Skip to main content

Advertisement

Log in

Fusarium solani PQF9 Isolated from Podocarpus pilgeri Growing in Vietnam as a New Producer of Paclitaxel

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Endophytic fungi are known as an alternative promising source of anticancer drug, paclitaxel, however fungi inhabiting in medicinal plant Podocarpus pilgeri and their paclitaxel production have not been reported to date. In the present study, a total of 15 culturable fungi classified into 5 genera, were successfully recovered from P. pilgeri collected in Vietnam. Screening fungal dichloromethane extracts for anticancer activity revealed that only PQF9 extract displayed potent inhibitory effects on A549 and MCF7 cancer cell lines with IC50 values of 33.9 ± 2.3 µg/mL and 43.5 ± 1.7 µg/mL, respectively. Through PCR-based molecular screening, the isolate PQF9 was found to possess 3 key genes involved in paclitaxel biosynthesis. Importantly, high-performance liquid chromatography quantification showed that fungal isolate PQF9 was able to produce 18.2 µg/L paclitaxel. The paclitaxel-producing fungus was identified as Fusarium solani PQF9 based on morphological and molecular phylogenetic analysis. Intensive investigations by chromatographic methods and spectroscopic analyses confirmed the presence of paclitaxel along with tyrosol and uracil. The pure paclitaxel had an IC50 value of 80.8 ± 9.4 and 67.9 ± 7.0 nM by using cell viability assay on A549 lung and MCF7 breast cancer cells. In addition, tyrosol exhibited strong antioxidant activity by scavenging 2, 2-diphenyl-picrylhydrazyl (DPPH) (IC50 5.1 ± 0.2 mM) and hydroxyl radical (IC50 3.6 ± 0.1 mM). In contrast, no biological activity was observed for uracil. Thus, the paclitaxel-producing fungus F. solani PQF9 could serve as a new material for large-scale production and deciphering paclitaxel biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pal J, Sharma SK, Devi S et al (2020) Screening, identification, and colonization of fungal root endophytes against Dematophora necatrix: a ubiquitous pathogen of fruit trees. Egypt J Biol Pest Control 30:112. https://doi.org/10.1186/s41938-020-00312-2

    Article  Google Scholar 

  2. Vu THN, Pham NS, Le PC et al (2022) Distribution, cytotoxicity, and antioxidant activity of fungal endophytes isolated from Tsuga chinensis (Franch.) Pritz. in Ha Giang province, Vietnam. Ann Microbiol 72:36. https://doi.org/10.1186/s13213-022-01693-5

    Article  CAS  Google Scholar 

  3. Segaran G, Sathiavelu M (2019) Fungal endophytes: a potent biocontrol agent and a bioactive metabolites reservoir. Biocatal Agric Biotechnol 21:101284. https://doi.org/10.1016/j.bcab.2019.101284

    Article  Google Scholar 

  4. Khalil AMA, Abdelaziz AM, Khaleil MM et al (2021) Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. Lett Appl Microbiol 72:263–274. https://doi.org/10.1111/lam.13414

    Article  CAS  PubMed  Google Scholar 

  5. Tiwari P, Bae H (2022) Endophytic fungi: Key Insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms. https://doi.org/10.3390/microorganisms10020360

    Article  PubMed  PubMed Central  Google Scholar 

  6. El-Sayed ER (2021) Discovery of the anticancer drug vinblastine from the endophytic Alternaria alternata and yield improvement by gamma irradiation mutagenesis. J Appl Microbiol 131:2886–2898. https://doi.org/10.1111/jam.15169

    Article  CAS  PubMed  Google Scholar 

  7. Zaki AG, El-Sayed E-SR (2021) New and potent production platform of the acetylcholinesterase inhibitor huperzine A by gamma-irradiated Alternaria brassicae under solid-state fermentation. Appl Microbiol Biotechnol 105:8869–8880. https://doi.org/10.1007/s00253-021-11678-0

    Article  CAS  PubMed  Google Scholar 

  8. Dash AK (2010) The dark side of paclitaxel. Oncol Rev 4:71–72. https://doi.org/10.1007/s12156-010-0052-1

    Article  Google Scholar 

  9. Wani MC, Taylor HL, Wall ME et al (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327. https://doi.org/10.1021/ja00738a045

    Article  CAS  PubMed  Google Scholar 

  10. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science (New York, NY) 260:214–216. https://doi.org/10.1126/science.8097061

    Article  CAS  Google Scholar 

  11. El-Sayed ASA, El-Sayed MT, Rady AM et al (2020) Exploiting the biosynthetic potency of taxol from fungal endophytes of conifers plants; genome mining and metabolic manipulation. Molecules 25:3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. El-Sayed ER, Zaki AG, Ahmed AS et al (2020) Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: enhanced production by gamma irradiation mutagenesis and immobilization technique. Appl Microbiol Biotechnol 104:6991–7003. https://doi.org/10.1007/s00253-020-10712-x

    Article  CAS  PubMed  Google Scholar 

  13. El-Sayed ER, Ahmed AS, Al-Hagar OEA (2020) Agro-industrial wastes for production of paclitaxel by irradiated Aspergillus fumigatus under solid-state fermentation. J Appl Microbiol 128:1427–1439. https://doi.org/10.1111/jam.14574

    Article  CAS  PubMed  Google Scholar 

  14. El-Sayed E-SR, Ismaiel AA, Ahmed AS et al (2019) Bioprocess optimization using response surface methodology for production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima: enhanced production by ultraviolet and gamma irradiation. Biocatal Agric Biotechnol 18:100996. https://doi.org/10.1016/j.bcab.2019.01.034

    Article  Google Scholar 

  15. El-Sayed E-SR, Ahmed AS, Hassan IA et al (2020) Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads. Bioprocess Biosyst Eng 43:997–1008. https://doi.org/10.1007/s00449-020-02295-8

    Article  CAS  PubMed  Google Scholar 

  16. Abdel-Fatah SS, El-Batal AI, El-Sherbiny GM et al (2021) Production, bioprocess optimization and γ-irradiation of Penicillium polonicum, as a new Taxol producing endophyte from Ginko biloba. Biotechnol Rep 30:e00623. https://doi.org/10.1016/j.btre.2021.e00623

    Article  CAS  Google Scholar 

  17. Ngoc Tung Q, Hanh Nguyen VT, Quynh Anh P et al (2023) Screening and characterization of paclitaxel-producing fungus Talaromyces wortmannii WQF18 isolated from Cephalotaxus mannii Hook. f. Aca J Bio 45:77–85. https://doi.org/10.15625/2615-9023/18002

    Article  Google Scholar 

  18. Kumaran RS, Muthumary J, Kim E-K et al (2009) Production of taxol from Phyllosticta dioscoreae, a leaf spot fungus isolated from Hibiscus rosa-sinensis. Biotechnol Bioprocess Eng 14:76–83. https://doi.org/10.1007/s12257-008-0041-4

    Article  CAS  Google Scholar 

  19. El-Sayed ASA, Safan S, Mohamed NZ et al (2018) Induction of Taxol biosynthesis by Aspergillus terreus, endophyte of Podocarpus gracilior Pilger, upon intimate interaction with the plant endogenous microbes. Process Biochem 71:31–40. https://doi.org/10.1016/j.procbio.2018.04.020

    Article  CAS  Google Scholar 

  20. Ngo CC, Nguyen QH, Nguyen TH et al (2021) Identification of fungal community associated with deterioration of optical observation instruments of museums in northern Vietnam. Appl Sci 11:5351. https://doi.org/10.3390/app11125351

    Article  CAS  Google Scholar 

  21. Quach NT, Ngo CC, Nguyen TH et al (2022) Genome-wide comparison deciphers lifestyle adaptation and glass biodeterioration property of Curvularia eragrostidis C52. Sci Rep 12:11411. https://doi.org/10.1038/s41598-022-15334-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Skehan P, Storeng R, Scudiero D et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112. https://doi.org/10.1093/jnci/82.13.1107

    Article  CAS  PubMed  Google Scholar 

  24. Kadaikunnan S, Rejiniemon T, Khaled JM et al (2015) In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann Clin Microbiol Antimicrob 14:9. https://doi.org/10.1186/s12941-015-0069-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stahlhut R, Park G, Petersen R et al (1999) The occurrence of the anti-cancer diterpene taxol in Podocarpus gracilior Pilger (Podocarpaceae). Biochem Syst Ecol 27:613–622. https://doi.org/10.1016/S0305-1978(98)00118-5

    Article  CAS  Google Scholar 

  26. Kitajima J, Ishikawa T, Tanaka T et al (1999) Water-soluble constitutents of fennel. IX. Glucides and nucleosides. Biol Pharm Bull 47:988–992. https://doi.org/10.1248/cpb.47.988

    Article  CAS  Google Scholar 

  27. Kwak JH, Kang MW, Roh JH et al (2009) Cytotoxic phenolic compounds from Chionanthus retusus. Arch Pharm Res 32:1681–1687. https://doi.org/10.1007/s12272-009-2203-0

    Article  CAS  PubMed  Google Scholar 

  28. Chmurny GN, Hilton BD, Brobst S et al (1992) 1H- and 13C-nmr assignments for taxol, 7-epi-taxol, and cephalomannine. J Nat Prod 55:414–423. https://doi.org/10.1021/np50082a002

    Article  CAS  PubMed  Google Scholar 

  29. Miao LY, Mo XC, Xi XY et al (2018) Transcriptome analysis of a taxol-producing endophytic fungus Cladosporium cladosporioides MD2. AMB Express 8:41. https://doi.org/10.1186/s13568-018-0567-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adhikari P, Joshi K, Pandey A (2023) Taxus associated fungal endophytes: anticancerous to other biological activities. Fungal Biol Rev 45:100308. https://doi.org/10.1016/j.fbr.2023.100308

    Article  CAS  Google Scholar 

  31. Uzma F, Mohan CD, Hashem A et al (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol. https://doi.org/10.3389/fphar.2018.00309

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chakravarthi B, Singh S, Kamalraj S et al (2020) Evaluation of spore inoculum and confirmation of pathway genetic blueprint of T13αH and DBAT from a taxol-producing endophytic fungus. Sci Rep 10:21139. https://doi.org/10.1038/s41598-020-77605-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiong Z-Q, Yang Y-Y, Zhao N et al (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew. Taxus x media BMC Microbiol 13:71. https://doi.org/10.1186/1471-2180-13-71

    Article  CAS  PubMed  Google Scholar 

  34. Garyali S, Kumar A, Reddy MS (2013) Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J Microbiol Biotechnol 23:1372–1380. https://doi.org/10.4014/jmb.1305.05070

    Article  CAS  PubMed  Google Scholar 

  35. Yang Y, Zhao H, Barrero RA et al (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom 15:69. https://doi.org/10.1186/1471-2164-15-69

    Article  CAS  Google Scholar 

  36. Boonyaketgoson S, Trisuwan K, Bussaban B et al (2015) Isochromanone derivatives from the endophytic fungus Fusarium sp. PDB51F5. Tetrahedron Lett 56:5076–5078. https://doi.org/10.1016/j.tetlet.2015.07.048

    Article  CAS  Google Scholar 

  37. Tadpetch K, Chukong C, Jeanmard L et al (2015) Cytotoxic naphthoquinone and a new succinate ester from the soil fungus Fusarium solani PSU-RSPG227. Phytochem Lett 11:106–110. https://doi.org/10.1016/j.phytol.2014.11.018

    Article  CAS  Google Scholar 

  38. Yuan J, Li B, Qin FGF et al (2018) Analysis of ethyl acetate extract of enzymatic hydrolysate from high purity oleuropein and DPPH radical scavenging capacity. IOP Conf Ser Mater Sci Eng 301:012021. https://doi.org/10.1088/1757-899X/301/1/012021

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the VAST-Culture Collection of Microorganisms, Institute of Biotechnology, Vietnam Academy of Science and Technology (www.vccm.vast.vn). Thi Hanh Nguyen Vu was funded by the Postdoctoral Scholarship Programme of Vingroup Innovation Foundation (VINIF), code VINIF.2022.STS.31.

Funding

Thi Hanh Nguyen Vu was funded by the Postdoctoral Scholarship Programme of Vingroup Innovation Foundation (VINIF), code VINIF.2022.STS.31.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quyet Tien Phi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Consent to Participate

Not applicable.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 439 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, T.H.N., Quach, N.T., Pham, Q.A. et al. Fusarium solani PQF9 Isolated from Podocarpus pilgeri Growing in Vietnam as a New Producer of Paclitaxel. Indian J Microbiol 63, 596–603 (2023). https://doi.org/10.1007/s12088-023-01119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01119-z

Keywords

Navigation