Skip to main content

Advertisement

Log in

Exploring the Use of SEM–EDS Analysis to Measure the Distribution of Major, Minor, and Trace Elements in Bottlenose Dolphin (Tursiops truncatus) Teeth

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Dolphin teeth contain enamel, dentin, and cementum. In dentin, growth layer groups (GLGs), deposited at incremental rates (e.g., annually), are used for aging. Major, minor, and trace elements are incorporated within teeth; their distribution within teeth varies, reflecting tooth function and temporal changes in an individual’s exposure. This study used a scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) to determine the distribution of major (e.g., Ca, P), minor (e.g., Cl, Mg, Na), and trace elements (e.g., Cd, Hg, Pb, Zn) in teeth from 12 bottlenose dolphins (Tursiops truncatus). The objective was to compare elemental distributions between enamel and dentin and across GLGs. Across all dolphins and point analyses, the following elements were detected in descending weight percentage (wt %; mean ± SE): O (40.8 ± 0.236), Ca (24.3 ± 0.182), C (14.3 ± 0.409), P (14.0 ± 0.095), Al (4.28 ± 0.295), Mg (1.89 ± 0.047), Na (0.666 ± 0.008), Cl (0.083 ± 0.003). Chlorine and Mg differed between enamel and dentin; Mg increased from the enamel towards the dentin while Cl decreased. The wt % of elements did not vary significantly across the approximate location of the GLGs. Except for Al, which may be due to backscatter from the SEM stub, we did not detect trace elements. Other trace elements, if present, are below the detection limit. Technologies with lower detection limits (e.g., laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)) would be required to confirm the presence and distribution of trace elements in bottlenose dolphin teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data for each dolphin is available in the Supplementary Information. Any data and images not published in this paper can be requested from Meaghan McCormack at mmccormack@txstate.edu.

Code Availability

Not applicable.

References

  1. Myrick AC Jr (1991) Some new and potential uses of dental layers in studying delphinid populations. In: Pryor K, Norris KS (eds) Dolphin societies: discoveries and puzzles. University of California Press, Los Angeles, pp 251–279

    Google Scholar 

  2. Werth AJ (2000) Feeding in marine mammals. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, San Diego, pp 487–526

    Chapter  Google Scholar 

  3. Ungar P (2010) Mammal teeth: origin, evolution and diversity. The John Hopkins University Press, Baltimore

    Google Scholar 

  4. Armfield BA, Zheng Z, Bajpai S, Vinyard CJ, Thewissen JGM (2013) Development and evolution of the unique cetacean dentition. PeerJ. https://doi.org/10.7717/peerj.24

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berta A, Sumich JL, Kovacs KM (2006) Diet, foraging, structures and strategies. In: Berta A, Sumich JL, Kovacs KM (eds) Marine mammals: evolutionary biology, 2nd edn. Academic Press, Burlington, pp 312–355

    Chapter  Google Scholar 

  6. Wang F, Li G, Wu Z, Fan Z, Yang M, Wu T, Wang J, Zhang C, Wang S (2019) Tracking diphyodont development in miniature pigs in vitro and in vivo. Biol Open. https://doi.org/10.1242/bio.037036

    Article  PubMed  PubMed Central  Google Scholar 

  7. Outridge PM, Veinott G, Evans RD (1995) Laser ablation ICP-MS analysis of incremental biological structures: archives of trace-element accumulation. Env Rev. https://doi.org/10.1139/a95-007

    Article  Google Scholar 

  8. Evans RD, Richner P, Outridge PM (1995) Micro-spatial variations of heavy metals in the teeth of walrus as determined by laser ablation ICP-MS: the potential for reconstructing a history of metal exposure. Arch Environ Contam Toxicol. https://doi.org/10.1007/BF00213969

    Article  PubMed  Google Scholar 

  9. Ando N, Isono T, Sakurai Y (2005) Trace elements in the teeth of Steller sea lions (Eumetopias jubatus) from the North Pacific. Ecol Res. https://doi.org/10.1007/s11284-005-0037-x

    Article  Google Scholar 

  10. Clark CT, Horstmann L, Misarti N (2020) Zinc concentrations in teeth of female walruses reflect the onset of reproductive maturity. Conserv Physiol. https://doi.org/10.1093/conphys/coaa029

    Article  PubMed  PubMed Central  Google Scholar 

  11. Clark CT, Horstmann L, Misarti N (2020) Evaluating tooth strontium and barium as indicators of weaning age in Pacific walruses. Methods Ecol Evol. https://doi.org/10.1111/2041-210X.13482

    Article  PubMed  PubMed Central  Google Scholar 

  12. Clark CT, Horstmann L, Misarti N (2021) Walrus teeth as biomonitors of trace elements in Arctic marine ecosystems. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.145500

    Article  PubMed  PubMed Central  Google Scholar 

  13. De María M, Szteren D, García-Alonso J, de Rezende CE, Gonçalves RA, Godoy JM, Barboza FR (2021) Historic variation of trace elements in pinnipeds with spatially segregated trophic habits reveals differences in exposure to pollution. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141296

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wenthrup-Bryne E, Armstrong CA, Armstrong RS, Collins BM (1997) Fourier transform Raman microscopic mapping of molecular components in human tooth. L Raman Spectrosc. https://doi.org/10.1002/(SICI)1097-4555(199702)28:2/3%3c151::AID-JRS71%3e3.0.CO;2-5

    Article  Google Scholar 

  15. Botta S, Albuquerque C, Hohn AA, da Silva VMF, Santos MCDO, Meirelles C, Barbosa L, Di Benedittto APM, Ramos RMA, Bertozzi C, Cremer MJ, Franco-Trecu V, Miekeley N, Secchi ER (2015) Ba/Ca ratios in teeth reveal habitat use patterns of dolphins. Mar Ecol Prog Ser. https://doi.org/10.3354/meps11158

    Article  Google Scholar 

  16. Zheng Y, Zhang Y, Tang W, Guo H, Zhu Y, Dong Z, Jiang H (2018) Preliminary in situ teeth study of the narrow-ridged finless porpoises remains using microsynchrotron radiation X-ray fluorescence and laser ablation inductively coupled plasma mass spectrometry. XRay Spectrom. https://doi.org/10.1002/xrs.2955

    Article  Google Scholar 

  17. Kinghorn A, Humphries MM, Outridge P, Chan HM (2008) Teeth as biomonitors of selenium concentrations in tissues of beluga whales (Delphinapterus leucas). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2008.04.031

    Article  PubMed  Google Scholar 

  18. Loch C, Swain MV, van Vuuren LJ, Kieser JA, Fordyce RE (2013) Mechanical properties of dental tissues in dolphins (Cetacea: Delphinoidea and Inioidea). Arch Oral Biol. https://doi.org/10.1016/j.archoralbio.2012.12.003

    Article  PubMed  Google Scholar 

  19. Loch C, Swain MV, Fraser SJ, Gordon KC, Kieser JA, Fordyce RE (2014) Elemental and chemical characterization of dolphin enamel and dentine using X-ray and Raman microanalyzes (Cetacea: Delphinoidea and Inioidea). J Struct Biol. https://doi.org/10.1016/j.jsb.2013.11.006

    Article  PubMed  Google Scholar 

  20. Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP (2002) Nanoindentation mapping of mechanical properties of human molar tooth enamel. Arch Oral Biol. https://doi.org/10.1016/S0003-9969(02)00006-7

    Article  PubMed  Google Scholar 

  21. Myick AC, Hohn AA, Sloan, PA, Kimura M, Stanley DD (1983). Estimating age of spotted and spinner dolphins (Stenella attenuata and Stenella longirostris) from teeth. NOAA Technical Memorandum. Southwest Fisheries Science Center, National Marine Fisheries Service. Report number NOAA-TM-NMFS-SWFC-30. La Jolla, California, pp 17

  22. Hohn AA, Scott MD, Wells RS, Sweeny JC, Irvine AB (1989) Growth layers in teeth from free-ranging, known-age bottlenose dolphins. Mar Mamm Sci. https://doi.org/10.1111/j.1748-7692.1989.tb00346.x

    Article  Google Scholar 

  23. Hohn AA (2009) Age estimations. In: Perrin WF, Wursig B, Thewissen JGM (eds) Encyclopedia of marine mammals, 2nd edn. Academic Press, London, pp 11–17

    Chapter  Google Scholar 

  24. Bowen WD, Northridge S (2010) Morphometrics, age estimation, and growth. In: Boyd IL, Bowen WD, Iverson SJ (eds) Marine mammal ecology and conservation: a handbook of techniques. Oxford University Press Inc., New York, pp 98–117

    Google Scholar 

  25. Vallet-Regí M, Navarrete DA (2016) Biological apatites in bone and teeth. In: Vallet-Regí M, Navarrete DA (eds) Clinical use: from materials to applications. The Royal Society of Chemistry, Cambridge, pp 1–29

    Google Scholar 

  26. Wang R, Zhao D, Wang Y (2020) Characterization of elemental distribution across human dentin-enamel junction by scanning electron microscopy with energy-dispersive X-ray spectroscopy. Microsc Res Tech. https://doi.org/10.1002/jemt.23648

    Article  PubMed  Google Scholar 

  27. Simmer JP, Fincham AG (1995) Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med. https://doi.org/10.1177/10454411950060020701

    Article  PubMed  Google Scholar 

  28. Duckworth RM (2006) The teeth and their environment: physical, chemical and biochemical influences. Karger Publishers, Basel, Switzerland

    Google Scholar 

  29. Goldberg M, Kulkarni AB, Young M, Boskey A (2011) Dentin: structure, composition and mineralization: the role of dentin ECM in dentin formation and mineralization. Front Biosci (Elite Ed). https://doi.org/10.2741/e281

    Article  Google Scholar 

  30. Kang D, Amarasiriwardena D, Goodman AH (2004) Application of laser ablation–inductively coupled plasma-mass spectrometry (LA–ICP–MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layers and pulp. Anal Bioanal Chem 378(6):1608–15. https://doi.org/10.1007/s00216-004-2504-6

    Article  CAS  PubMed  Google Scholar 

  31. Brügmann G, Krause J, Brachert TC, Kullmer O, Schrenk F, Ssemmanda I, Mertz DF (2012) Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation-part 1: major and minor element variation. Biogeosciences. https://doi.org/10.5194/bg-9-119-2012

  32. Curzon MEJ, Featherstone JDB (1983) Chemical composition in enamel. In: Lazari EP, Levy BM (eds) CRC handbook of experimental aspects of oral biochemistry. CRC Press, Boca Raton, FL, pp 123–135

    Google Scholar 

  33. Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed. https://doi.org/10.1002/1521-3773(20020902)41:17%3c3130::AID-ANIE3130%3e3.0.CO;2-1

    Article  Google Scholar 

  34. Rautray TR, Das S, Rautray AC (2010) In situ analysis of human teeth by external PIXE. Nucl Instrum Methods Phys Res B. https://doi.org/10.1016/j.nimb.2010.01.004

    Article  Google Scholar 

  35. de Dios TJ, Alcolea A, Hernández A, Ruiz AJO (2015) Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol. https://doi.org/10.1016/j.archoralbio.2015.01.014

    Article  Google Scholar 

  36. Yasukawa A, Yokoyama T, Kandori K, Ishikawa T (2007). Reaction of calcium hydroxyapatite with Cd2+ and Pb2+ ions. Colloid. Surf. A-Physiochem. Eng. Asp. https://doi.org/10.1016/j.colsurfa.2006.11.042

  37. Stock SR, Finney LA, Telser A, Maxey E, Vogt S, Okasinski JS (2017) Cementum structure in Beluga whale teeth. Acta Biomater. https://doi.org/10.1016/j.actbio.2016.11.015

    Article  PubMed  Google Scholar 

  38. Murphy S, Perrott M, McVee J, Read FL, Stockin KA (2014) Deposition of growth layer groups in dentine tissue of captive common dolphins (Delphinus delphis). NAMMCO Sci Publ DOI 10(7557/3):3017

    Google Scholar 

  39. Nganvongpanit K, Buddhachat K, Piboon P, Euppayo T, Kaewmong P, Cherdsukjai P, Kittiwatanawong K, Thitaram C (2017) Elemental classification of the tusks of dugong (Dugong dugong) by HH-XRF analysis and comparison with other species. Sci Rep. https://doi.org/10.1038/srep4616

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ando-Mizobata N, Sakai M, Sakurai Y (2006) Trace-element analysis of Steller sea lion (Eumetopias jubatus) teeth using a scanning X-ray analytical microscope. Mamm Study. https://doi.org/10.3106/13486160(2006)31[65:TAOSSL]2.0.CO;2

    Article  Google Scholar 

  41. Cruwys E, Robinson K, Davis NR (1994) Microprobe analysis of trace metals in seal teeth from Svalbard, Greenland, and South Georgia. Polar Rec. https://doi.org/10.1017/S0032247400021057

    Article  Google Scholar 

  42. Cáceres-Saez I, Panebianco MV, Perez-Catán S, Dellabianca NA, Negri MF, Ayala CN, Googall RNP, Cappozzo HL (2016) Mineral and essential element measurements in dolphin bones using two analytical approaches. Chem Ecol. https://doi.org/10.1080/02757540.2016.1177517

    Article  Google Scholar 

  43. Sforna MC, Lugli F (2017) MapIT!: a simple and user-friendly MATLAB script to elaborate elemental distribution images from LA-ICP-MS data. J Anal At Spectrom. https://doi.org/10.1039/C7JA00023E

    Article  Google Scholar 

  44. Ellingham ST, Thompson TJ, Islam M (2018) Scanning electron microscopy–energy-dispersive X-ray (SEM/EDX): a rapid diagnostic tool to aid the identification of burnt bone and contested cremains. J Forensic Sci. https://doi.org/10.1111/1556-4029.13541

    Article  PubMed  Google Scholar 

  45. McCormack MA, Fattagalia F, McFee W, Dutton J (2020) Mercury concentrations in blubber and skin from stranded dolphins (Tursiops truncatus) along the Florida and Louisiana coasts (Gulf of Mexico, USA) in relation to biological variables. Environ Res. https://doi.org/10.1016/j.envres.2019.108886.

  46. Nasrazadani S, Hassani S (2016) Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries. In: Makhlouf ASH, Aliofkhazraei M (eds) Handbook of materials failure analysis with case studies from the oil and gas industry. Elsevier, Oxford, UK, pp 39–54

    Chapter  Google Scholar 

  47. Wolfgong WJ (2016) Chapter 14 - Chemical analysis techniques for failure analysis: Part 1, common instrumental methods. In: Makhlouf ASH, Aliofkhazraei M (eds), Handbook of material failure analysis with case studies from the aerospace and automotive industries. Elsevier, pp. 279–307

  48. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 1 Nov 2020

  49. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01

  50. Length, R (2020) emmeans: estimated marginal means, aka least-squares means. R package version 1.5.0. https://CRAN.R-project.org/package=emmeans. Accessed 1 Nov 2020

  51. Adams DH, Engel ME (2014) Mercury, lead, and cadmium in blue crabs, Callinectes sapidus, from the Atlantic coast of Florida, USA: a multipredator approach. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2013.11.029

    Article  PubMed  Google Scholar 

  52. Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F (2015) Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-015-8858-0

  53. Perkin Elmer 2011. The 30-minute guide to ICP-MS. http://www.perkinelmer.com/CMSResources/Images/4474849tch_icpmsthirtyminuteguide.pdf. Accessed 1 Nov 2020

  54. Newbury DE, Ritchie NWM (2013) Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? Scanning 35(3):141–168. https://doi.org/10.1002/sca.21041

    Article  CAS  PubMed  Google Scholar 

  55. Lane DW, Peach DF (1997) Some observations on the trace element concentrations in human dental enamel. Biol Elem Res. https://doi.org/10.1007/BF02783305

    Article  Google Scholar 

  56. Reitznerová E, Amarasiriwardena D, Kopčáková M, Barnes RM (2000) Determination of some trace elements in human tooth enamel. Fresenius J Anal Chem. https://doi.org/10.1007/s002160000461

    Article  PubMed  Google Scholar 

  57. Outridge PM, Hobson KA, McNeely R, Dyke A (2002) A comparison of modern and preindustrial levels of mercury in the teeth of beluga in the Mackenzie Delta, Northwest Territories, and walrus at Igloolik, Nunavut. Canada Arctic 55:123–132

    Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the Analysis Research Service Center (ARSC) at Texas State University, especially Jonathan Anderson and Brian Samuels, for training and use of the SEM-EDS. The ARSC JEOL SEM equipment purchase was made possible by Professor Tom Myers (startup funds), Emerging Technology Fund (grant), MSEC, Provost, and Research Service Center contributions. Teeth were provided by the Texas Marine Mammal Stranding Network under a NOAA parts authorization letter pursuant to 50 CFR 216.22. issued to Jessica Dutton. NOAA Disclaimer: The scientific results and conclusions, as well as any opinions expressed herein, are those of the authors and do not necessarily reflect the views of NOAA or the Department of Commerce. The mention of any commercial product is not meant as an endorsement by the Agency or Department.

Funding

Funding for this project was provided by the Texas State University Graduate College Doctoral Research Support Fellowship to Meaghan McCormack.

Author information

Authors and Affiliations

Authors

Contributions

Meaghan A. McCormack: conceptualization, data curation, formal analysis, funding acquisition, methodology, writing–original draft, writing–review and editing. Wayne E. McFee: data curation, methodology, formal analysis, writing–review and editing. Heidi R. Whitehead: sample acquisition, writing–original draft, writing–review and editing. Sarah Piwetz: sample acquisition, writing–original draft, writing–review and editing. Jessica Dutton: conceptualization, supervision, writing–original, draft, writing–review and editing.

Corresponding author

Correspondence to Meaghan A. McCormack.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 70 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCormack, M.A., McFee, W.E., Whitehead, H.R. et al. Exploring the Use of SEM–EDS Analysis to Measure the Distribution of Major, Minor, and Trace Elements in Bottlenose Dolphin (Tursiops truncatus) Teeth. Biol Trace Elem Res 200, 2147–2159 (2022). https://doi.org/10.1007/s12011-021-02809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02809-9

Keywords

Navigation