Skip to main content
Log in

Intrinsically Disordered Kiwellin Protein-Like Effectors Target Plant Chloroplasts and are Extensively Present in Rust Fungi

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The effector proteins produced by plant pathogens are one of the essential components of host–pathogen interaction. Despite being important, most of the effector proteins remain unexplored due to the diversity in their primary sequence generated by the high selection pressure of the host immune system. However to maintain the primary function in the infection process, these effectors may tend to maintain their native protein fold to perform the corresponding biological function. In the present study, unannotated candidate secretory effector proteins of sixteen major plant fungal pathogens were analyzed to find the conserved known protein folds using homology, ab initio, and Alpha Fold/Rosetta Fold protein dimensional (3D) structure approaches. Several unannotated candidate effector proteins were found to match various known conserved protein families potentially involved in host defense manipulation in different plant pathogens. Surprisingly a large number of plant Kiwellin proteins fold like secretory proteins (> 100) were found in studied rust fungal pathogens. Many of them were predicted as potential effector proteins. Furthermore, template independent modelling using Alpha Fold/Rosetta Fold analysis and structural comparison of these candidates also predicted them to match with plant Kiwellin proteins. We also found plant Kiwellin matching proteins outside rusts including several non-pathogenic fungi suggesting the broad function of these proteins. One of the highest confidently modeled Kiwellin matching candidates effectors, Pstr_13960 (97.8%), from the Indian P. striiformis race Yr9 was characterized using overexpression, localization, and deletion studies in Nicotiana benthamiana. The Pstr_13960 suppressed the BAX-induced cell death and localized in the chloroplast. Furthermore, the expression of the Kiwellin matching region (Pst_13960_kiwi) alone suppressed the BAX-induced cell death in N. benthamiana despite the change of location to the cytoplasm and nucleus, suggesting the novel function of the Kiwellin core fold in rust fungi. Molecular docking showed that Pstr_13960 can interact with plant Chorismate mutases (CMs) using three loops conserved in plant and rust Kiwellins. Further analysis of Pstr_13960 showed to contain Intrinsically disordered regions (IDRs) in place of the N-terminal β1/β2 region found in plant Kiwellins suggesting the evolution of rust Kiwellins-like effectors (KLEs). Overall, this study reports the presence of a Kiwellin protein–like fold containing a novel effector protein family in rust fungi depicting a classical example of the evolution of effectors at the structure level as Kiwellin effectors show very low significant similarity to plant Kiwellin at the sequence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Jaswal, R., Kiran, K., Rajarammohan, S., Dubey, H., Singh, P. K., Sharma, Y., Deshmukh, R., Sonah, H., Gupta, N., & Sharma, T. R. (2020). Effector biology of biotrophic plant fungal pathogens: Current advances and future prospective. Microbiological Research. https://doi.org/10.1016/j.micres.2020.126567

    Article  PubMed  Google Scholar 

  2. Xu, Q., Tang, C., Wang, L., Zhao, C., Kang, Z., & Wang, X. (2020). Haustoria – arsenals during the interaction between wheat and Puccinia striiformis f.sp. tritici. Molecular Plant Pathology. https://doi.org/10.1111/mpp.12882

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yousefi, S. R., Alshamsi, H. A., Amiri, O., & Salavati-Niasari, M. (2021). Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. Journal of Molecular Liquids, 337, 116405.

    Article  CAS  Google Scholar 

  4. Vleeshouwers, V. G. A. A., & Oliver, R. P. (2014). Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Molecular plant-microbe interactions, 27(3), 196–206.

    Article  CAS  PubMed  Google Scholar 

  5. Jaswal, R., Rajarammohan, S., Dubey, H., & Sharma, T. R. (2020). Smut fungi as a stratagem to characterize rust effectors: Opportunities and challenges. World Journal of Microbiology and Biotechnology, 36(10), 1–10.

    Article  Google Scholar 

  6. Kangara, N., Kurowski, T. J., Radhakrishnan, G. V., Ghosh, S., Cook, N. M., Yu, G., Arora, S., Steffenson, B. J., Figueroa, M., Mohareb, F., & Saunders, D. G. (2020). Mutagenesis of puccinia graminis f.sp. tritici and selection of gain-of-virulence mutants. Frontiers in plant science, 11, 570180.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miller, M. E., Nazareno, E. S., Rottschaefer, S. M., Riddle, J., Dos Santos Pereira, D., Li, F., Nguyen-Phuc, H., Henningsen, E. C., Persoons, A., Saunders, D. G., & Stukenbrock, E. (2020). Increased virulence of Puccinia coronata f. sp.avenae populations through allele frequency changes at multiple putative Avr loci. PLoS Genetics, 16(12), e1009291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mukhi, N., Gorenkin, D., & Banfield, M. J. (2020). Exploring folds, evolution and host interactions: understanding effector structure/function in disease and immunity. New Phytologist. https://doi.org/10.1111/nph.16563

    Article  PubMed  Google Scholar 

  9. De Guillen, K., Lorrain, C., Tsan, P., Barthe, P., Petre, B., Saveleva, N., Rouhier, N., Duplessis, S., Padilla, A., & Hecker, A. (2019). Structural genomics applied to the rust fungus Melampsora larici-populina reveals two candidate effector proteins adopting cystine knot and NTF2-like protein folds. Scientific Reports, 9(1), 1–12.

    Article  Google Scholar 

  10. Guo, L., Cesari, S., de Guillen, K., Chalvon, V., Mammri, L., Ma, M., Meusnier, I., Bonnot, F., Padilla, A., Peng, Y. L., & Liu, J. (2018). Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proceedings of the National Academy of Sciences, 115(45), 11637–11642.

    Article  CAS  Google Scholar 

  11. de Guillen, K., Ortiz-Vallejo, D., Gracy, J., Fournier, E., Kroj, T., & Padilla, A. (2015). Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi. PLoS pathogens. https://doi.org/10.1371/journal.ppat.1005228

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pennington, H. G., Jones, R., Kwon, S., Bonciani, G., Thieron, H., Chandler, T., Luong, P., Morgan, S. N., Przydacz, M., Bozkurt, T., & Bowden, S. (2019). The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA. PLoS Pathogens, 15(3), e1007620.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Outram, M. A., Figueroa, M., Sperschneider, J., Williams, S. J., & Dodds, P. N. (2022). Seeing is believing: Exploiting advances in structural biology to understand and engineer plant immunity. Current Opinion in Plant Biology, 67, 102210.

    Article  PubMed  Google Scholar 

  14. Seong, K., & Krasileva, K. (2021). Computational structural genomics unravels common folds and novel families in the secretome of fungal phytopathogen Magnaporthe oryzae. Molecular Plant-Microbe Interactions. https://doi.org/10.1094/MPMI-03-21-0071-R

    Article  PubMed  Google Scholar 

  15. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., & Bridgland, A. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: Making protein folding accessible to all. Nature Methods. https://doi.org/10.1038/s41592-022-01488-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yu, D. S., Outram, M. A., Smith, A., McCombe, C. L., Khambalkar, P. B., Rima, S. A., Sun, X., Ma, L., Ericsson, D. J., Jones, D. A., & Williams, S. J. (2021). The structural repertoire of Fusarium oxysporum f. sp. lycopersici effectors revealed by experimental and computational studies. bioRxiv. https://doi.org/10.1101/2021.12.14.472499

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rocafort, M., Bowen, J. K., Hassing, B., Cox, M. P., McGreal, B., de la Rosa, S., Plummer, K. M., Bradshaw, R. E., & Mesarich, C. H. (2022). The Venturia inaequalis effector repertoire is expressed in waves, and is dominated by expanded families with predicted structural similarity to avirulence proteins from other fungi. bioRxiv. https://doi.org/10.1101/2022.03.22.482717

    Article  Google Scholar 

  19. Seong, K., & Krasileva, K. (2022). Comparative computational structural genomics highlights divergent evolution of fungal effectors. bioRxiv. https://doi.org/10.1101/2022.05.02.490317

    Article  Google Scholar 

  20. Hamiaux, C., Maddumage, R., Middleditch, M. J., Prakash, R., Brummell, D. A., Baker, E. N., & Atkinson, R. G. (2014). Crystal structure of kiwellin, a major cell-wall protein from kiwifruit. Journal of structural biology, 187(3), 276–281.

    Article  CAS  PubMed  Google Scholar 

  21. Han, X., Altegoer, F., Steinchen, W., Binnebesel, L., Schuhmacher, J., Glatter, T., Giammarinaro, P. I., Djamei, A., Rensing, S. A., Reissmann, S., & Kahmann, R. (2019). A kiwellin disarms the metabolic activity of a secreted fungal virulence factor. Nature, 565(7741), 650–653.

    Article  CAS  PubMed  Google Scholar 

  22. Wildermuth, M. C. (2019). Plants fight fungi using kiwellin proteins. Nature. https://doi.org/10.1038/d41586-019-00092-2

    Article  PubMed  Google Scholar 

  23. Bange, G., & Altegoer, F. (2019). Plants strike back: Kiwellin proteins as a modular toolbox for plant defense mechanisms. Communicative & integrative biology, 12(1), 31–33.

    Article  CAS  Google Scholar 

  24. Altegoer, F., Weiland, P., Giammarinaro, P. I., Freibert, S. A., Binnebesel, L., Han, X., Lepak, A., Kahmann, R., Lechner, M., & Bange, G. (2020). The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense. Journal of Biological Chemistry, 295(23), 7816–7825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiran, K., Rawal, H. C., Dubey, H., Jaswal, R., Devanna, B. N., Gupta, D. K., Bhardwaj, S. C., Prasad, P., Pal, D., Chhuneja, P., & Balasubramanian, P. (2016). Draft genome of the wheat rust pathogen (Puccinia triticina) unravels genome-wide structural variations during evolution. Genome Biology and Evolution, 8(9), 2702–2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiran, K., Rawal, H. C., Dubey, H., Jaswal, R., Bhardwaj, S. C., Prasad, P., Pal, D., Devanna, B. N., & Sharma, T. R. (2017). Dissection of genomic features and variations of three pathotypes of Puccinia striiformis through whole genome sequencing. Scientific Reports. https://doi.org/10.1038/srep42419

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cortázar, A. R., Aransay, A. M., Alfaro, M., Oguiza, J. A., & Lavín, J. L. (2014). Secretool: Integrated secretome analysis tool for fungi. Amino Acids, 46(2), 471–473.

    Article  PubMed  Google Scholar 

  28. Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., & Thanki, N. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic acids research, 48(D1), D265–D268.

    Article  CAS  PubMed  Google Scholar 

  29. Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Heger, A., Hetherington, K., Holm, L., Mistry, J., & Sonnhammer, E. L. (2013). Pfam: The protein families database. Nucleic Acids Research, 42(D1), D222–D230.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sperschneider, J., Dodds, P. N., Gardiner, D. M., Singh, K. B., & Taylor, J. M. (2018). Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Molecular Plant Pathology, 19(9), 2094–2110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols, 10(6), 845–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature methods, 12(1), 7–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research. https://doi.org/10.1093/nar/gkh468

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., van Dijk, A. A., Ebrecht, A. C., Opperman, D. J., Sagmeister, T., Buhlheller, C., Pavkov-Keller, T., Rathinaswamy, M. K., Dalwadi, U., Yip, C. K., Burke, J. E., Garcia, K. C., Grishin, N. V., Adams, P. D., Read, R. J,, & Baker, D. (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Deep learning takes on protein folding. Science, 373(6557), 871–876. https://doi.org/10.1126/science.abj8754

  35. Ramírez-Aportela, E., López-Blanco, J. R., & Chacón, P. (2016). FRODOCK 2.0.: Fast protein–protein docking server. Bioinformatics, 32(15), 2386–2388.

    Article  PubMed  Google Scholar 

  36. Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  37. Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research. https://doi.org/10.1093/nar/gkp335

    Article  PubMed  PubMed Central  Google Scholar 

  38. Peng, Z., Mizianty, M. J., & Kurgan, L. (2014). Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins: Structure Function, and Bioinformatics, 82(1), 145–158.

    Article  CAS  Google Scholar 

  39. Mészáros, B., Erdős, G., & Dosztányi, Z. (2018). IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic acids research, 46(W1), W329–W337.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K., & Uversky, V. N. (1804). (2010) PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(4), 996–1010.

    Article  Google Scholar 

  41. Emanuelsson, O., Nielsen, H., & Heijne, G. V. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science, 8(5), 978–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Horton, P., Park, K.-J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: Protein localization predictor. Nucleic Acids Research. https://doi.org/10.1093/nar/gkm259

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sperschneider, J., Catanzariti, A. M., DeBoer, K., Petre, B., Gardiner, D. M., Singh, K. B., Dodds, P. N., & Taylor, J. M. (2017). LOCALIZER: Subcellular localization prediction of both plant and effector proteins in the plant cell. Scientific Reports. https://doi.org/10.1038/srep44598

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barsoum, M., Sabelleck, B., Spanu, D. P., & Panstruga, R. (2019). Rumble in the effector jungle: Candidate effector proteins in interactions of plants with powdery mildew and rust fungi. Critical Reviews in Plant Sciences, 38(4), 255–279.

    Article  CAS  Google Scholar 

  45. Vandhana, T. M., Reyre, J., Sushmaa, D., Berrin, J., Bissaro, B., & Madhuprakash, J. (2022). On the expansion of biological functions of lytic polysaccharide monooxygenases. New Phytologist, 233(6), 2380–2396.

    Article  CAS  PubMed  Google Scholar 

  46. Jagadeeswaran, G., Veale, L., & Mort, A. J. (2021). Do lytic polysaccharide monooxygenases aid in plant pathogenesis and herbivory? Trends in plant science, 26(2), 142–155.

    Article  CAS  PubMed  Google Scholar 

  47. Sabbadin, F., Urresti, S., Henrissat, B., Avrova, A. O., Welsh, L. R., Lindley, P. J., Csukai, M., Squires, J. N., Walton, P. H., Davies, G. J., & Bruce, N. C. (2021). Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes. Science, 373(6556), 774–779.

    Article  CAS  PubMed  Google Scholar 

  48. Miller, M. E., Zhang, Y., Omidvar, V., Sperschneider, J., Schwessinger, B., Raley, C., Palmer, J. M., Garnica, D., Upadhyaya, N., Rathjen, J., & Taylor, J. M. (2018). De novo assembly and phasing of dikaryotic genomes from two isolates of Puccinia coronate f. sp. avenae, the causal agent of oat crown rust. MBio, 9(1), e01650-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schwessinger, B., Sperschneider, J., Cuddy, W. S., Garnica, D. P., Miller, M. E., Taylor, J. M., Dodds, P. N., Figueroa, M., Park, R. F., & Rathjen, J. P. (2018). A near-complete haplotype-phased genome of the dikaryotic wheat stripe rust fungus Puccinia striiformis f. sp. tritici reveals high interhaplotype diversity. MBio, 9(1), e02275-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Offermann, L. R., Giangrieco, I., Perdue, M. L., Zuzzi, S., Santoro, M., Tamburrini, M., Cosgrove, D. J., Mari, A., Ciardiello, M. A., & Chruszcz, M. (2015). Elusive structural, functional, and immunological features of Act d 5, the green kiwifruit kiwellin. Journal of Agricultural and Food Chemistry, 63(29), 6567–6576.

    Article  CAS  PubMed  Google Scholar 

  51. Wood, K. J., Nur, M., Gil, J., Fletcher, K., Lakeman, K., Gann, D., Gothberg, A., Khuu, T., Kopetzky, J., Naqvi, S., & Pandya, A. (2020). Effector prediction and characterization in the oomycete pathogen Bremia lactucae reveal host-recognized WY domain proteins that lack the canonical RXLR motif. PLoS pathogens, 16(10), e1009012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu, S., Shen, X., & Chen, B. (2017). Development of an efficient vector system for gene knock-out and near in-cis gene complementation in the sugarcane smut fungus. Scientific reports, 7(1), 1–8.

    Google Scholar 

  53. Shen, D., Li, Q., Sun, P., Zhang, M., & Dou, D. (2017). Intrinsic disorder is a common structural characteristic of RxLR effectors in oomycete pathogens. Fungal Biology, 121(11), 911–919. https://doi.org/10.1016/j.funbio.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  54. Yang, L. N., Liu, H., Duan, G. H., Huang, Y. M., Liu, S., Fang, Z. G., Wu, E. J., Shang, L., & Zhan, J. (2020). The Phytophthora infestans AVR2 effector escapes R2 recognition through effector disordering. Molecular Plant-Microbe Interactions, 33(7), 921–931.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TRS is thankful to the Department of Science and Technology, Govt. of India, for JC Bose National Fellowship. RJ is thankful to the University Grants Commission (UGC), New Delhi for providing Junior Research Fellowship (JRF). The authors also gratefully acknowledge Miss Aakriti Mehra for her assistance in confocal imaging experiments.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TRS and RJ. Data curation and experiments: RJ. Data analysis and writing first draft: RJ, SR, HD, KK, HR, HS, RD. Funding acquisition: TRS. Investigation: RJ. Methodology and writing final draft: TRS and RJ.

Corresponding author

Correspondence to Tilak Raj Sharma.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 45 KB)

Supplementary file2 (DOCX 3764 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaswal, R., Rajarammohan, S., Dubey, H. et al. Intrinsically Disordered Kiwellin Protein-Like Effectors Target Plant Chloroplasts and are Extensively Present in Rust Fungi. Mol Biotechnol 66, 845–864 (2024). https://doi.org/10.1007/s12033-023-00717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00717-y

Keywords

Navigation