan, A., & Begum, Z. (2020). Phytochemical screening and in vitro study of free radical scavenging activity of flavonoids of aloe vera. Research Journal of Pharmacy and Technology, 13(2), 593–598. https://doi.org/10.5958/0974-360X.2020.00112.2

    Article  Google Scholar 

  105. Lou, H., Hu, L., Lu, H., Wei, T., & Chen, Q. (2021). Metabolic engineering of microbial cell factories for biosynthesis of flavonoids: A review. Molecules, 26(15), 4522. https://doi.org/10.3390/molecules26154522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jannat, K., Paul, A. K., Bondhon, T. A., Hasan, A., Nawaz, M., Jahan, R., Mahboob, T., Nissapatorn, V., Wilairatana, P., Pereira, M. D. L., & Rahmatullah, M. (2021). Nanotechnology applications of flavonoids for viral diseases. Pharmaceutics, 13(11), 1895. https://doi.org/10.3390/pharmaceutics13111895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lulan, T. Y., Fatmawati, S., Santoso, M., & Ersam, T. (2018). Antioxidant capacity of some selected medicinal plants in East Nusa Tenggara, Indonesia: The potential of Sterculia quadrifida R. Br. Free Radicals and Antioxidants, 8(2), 96–101. https://doi.org/10.5530/fra.2018.2.15

    Article  CAS  Google Scholar 

  108. Saritha, V., Anilakumar, K. R., & Khanum, F. (2010). Antioxidant and antibacterial activity of Aloe vera gel extracts. International Journal of Pharmaceutical & Biological Archive, 1(4), 376–384.

    Google Scholar 

  109. López, A., De Tangil, M. S., Vega-Orellana, O., Ramírez, A. S., & Rico, M. (2013). Phenolic constituents, antioxidant and preliminary antimycoplasmic activities of leaf skin and flowers of Aloe vera (L.) Burm. f.(syn. A. barbadensis Mill.) from the Canary Islands (Spain). Molecules, 18(5), 4942–4954. https://doi.org/10.3390/molecules18054942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., & El Hady, S. (2013). Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Sciences, 58(2), 173–181. https://doi.org/10.1016/j.aoas.2013.07.002

    Article  Google Scholar 

  111. Khaing, T. A. (2011). Evaluation of the antifungal and antioxidant activities of the leaf extract of Aloe vera (Aloe barbadensis Miller). World Academy of Science, Engineering and Technology, 75, 610–612.

    Google Scholar 

  112. Tashim, N. A. Z., Abdullah Lim, S., & Basri, A. M. (2022). Synergistic antioxidant activity of selected medicinal plants in Brunei Darussalam and its application in developing fortified pasta. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.12099

    Article  PubMed  Google Scholar 

  113. Uddin, M. N., Roy, S. C., Mamun, A. A., Mitra, K., Haque, M. Z., & Hossain, M. L. (2020). Phytochemicals and in-vitro antioxidant activities of Aloe vera gel. Journal of Bangladesh Academy of Sciences, 44(1), 33–41. https://doi.org/10.3329/jbas.v44i1.48561

    Article  CAS  Google Scholar 

  114. Bendjedid, S., Djelloul, R., Tadjine, A., Bensouici, C., & Boukhari, A. (2020). In vitro assessment of total bioactive contents, antioxidant, anti-alzheimer and antidiabetic activities of leaves extracts and fractions of Aloe vera. Chiang Mai University Journal of Natural Sciences, 19(3), 469–486. https://doi.org/10.12982/CMUJNS.2020.0031

    Article  Google Scholar 

  115. El Fawal, G. F., Omer, A. M., & Tamer, T. M. (2019). Evaluation of antimicrobial and antioxidant activities for cellulose acetate films incorporated with Rosemary and Aloe Vera essential oils. Journal of Food Science and Technology, 56(3), 1510–1518. https://doi.org/10.1007/s13197-019-03642-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zargar, B., Majeed, D., Ganai, S. A., Mir, S. A., & Dar, B. N. (2018). Effect of different processing parameters on antioxidant activity of tea. Journal of Food Measurement and Characterization, 12(1), 527–534. https://doi.org/10.1007/s11694-017-9664-5

    Article  Google Scholar 

  117. Thomas, J., Thanigaivel, S., Vijayakumar, S., Acharya, K., Shinge, D., Seelan, T. S. J., Mukherjee, A., & Chandrasekaran, N. (2014). Pathogenecity of Pseudomonas aeruginosa in Oreochromis mossambicus and treatment using lime oil nanoemulsion. Colloids and Surfaces B: Biointerfaces, 116, 372–377. https://doi.org/10.1016/j.colsurfb.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  118. Divya, D., Beulah, G., Govinda Rao, K., Sravya, M. V. N., Simhachalam, G., Sai Krishna, M., & Sampath Kumar, N. S. (2022). Bioactivity of Excoecaria agallocha leaf extract against Pseudomonas aeruginosa infection in Labeo rohitaJournal of Applied Aquaculture, 1–19. https://doi.org/10.1080/10454438.2022.2029792

  119. Obritsch, M. D., Fish, D. N., MacLaren, R., & Jung, R. (2005). Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: Epidemiology and treatment options. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 25(10), 1353–1364. https://doi.org/10.1592/phco.2005.25.10.1353

    Article  CAS  Google Scholar 

  120. Kukułowicz, A., Steinka, I., & Siwek, A. (2021). Presence of antibiotic-resistant Staphylococcus aureus in fish and seafood originating from points of sale in the tri-city area (Poland). Journal of Food Protection, 84(11), 1911–1914. https://doi.org/10.4315/JFP-21-115

    Article  PubMed  Google Scholar 

  121. Saharan, V. V., Verma, P., & Singh, A. P. (2020). High prevalence of antimicrobial resistance in Escherichia coli, Salmonella spp. and Staphylococcus aureus isolated from fish samples in India. Aquaculture Research, 51(3), 1200–1210. https://doi.org/10.1111/are.14471

    Article  CAS  Google Scholar 

  122. Fri, J., Njom, H. A., Ateba, C. N., & Ndip, R. N. (2020). Antibiotic resistance and virulence gene characteristics of methicillin-resistant Staphylococcus aureus (MRSA) isolated from healthy edible marine fish. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/9803903

  123. Sivaraman, G. K., Muneeb, K. H., Sudha, S., Shome, B., Cole, J., & Holmes, M. (2021). Prevalence of virulent and biofilm forming ST88-IV-t2526 methicillin-resistant Staphylococcus aureus clones circulating in local retail fish markets in Assam, India. Food Control, 127, 108098. https://doi.org/10.1016/j.foodcont.2021.108098

    Article  CAS  Google Scholar 

  124. Montaser, M. M., El-Sharnouby, M. E., El-Noubi, G., El-Shaer, H. M., Khalil, A. A., Hassanin, M., Amer, S. A., & El-Araby, D. A. (2021). Boswellia serrata resin extract in diets of Nile tilapia, Oreochromis niloticus: Effects on the growth, health, immune response, and disease resistance to Staphylococcus aureus. Animals, 11(2), 446. https://doi.org/10.3390/ani11020446

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G., Jr. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Das, A., Acharya, S., Behera, B. K., Paria, P., Bhowmick, S., Parida, P. K., & Das, B. K. (2018). Isolation, identification and characterization of Klebsiella pneumoniae from infected farmed Indian Major Carp Labeo rohita (Hamilton 1822) in West Bengal, India. Aquaculture, 482, 111–116. https://doi.org/10.1016/j.aquaculture.2017.08.037

    Article  CAS  Google Scholar 

  127. Paczosa, M. K., & Mecsas, J. (2016). Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiology and Molecular Biology Reviews, 80(3), 629–661. https://doi.org/10.1128/MMBR.00078-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Forno-Bell, N., Bucarey, S. A., García, D., Iragüen, D., Chacón, O., & San Martín, B. (2019). Antimicrobial effects caused by Aloe barbadensis Miller on bacteria associated with mastitis in dairy cattle. Natural Product Communications, 14(12), 1–5. https://doi.org/10.1177/1934578X19896670

    Article  Google Scholar 

  129. Gorsi, F. I., Kausar, T., & Murtaza, M. A. (2019). 27. Evaluation of antibacterial and antioxidant activity of Aloe vera (Aloe barbadensis Miller) gel powder using different solvents. Pure and Applied Biology (PAB), 8(2), 1265–1270. https://doi.org/10.19045/bspab.2019.80068

    Article  CAS  Google Scholar 

  130. Wang, Y., Wang, J., Bai, D., Wei, Y., Sun, J., Luo, Y., Zhao, J., Liu, Y., & Wang, Q. (2020). Synergistic inhibition mechanism of pediocin PA-1 and L-lactic acid against Aeromonas hydrophila. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862(10), 183346. https://doi.org/10.1016/j.bbamem.2020.183346

    Article  CAS  PubMed  Google Scholar 

  131. Darmasiwi, S., Aramsirirujiwet, Y., & Kimkong, I. (2022). Biological activities and chemical profile of Hericium erinaceus mycelium cultivated on mixed red and white jasmine rice. Food Science and Technology, 42. https://doi.org/10.1590/fst.08022

  132. Peixoto, R. J., Alves, E. S., Wang, M., Ferreira, R. B., Granato, A., Han, J., Gill, H., Jacobson, K., Lobo, L. A., Domingues, R. M., & Borchers, C. H. (2017). Repression of Salmonella host cell invasion by aromatic small molecules from the human fecal metabolome. Applied and Environmental Microbiology, 83(19), e01148-e1217. https://doi.org/10.1128/AEM.01148-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jatin, R. R., & Priya, R. S. (2016). Determination of bioactive components of Cynodon dactylon by GC-MS analysis & it’s in vitro antimicrobial activity. International Journal of Pharmacy & Life Sciences, 7(1), 4880–4885.

    Google Scholar 

  134. Marzlan, A. A., Muhialdin, B. J., Abedin, N. H. Z., Mohammed, N. K., Abadl, M. M. T., Roby, B. H. M., & Hussin, A. S. M. (2020). Optimized supercritical CO2 extraction conditions on yield and quality of torch ginger (Etlingera elatior (Jack) RM Smith) inflorescence essential oil. Industrial Crops and Products, 154, 112581. https://doi.org/10.1016/j.indcrop.2020.112581

    Article  CAS  Google Scholar 

  135. Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6), 1629–1642. https://doi.org/10.1007/s00253-009-2355-3

    Article  CAS  PubMed  Google Scholar 

  136. Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175. https://doi.org/10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  137. McNicholl, B. P., McGrath, J. W., & Quinn, J. P. (2007). Development and application of a resazurin-based biomass activity test for activated sludge plant management. Water Research, 41(1), 127–133. https://doi.org/10.1016/j.watres.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  138. Añibarro-Ortega, M., Pinela, J., Barros, L., Ćirić, A., Silva, S. P., Coelho, E., Mocan, A., Calhelha, R. C., Soković, M., Coimbra, M. A., & Ferreira, I. C. (2019). Compositional features and bioactive properties of Aloe vera leaf (fillet, mucilage, and rind) and flower. Antioxidants, 8(10), 444. https://doi.org/10.3390/antiox8100444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nunes, M. A., Palmeira, J. D., Melo, D., Machado, S., Lobo, J. C., Costa, A. S. G., Alves, R. C., Ferreira, H., & Oliveira, M. B. P. P. (2021). Chemical composition and antimicrobial activity of a new olive pomace functional ingredient. Pharmaceuticals, 14(9), 913. https://doi.org/10.3390/ph14090913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Schmidt, T. F., Caseli, L., Oliveira, O. N., Jr., & Itri, R. (2015). Binding of methylene blue onto Langmuir monolayers representing cell membranes may explain its efficiency as photosensitizer in photodynamic therapy. Langmuir, 31(14), 4205–4212. https://doi.org/10.1021/acs.langmuir.5b00166

    Article  CAS  PubMed  Google Scholar 

  141. Brantner, A., Maleš, Ž, Pepeljnjak, S., & Antolić, A. (1996). Antimicrobial activity of Paliurus spina-christi Mill. (Christ’s thorn). Journal of ethnopharmacology, 52(2), 119–122. https://doi.org/10.1016/0378-8741(96)01408-0

    Article  CAS  PubMed  Google Scholar 

  142. Askun, T., Tumen, G., Satil, F., & Ates, M. (2009). In vitro activity of methanol extracts of plants used as spices against Mycobacterium tuberculosis and other bacteria. Food Chemistry, 116(1), 289–294. https://doi.org/10.1016/j.foodchem.2009.02.048

    Article  CAS  Google Scholar 

  143. Dabai, Y. U., Muhammad, S., & Aliyu, B. S. (2007). Antibacterial activity of anthraquinone fraction of Vitex doniana. Pakistan Journal of Biological Sciences, 1–3.

  144. Jain, S., Rathod, N., Nagi, R., Sur, J., Laheji, A., Gupta, N., Agrawal, P., & Prasad, S. (2016). Antibacterial effect of Aloe vera gel against oral pathogens: An in-vitro study. Journal of Clinical and Diagnostic Research: JCDR, 10(11), ZC41-AC44. https://doi.org/10.7860/JCDR/2016/21450.8890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ranjbar, K., Molazadeh, A., Dakhili Ardestani, A., Soleimanian, M., Meshkibaf, Z., & Meshkibaf, M. H. (2020). Antinociceptive and antioxidant effects of Onosma platyphyllum riedl extract. Physiology and Pharmacology. https://doi.org/10.52547/phypha.26.4.10

    Article  Google Scholar 

  146. Kareem, M. J. (2020). Synthesis and characterization of gold nanoparticles in presence of metronidazole benzoate (MTZ. B)(1-(2-benzyloxy ethyl)-5-nitro methyl imidazole) drug using ascorbic acid as a reducing agent. DIRASAT TARBAWIYA13(52 supplement).

  147. Kumar, B. S., Kumar, A., Singh, J., Hasanain, M., Singh, A., Fatima, K., Yadav, D. K., Shukla, V., Luqman, S., Khan, F., & Chanda, D. (2014). Synthesis of 2-alkoxy and 2-benzyloxy analogues of estradiol as anti-breast cancer agents through microtubule stabilization. European Journal of Medicinal Chemistry, 86, 740–751. https://doi.org/10.1016/j.ejmech.2014.09.033

    Article  CAS  PubMed  Google Scholar 

  148. Ceyhan-Güvensen, N., & Keskin, D. (2016). Chemical content and antimicrobial properties of three different extracts of Mentha pulegium leaves from Mugla Region, Turkey. Journal of Environmental Biology, 37(6):341–1346. https://hdl.handle.net/20.500.12809/2303

  149. Govindappa, M., Prathap, S., Vinay, V., & Channabasava, R. (2014). Chemical composition of methanol extract of endophytic fungi, Alternaria sp. of Tebebuia argentea and their antimicrobial and antioxidant activity. International Journal of Bio-Pharma Research. Res., 5, 861–869.

    Google Scholar 

  150. Yoo, J. C., Han, J. M., Nam, S. K., Ko, O. H., Park, C. H., Kee, K. H., Sohng, J. K., Jo, J. S., & Seong, C. N. (2002). Characterization and cytotoxic activities of nonadecanoic acid produced by Streptomyces scabiei subsp. chosunensis M0137 (KCTC 9927). Journal of Microbiology, 40(4), 331–334.

    CAS  Google Scholar 

  151. Chandrasekaran, M., Kannathasan, K., & Venkatesalu, V. (2008). Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae. Zeitschrift für Naturforschung C, 63(5–6), 331–336. https://doi.org/10.1515/znc-2008-5-604

    Article  CAS  Google Scholar 

  152. Hsouna, A. B., Trigui, M., Mansour, R. B., Jarraya, R. M., Damak, M., & Jaoua, S. (2011). Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. International Journal of Food Microbiology., 148(1), 66–72. https://doi.org/10.1016/j.ijfoodmicro.2011.04.028

    Article  CAS  PubMed  Google Scholar 

  153. Hema, R., Kumaravel, S., & Alagusundaram, K. (2011). GC-MS determination of bioactive compounds of Murraya koenigii. The Journal of American Science, 7(1), 80–83.

    Google Scholar 

  154. Al-Shwyeh, H. A., Abdulkarim, S. M., Rasedee, A. E., Saeed, M. M., & Al-Qubaisi, M. (2014). Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract. BMC Complementary and Alternative Medicine, 14(1), 199. https://doi.org/10.1186/1472-6882-14-199

    Article  CAS  Google Scholar 

  155. Lee, Y. S., Kang, M. H., Cho, Y. S., & Jeong, C. S. (2007). Effects of constituents of Amomum xanthioides on gastritis in rats and on growth of gastric cancer cells. Archives of Pharmacal Research, 30(4), 436.

    Article  CAS  PubMed  Google Scholar 

  156. Panigrahi, S., Sundaram, M. M., Natesan, R., & Pemiah, B. (2014). Anticancer activity of ethanolic extract of Solanum torvum sw. International Journal of Pharmacy and Pharmaceutical Sciences., 6, 93–98.

    Google Scholar 

  157. Karthi, S., Somanath, B., & Abdul Jaffar, A. H. (2015). Efficacy of methanolic extract of a marine ascidian, Lissoclinum bistratum for antimicrobial activity. Journal of Chemical, Biological and Physical Sciences, B5(4), 4119–4125.

    Google Scholar 

  158. Fernie, A. R., Trethewey, R. N., Krotzky, A. J., & Willmitzer, L. (2004). Metabolite profiling: From diagnostics to systems biology. Nature Reviews Molecular Cell Biology, 5, 763–769. https://doi.org/10.1038/nrm1451

    Article  CAS  PubMed  Google Scholar 

  159. Rajeswari, G., Murugan, M., & Mohan, V. R. (2012). GC-MS analysis of bioactive components of Hugonia mystax L. (Linaceae). Research Journal of Pharmaceutical, Biological and Chemical Sciences, 3(4), 301–308.

    CAS  Google Scholar 

  160. Agoramoorthy, G., Chandrasekaran, M., Venkatesalu, V., & Hsu, M. J. (2007). Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Brazilian Journal of Microbiology, 38, 739–742. https://doi.org/10.1590/S1517-83822007000400028

    Article  Google Scholar 

  161. Babu, R. J., Chatterjee, A., & Singh, M. (2004). Assessment of skin irritation and molecular responses in rat skin exposed to nonane, dodecane and tetradecane. Toxicology Letters, 153(2), 255–266. https://doi.org/10.1016/j.toxlet.2004.04.036

    Article  CAS  PubMed  Google Scholar 

  162. Matsumura, S., Imai, K., Yoshikawa, S., Kawada, K., & Uchibor, T. (1990). Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, mannosides and galactosides. Journal of the American Oil Chemists’ Society, 67(12), 996–1001. https://doi.org/10.1007/BF02541865

    Article  CAS  Google Scholar 

  163. Al-Marzoqi, A. H., Hameed, I. H., & Idan, S. A. (2015). Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography-mass spectrometry (GC-MS). African Journal of Biotechnology, 14(40), 2812–2830. https://doi.org/10.5897/AJB2015.14956

    Article  Google Scholar 

  164. Cruz-Ramirez, S. G., Lopez-Saiz, C. M., Rosas-Burgos, E. C., Cinco-Moroyoqui, F. J., Velazquez, C., Hernandez, J., & Burgos-Hernandez, A. (2016). Antimutagenic activity of bis (2-ethylhexyl) phthalate Biomass Conversion and Biorefnery 1 3 isolated from octopus (Paraoctopus limaculatus). Toxicology Letters, 259, S197–S198. https://doi.org/10.1016/j.toxlet.2016.07.470

    Article  Google Scholar 

  165. Mareeswaran, J., Premkumar, R., Asir, S., & Radhakrishanan, B. (2018). Isolation and identification of bacterial strains from different tea growing areas against Macrophoma sp. in southern India tea plantation. Journal of Plantation Crops, 46(3), 161–168. https://doi.org/10.25081/jpc.2018.v46.i3.2054

    Article  Google Scholar 

  166. Kuroda, Y., Ono, N., Akaogi, J., Nacionales, D. C., Yamasaki, Y., Barker, T. T., Reeves, W. H., & Satoh, M. (2006). Induction of lupus-related specific autoantibodies by non-specific inflammation caused by an intraperitoneal injection of n-hexadecane in BALB/c mice. Toxicology, 218(2–3), 186–196. https://doi.org/10.1016/j.tox.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  167. Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry, 62(6), 817–836. https://doi.org/10.1016/S0031-9422(02)00708-2

    Article  CAS  PubMed  Google Scholar 

  168. Zamakshshari, N. H., Ahmed, I. A., Didik, N. A. M., Nasharuddin, M. N. A., Hashim, N. M., & Abdullah, R. (2022). Chemical profile and antimicrobial activity of essential oil and methanol extract from peels of four Durio zibethinus L. varieties. Biomass Conversion and Biorefinery, 1–9. https://doi.org/10.1007/s13399-021-02134-0

  169. Jain, P. K., & Rijhwani, S. (2018). Comparative GC-MS analysis of Cyamopsis tetragonoloba fruit extracts. International Journal of Pharmaceutical Sciences and Research, 9(10), 4236–4242.

    CAS  Google Scholar 

  170. Balachandar, R., Karmegam, N., Saravanan, M., Subbaiya, R., & Gurumoorthy, P. (2018). Synthesis of bioactive compounds from vermicast isolated actinomycetes species and its antimicrobial activity against human pathogenic bacteria. Microbial Pathogenesis, 121, 155–165. https://doi.org/10.1016/j.micpath.2018.05.027

    Article  CAS  PubMed  Google Scholar 

  171. Mishra, P. M., & Sree, A. (2007). Antibacterial activity and GCMS analysis of the extract of leaves of Finlaysonia obovata (a mangrove plant). Asian Journal of Plant Sciences, 6(1), 168–172.

    Article  CAS  Google Scholar 

  172. Arora, S., & Kumar, G. (2018). Phytochemical screening of root, stem and leaves of Cenchrus biflorus Roxb. Journal of Pharmacognosy and Phytochemistry, 7(1), 1445–1450.

    CAS  Google Scholar 

  173. Kim, D. H., Park, M. H., Choi, Y. J., Chung, K. W., Park, C. H., Jang, E. J., An, H. J., Yu, B. P., & Chung, H. Y. (2013). Molecular study of dietary heptadecane for the anti-inflammatory modulation of NF-kB in the aged kidney. PloS one, 8(3), e59316. https://doi.org/10.1371/journal.pone.0059316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mohanasundaram, S., Rangarajan, N., Sampath, V., Porkodi, K., Prakash, M. V., & Monicka, N. (2021). GC-MS identification of anti-inflammatory and anticancer metabolites in edible milky white mushroom (Calocybe indica) against human breast cancer (MCF-7) cells. Research Journal of Pharmacy and Technology, 14(8), 4300–4306.

    Google Scholar 

  175. Shah, M. D., Seelan, J. S. S., & Iqbal, M. (2020). Phytochemical investigation and antioxidant activities of methanol extract, methanol fractions and essential oil of Dillenia suffruticosa leaves. Arabian Journal of Chemistry, 13(9), 7170–7182. https://doi.org/10.1016/j.arabjc.2020.07.022

    Article  CAS  Google Scholar 

  176. Jainab, S. B., Azeez, A., Fathima, A., & Kumar, R. R. (2019). GC-MS analysis of the marine algae Halymenia dilatata Zanardini a potential source of fish feed in future. Indian Hydrobiology, 18(1–2), 164–169.

    Google Scholar 

  177. Skanda, S., & Vijayakumar, B. S. (2021). Antioxidant and anti-inflammatory metabolites of a soil-derived fungus Aspergillus arcoverdensis SSSIHL-01. Current Microbiology, 78(4), 1317–1323. https://doi.org/10.1007/s00284-021-02401-3

    Article  CAS  PubMed  Google Scholar 

  178. Zahra, G., Khadijeh, B., Hossein, D., & Ali, S. (2019). Essential oil composition of two Scutellaria species from Iran. Journal of Traditional Chinese Medical Sciences, 6(3), 244–253. https://doi.org/10.1016/j.jtcms.2019.07.003

    Article  Google Scholar 

  179. Bueno-Silva, B., Kawamoto, D., Ando-Suguimoto, E. S., Alencar, S. M., Rosalen, P. L., & Mayer, M. P. (2015). Brazilian red propolis attenuates inflammatory signaling cascade in LPS-activated macrophages. PLoS One, 10(12), e0144954. https://doi.org/10.1371/journal.pone.0144954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Luethi, E., Nguyen, K. T., Bürzle, M., Blum, L. C., Suzuki, Y., Hediger, M., & Reymond, J. L. (2010). Identification of selective norbornane-type aspartate analogue inhibitors of the glutamate transporter 1 (GLT-1) from the chemical universe generated database (GDB). Journal of Medicinal Chemistry, 53(19), 7236–7250. https://doi.org/10.1021/jm100959g

    Article  CAS  PubMed  Google Scholar 

  181. Aziman, N., Abdullah, N., Bujang, A., Mohd Noor, Z., Abdul Aziz, A., & Ahmad, R. (2021). Phytochemicals of ethanolic extract and essential oil of Persicaria hydropiper and their potential as antibacterial agents for food packaging polylactic acid film. Journal of Food Safety, 41(1), e12864. https://doi.org/10.1111/jfs.12864

    Article  CAS  Google Scholar 

  182. Babu, K. S., Reddy, P. M., Naik, V. K. M., & Ramanjaneyulu, K. (2019). Synthesis and antibacterial screening of five newazomethine derivatives of 2-amino-2-methyl-1-propanol. International Pharmaceutical Sciences and Research, 10(9), 4396–4403.

    CAS  Google Scholar 

  183. Dr. Duke’s, (2013). Phytochemical and ethno botanical databases, Phytochemical and Ethnobotanical Databases. www.ars-gov/cgi-bin/duke/.

  184. Murugan, K., Sekar, K., Sangeetha, S., Ranjitha, S., & Sohaibani, S. A. (2013). Antibiofilm and quorum sensing inhibitory activity of Achyranthes aspera on cariogenic Streptococcus mutans: An in vitro and in silico study. Pharmaceutical Biology, 51(6), 728–736. https://doi.org/10.3109/13880209.2013.764330

    Article  CAS  PubMed  Google Scholar 

  185. Uthirapathy, S., Ahamad, J., Porwal, O., S Mohammed Ameen, M., & T Anwer, E. (2021). GCMS analysis and hypolipidemic activity of Dioscorea bulbifera (L) in high fat diet induced hypercholesterolemic rats. Research Journal of Phytochemistry, 15(1), 23–29.

    Article  CAS  Google Scholar 

  186. Lanciotti, R., Belletti, N., Patrignani, F., Gianotti, A., Gardini, F., & Guerzoni, M. E. (2003). Application of hexanal,(E)-2-hexenal, and hexyl acetate to improve the safety of fresh-sliced apples. Journal of Agricultural and Food Chemistry, 51(10), 2958–2963. https://doi.org/10.1021/jf026143h

    Article  CAS  PubMed  Google Scholar 

  187. Konus, M., Aydemir, S., Yilmaz, C., Kivrak, A., Kizildogan, A. K., & Arpacı, P. U. (2019). Synthesis and evaluation of antioxidant, antimicrobial and anticancer properties of 2-(prop-2-yn-1-yloxy) benzaldehyde derivatives. Letters in Organic Chemistry, 16(5), 415–423. https://doi.org/10.2174/1570178616666181116100232

    Article  CAS  Google Scholar 

  188. Manna, K., & Agrawal, Y. K. (2009). Microwave assisted synthesis of new indophenazine 1, 3, 5-trisubstruted pyrazoline derivatives of benzofuran and their antimicrobial activity. Bioorganic & Medicinal Chemistry Letters, 19(10), 2688–2692. https://doi.org/10.1016/j.bmcl.2009.03.161

    Article  CAS  Google Scholar 

  189. Loğoğlu, E., Yilmaz, M., Katircioğlu, H., Yakut, M., & Mercan, S. (2010). Synthesis and biological activity studies of furan derivatives. Medicinal Chemistry Research, 19(5), 490–497. https://doi.org/10.1007/s00044-009-9206-8

    Article  CAS  Google Scholar 

  190. Marrufo, T., Nazzaro, F., Mancini, E., Fratianni, F., Coppola, R., De Martino, L., Agostinho, A. B., & De Feo, V. (2013). Chemical composition and biological activity of the essential oil from leaves of Moringa oleifera Lam. cultivated in Mozambique. Molecules, 18(9), 10989–11000. https://doi.org/10.3390/molecules180910989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Đukić, N., Andrić, G., Glinwood, R., Ninkovic, V., Andjelković, B., & Radonjić, A. (2021). The effect of 1-pentadecene on Tribolium castaneum behaviour: Repellent or attractant? Pest Management Science, 77(9), 4034–4039. https://doi.org/10.1002/ps.6428

    Article  CAS  PubMed  Google Scholar 

  192. Vikhe, S., & Nirmal, S. (2018). Antiallergic and antihistaminic actions of Ceasalpinia bonducella seeds: Possible role in treatment of asthma. Journal of Ethnopharmacology, 216, 251–258. https://doi.org/10.1016/j.jep.2017.12.007

    Article  PubMed  Google Scholar 

  193. Thomas, J., Govindan, M. S., & Kurup, G. M. (2013). Mosquito larvicidal activity of 8, 11, 14-eicosatrienoic acid of Gliricidia sepium Jacq. Journal of Biopesticides, 6(2), 178.

    Google Scholar 

  194. Boussaada, O., Ammar, S., Saidana, D., Chriaa, J., Chraif, I., Daami, M., Helal, A. N., & Mighri, Z. (2008). Chemical composition and antimicrobial activity of volatile components from capitula and aerial parts of Rhaponticum acaule DC growing wild in Tunisia. Microbiological Research, 163(1), 87–95. https://doi.org/10.1016/j.micres.2007.02.010

    Article  CAS  PubMed  Google Scholar 

  195. Servi, H., Sen, A., & Dogan, A. (2020). Chemical composition and biological activities of endemic Tripleurospermum conoclinium (Boiss. & Balansa) Hayek essential oils. Flavour and Fragrance Journal, 35(6), 713–721. https://doi.org/10.1002/ffj.3610

    Article  CAS  Google Scholar 

  196. Melappa, G., & Prakash, B. (2017). In vitro antimitotic, antiproliferative and GC-MS studies on the methanolic extract of endophytic fungi, penicillium species of Tabebuia argentea bur & k. Sch Farmacia, 5, 301–309.

    Google Scholar 

  197. Blackwood, R. K., Rennhard, H. H., & Stephens, C. R. (1960). Some transformations at the 12a-position in the tetracycline series1. Journal of the American Chemical Society, 82(19), 5194–5197. https://doi.org/10.1021/ja01504a041

    Article  Google Scholar 

  198. Singh, N., Mishra, S., Mondal, A., Sharma, D., Jain, N., & Aseri, G. K. (2022). Potential of desert medicinal plants for combating resistant biofilms in urinary tract infections. Applied Biochemistry and Biotechnology, 1–15. https://doi.org/10.1007/s12010-022-03950-4

  199. Bansal, A., Kumar, P., & Narasimhan, B. (2014). Synthesis, antimicrobial evaluation and QSAR studies of 2-hydroxy propanoic acid derivatives. Drug Research, 64(05), 240–245. https://doi.org/10.1055/s-0033-1357127

    Article  CAS  PubMed  Google Scholar 

  200. Gein, V. L., Tatarinov, V. V., Rassudikhina, N. A., Vakhrin, M. I., & Voronina, E. V. (2011). Synthesis and antimicrobial activity of 2-aroylmethylene-6-hydroxy-2, 3-dihydroindol-3-ones. Pharmaceutical Chemistry Journal, 45(4), 231–233.

    Article  CAS  Google Scholar 

  201. Jiang, B., Wang, L., Zhu, M., Wu, S., Wang, X., Li, D., Liu, C., Feng, Z., & Tian, B. (2021). Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. LWT, 147, 111617. https://doi.org/10.1016/j.lwt.2021.111617

    Article  CAS  Google Scholar 

  202. Vijayakumar, K., & Ramanathan, T. (2020). Musa acuminata and its bioactive metabolite 5-Hydroxymethylfurfural mitigates quorum sensing (las and rhl) mediated biofilm and virulence production of nosocomial pathogen Pseudomonas aeruginosa in vitro. Journal of Ethnopharmacology, 246, 112242. https://doi.org/10.1016/j.jep.2019.112242

    Article  CAS  PubMed  Google Scholar 

  203. Melappa, G., Channabasava, R., Chandrappa, C. P., & Sadananda, T. S. (2014). In vitro antidiabetic activity of three fractions of methanol extracts of Loranthus micranthus, identification of phytoconstituents by GC-MS and possible mechanism identified by GEMDOCK method. Asian Journal of Biomedical and Pharmaceutical Sciences, 4(34), 34. https://doi.org/10.15272/ajbps.v4i34.520

    Article  Google Scholar 

  204. Afolayan, A. J., & Ashafa, A. O. T. (2009). Chemical composition and antimicrobial activity of the essential oil from Chrysocoma ciliata L. leaves. Journal of Medicinal Plants Research, 3(5), 390–394.

    CAS  Google Scholar 

  205. Beulah, G. G., Soris, P. T., & Mohan, V. R. (2018). GC-MS determination of bioactive compounds of Dendrophthoe falcata (LF) Ettingsh: An epiphytic plant. International Journal of Health Sciences and Research, 8, 261–269.

    Google Scholar 

  206. Sophiya, P., Kiran, B. K., Lohith, N. S., Ali, F., Sathisha, A. D., & Dharmappa, K. K. (2021). GC-MS analysis, adme toxicity and in silico studies of some isolated compounds from Melastoma malabathricum leaves against SPLA2 inhibition. Applied Biological Research, 23(1), 26–36. https://doi.org/10.5958/0974-4517.2021.00004.5

    Article  Google Scholar 

  207. Landry, B. K. U., Moumita, S., Jayabalan, R., & Francois, Z. N. (2016). Honey, probiotics and prebiotics. Research Journal of Pharmaceutical Biological and Chemical Sciences, 7(5), 2428–2438.

    CAS  Google Scholar 

  208. Muhammad, F., Monteiro-Riviere, N. A., & Riviere, J. E. (2005). Comparative in vivo toxicity of topical JP-8 jet fuel and its individual hydrocarbon components: Identification of tridecane and tetradecane as key constituents responsible for dermal irritation. Toxicologic Pathology, 33(2), 258–266. https://doi.org/10.1080/01926230590908222

    Article  CAS  PubMed  Google Scholar 

  209. Sudha, T., Chidambarampillai, S., & Mohan, V. R. (2013). GC-MS analysis of bioactive components of aerial parts of Fluggea leucopyrus Willd.(Euphorbiaceae). Journal of Applied Pharmaceutical Science, 3(5), 126–130. https://doi.org/10.7324/JAPS.2013.3524

    Article  CAS  Google Scholar 

  210. Gavamukulya, Y., Abou-Elella, F., Wamunyokoli, F., & El-Shemy, H. A. (2015). GC-MS analysis of bioactive phytochemicals present in ethanolic extracts of leaves of Annona muricata: A further evidence for its medicinal diversity. Pharmacognosy Journal, 7(5), 300–304. https://doi.org/10.5530/pj.2015.5.9

    Article  CAS  Google Scholar 

  211. Sujatha, M., Karthika, K., Sivakamasungari, S., Mariajancyrani, J., & Chandramohan, G. (2014). GC-MS analysis of phytocomponents and total antioxidant activity of hexane extract of Sinapis alba. International Journal of Pharmaceutical, Chemical, and Biological Sciences, 4(1), 112–117.

    Google Scholar 

  212. Kareti, S. R., & Subash, P. (2020). In silico molecular docking analysis of potential anti-alzheimer’s compounds present in chloroform extract of Carissa carandas leaf using gas chromatography MS/MS. Current Therapeutic Research, 93, 100615. https://doi.org/10.1016/j.curtheres.2020.100615

    Article  PubMed  PubMed Central  Google Scholar 

  213. Deb, M., & Kumar, D. (2019). Chemical composition and bioactivity of the essential oils derived from Artemisia Annua against the red flour beetle. Biosciences Biotechnology Research Asia, 16(2), 463–476. https://doi.org/10.13005/bbra/2761

    Article  Google Scholar 

  214. Laokor, N., & Juntachai, W. (2021). Exploring the antifungal activity and mechanism of action of Zingiberaceae rhizome extracts against Malassezia furfur. Journal of Ethnopharmacology, 279, 114354. https://doi.org/10.1016/j.jep.2021.114354

    Article  CAS  PubMed  Google Scholar 

  215. Adedapo, A. D., Ajayi, A. M., Ekwunife, N. L., Falayi, O. O., Oyagbemi, A., Omobowale, T. O., & Adedapo, A. A. (2020). Antihypertensive effect of Phragmanthera incana (Schum) Balle on NG-nitro-L-Arginine methyl ester (L-NAME) induced hypertensive rats. Journal of Ethnopharmacology, 257, 112888. https://doi.org/10.1016/j.jep.2020.112888

    Article  CAS  PubMed  Google Scholar 

  216. Vanitha, V., Vijayakumar, S., Nilavukkarasi, M., Punitha, V. N., Vidhya, E., & Praseetha, P. K. (2020). Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Industrial Crops and Products, 154, 112748. https://doi.org/10.1016/j.indcrop.2020.112748

    Article  CAS  Google Scholar 

  217. Deshmukh, M. M., & Kashid, N. G. (2019). Evaluation of TLC and GCMS activity of Dolichandrone falcata (Seem). Think India Journal, 22(31), 396–402.

    Google Scholar 

Download references

Acknowledgements

The first author Sivagaami Palaniyappan is grateful to “RUSA, 2.0-Biological Sciences, Bharathidasan University” for providing Project Fellowship (Ref. No. 02BDU/RUSA 2.0/TRP/BS/Date:22/04/2021). The authors are thankful to UGC-SAP-DRS-II (F.3–9/2013[SAP-II], Department of Science and Technology-Fund for Improvement of Science and Technology Infrastructure (DST-FIST) Level-I (stage-II) (Ref. No. SR/FST/LSI-647/2015(C) Date.11.08.2016) and Department of Science and Technology Promotion of University Research and Scientific Excellence (DST PURSE Phase—II) (Ref. No. SR/PURSE PHASE 2/16(G) /& 16(C) Date. 21.02.2017) of the Department of Animal Science, Bharathidasan University for the instrumentation facility.

Funding

This research work was supported by Rashtriya Uchchatar Shiksha Abhiyan (RUSA) – 2.0. Biological Sciences. Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Contributions

Sivagaami Palaniyappan: methodology, investigation, resources, data curation, writing—original draft. Arun Sridhar: methodology, resources, data curation, writing—review and editing. Manikandan Arumugam: investigation, resources, data curation. Thirumurugan Ramasamy: conceptualization, project administration, supervision, validation, visualization, writing—review and editing.

Corresponding author

Correspondence to Thirumurugan Ramasamy.

Ethics declarations

Ethical Approval

No ethical approval is required for this study.

Consent to Participate

This study did not require approval in this section.

Consent for Publication

This study did not require approval in this section.

Conflict of Interest

The authors declare no competing interests.

Declarations of Author’s Agreement to Authorship and Submission

All authors have agreed to authorship and the submission of this manuscript for peer review and publication in Applied Biochemistry and Biotechnology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaniyappan, S., Sridhar, A., Arumugam, M. et al. Bioactive Analysis of Antibacterial Efficacy and Antioxidant Potential of Aloe barbadensis Miller Leaf Extracts and Exploration of Secondary Metabolites Using GC–MS Profiling. Appl Biochem Biotechnol 196, 729–773 (2024). https://doi.org/10.1007/s12010-023-04565-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04565-z

Keywords

Navigation