Skip to main content

Advertisement

Log in

Anterolateral Tibial Bowing and Congenital Pseudoarthrosis of the Tibia: Current Concept Review and Future Directions

  • Pediatric Orthopedics (I Swarup, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Congenital pseudarthrosis of the tibia (CPT) is a rare condition closely associated with neurofibromatosis type I. Affected children are born with anterolateral bowing of the tibia which progresses to pathologic fracture, pseudarthrosis, and high risk of refracture even after initial union has been attained. There is currently no consensus on the classification of this disease or consensus on its treatment. The purpose of this review is to (1) review the clinical presentation, etiology, epidemiology, classification, and natural history of congenital pseudarthrosis of the tibia and (2) review the existing trends in treatment of congenital pseudarthrosis of the tibia and its associated complications.

Recent Findings

Current treatment protocols focus primarily on combining intramedullary fixation with external or internal fixation to achieve union rates between 74 and 100%. Intramedullary devices should be retained as long as possible to prevent refracture. Cross-union techniques, though technically difficult, have a reported union rate of 100% and no refractures at mid- to long-term follow-up. Vascularized fibular grafting and induced membrane technique can be successful, but at the cost of numerous surgical procedures. Growth modulation is a promising new approach to preventing fracture altogether, though further study with larger patient series is necessary.

Summary

The primary consideration in treatment of CPT is expected union rate and refracture risk. Combined intramedullary and external or internal fixation, especially with cross-union techniques, show most promise. Perhaps most exciting is further research on preventing fracture through guided growth, which may reduce the morbidity of multiple surgical procedures which have been the mainstay of treatment for CPT thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Horn J, Steen H, Terjesen T. Epidemiology and treatment outcome of congenital pseudarthrosis of the tibia. J Child Orthop. 2013;7(2):157–66.

    Article  Google Scholar 

  2. Hefti F, Bollini G, Dungl P, Fixsen J, Grill F, Ippolito E, Romanus B, Tudisco C, Wientroub S. Congenital pseudarthrosis of the tibia: history, etiology, classification, and epidemiologic data. J Pediatr Orthop B. 2000;9(1):11–5.

    Article  CAS  Google Scholar 

  3. Crawford AH Jr, Bagamery N. Osseous manifestations of neurofibromatosis in childhood. J Pediatr Orthop. 1986;6(1):72–88.

    Article  Google Scholar 

  4. Andersen KS. Occurrence of congenital tibial pseudoarthrosis in Denmark 1940-1965. Nord Med. 1971;86(47):1395.

    CAS  Google Scholar 

  5. El-Rosasy MA, Paley D. In: Herzenberg JE, editor. Congenital pseudarthrosis of the tibia. Limb lengthening and reconstruction surgery: CRC Press; 2006. p. 511–20.

    Google Scholar 

  6. Vitale MG, Guha A, Skaggs DL. Orthopaedic manifestations of neurofibromatosis in children: an update. Clin Orthop Relat Res. 2002;401:107–18.

    Article  Google Scholar 

  7. Vander Have KL, Hensinger RN, Caird M, Johnston C, Farley FA. Congenital pseudarthrosis of the tibia. J Am Acad Orthop Surg. 2008;16(4):228–36.

    Article  Google Scholar 

  8. Crawford AH, Schorry EK. Neurofibromatosis update. J Pediatr Orthop. 2006;26(3):413–23.

    Article  Google Scholar 

  9. Van Royen K, Brems H, Legius E, Lammens J, Laumen A. Prevalence of neurofibromatosis type 1 in congenital pseudarthrosis of the tibia. Eur J Pediatr. 2016;175(9):1193–8.

    Article  Google Scholar 

  10. Zhu G, Zheng Y, Liu Y, Yan A, Hu Z, Yang Y, Xiang S, Li L, Chen W, Peng Y, Zhong N, Mei H. Identification and characterization of NF1 and non-NF1 congenital pseudarthrosis of the tibia based on germline NF1 variants: genetic and clinical analysis of 75 patients. Orphanet J Rare Dis. 2019;14(1):221.

    Article  Google Scholar 

  11. Carlier A, Brems H, Ashbourn JM, Nica I, Legius E, Geris L. Capturing the wide variety of impaired fracture healing phenotypes in Neurofibromatosis Type 1 with eight key factors: a computational study. Sci Rep. 2016;7:20010.

    Article  CAS  Google Scholar 

  12. Stevenson DA, Hanson H, Stevens A, Carey J, Viskochil D, Sheng X, Wheeler K, Slater H. Quantitative Ultrasound and Tibial Dysplasia in Neurofibromatosis Type 1. J Clin Densitom. 2018;21(2):179–84.

    Article  Google Scholar 

  13. • Paley D. Congenital pseudarthrosis of the tibia: biological and biomechanical considerations to achieve union and prevent refracture. J Child Orthop. 2019;13(2):120–33. Reviews the pathophysiology of CPT and describes the factors important for obtaining bony union.

  14. Dilogo IH, Mujadid F, Nurhayati RW, Kurniawan A. Evaluation of bone marrow-derived mesenchymal stem cell quality from patients with congenital pseudoarthrosis of the tibia. J Orthop Surg Res. 2018;13(1):266.

    Article  Google Scholar 

  15. Mc ER. Congenital pseudo-arthrosis of the tibia; the findings in one case and a suggestion as to possible etiology and treatment. Q Bull Northwest Univ Med Sch. 1949;23(4):413–23.

    Google Scholar 

  16. Codivilla A. On the cure of the congenital pseudoarthrosis of the tibia by means of periosteal transplantation. JBJS. 1906;2(2):163–9.

    Google Scholar 

  17. Johnston CE. Congenital pseudarthrosis of the tibia: results of technical variations in the Charnley-Williams procedure. JBJS. 2002;84(10):1799–810.

    Article  Google Scholar 

  18. Ippolito E, Corsi A, Grill F, Wientroub S, Bianco P. Pathology of bone lesions associated with congenital pseudarthrosis of the leg. J Pediatr Orthop B. 2000;9(1):3–10.

    Article  CAS  Google Scholar 

  19. Cho T-J, Seo J-B, Lee HR, Yoo WJ, Chung CY, Choi IH. Biologic characteristics of fibrous hamartoma from congenital pseudarthrosis of the tibia associated with neurofibromatosis type 1. JBJS. 2008;90(12):2735–44.

    Article  Google Scholar 

  20. Boyd HB. Pathology and natural history of congenital pseudarthrosis of the tibia. Clin Orthop Relat Res. 1982;166:5–13.

    Article  Google Scholar 

  21. Hermanns-Sachweh B, Senderek J, Alfer J, Klosterhalfen B, Büttner R, Füzesi L, Weber M. Vascular changes in the periosteum of congenital pseudarthrosis of the tibia. Pathol Res Pract. 2005;201(4):305–12.

    Article  Google Scholar 

  22. Yang G, Yu H, Liu Y, Ye W, Zhu G, Yan A, Tan Q, Mei H. Serum-derived exosomes from neurofibromatosis type 1 congenital tibial pseudarthrosis impaired bone by promoting osteoclastogenesis and inhibiting osteogenesis. Exp Biol Med (Maywood). 2021;246(2):130–41.

    Article  CAS  Google Scholar 

  23. Tahaei SE, Couasnay G, Ma Y, Paria N, Gu J, Lemoine BF, Wang X, Rios JJ, Elefteriou F. The reduced osteogenic potential of Nf1-deficient osteoprogenitors is EGFR-independent. Bone. 2018;106:103–11.

    Article  CAS  Google Scholar 

  24. Schindeler A, Ramachandran M, Godfrey C, Morse A, McDonald M, Mikulec K, Little DG. Modeling bone morphogenetic protein and bisphosphonate combination therapy in wild-type and Nf1 haploinsufficient mice. J Orthop Res. 2008;26(1):65–74.

    Article  CAS  Google Scholar 

  25. Stevenson DA, Little D, Armstrong L, Crawford AH, Eastwood D, Friedman JM, Greggi T, Gutierrez G, Hunter-Schaedle K, Kendler DL, Kolanczyk M, Monsell F, Oetgen M, Richards BS, Schindeler A, Schorry EK, Wilkes D, Viskochil DH, Yang FC, Elefteriou F. Approaches to treating NF1 tibial pseudarthrosis: consensus from the Children’s Tumor Foundation NF1 Bone Abnormalities Consortium. J Pediatr Orthop. 2013;33(3):269–75.

    Article  Google Scholar 

  26. Crawford AH. Neurofibromatosis in children. Acta Orthop Scand. 1986;57(sup218):8-60.

  27. Andersen K. Congenital pseudarthrosis of the leg. Late results. J Bone Joint Surg Am Vol. 1976;58(5):657–62.

    Article  CAS  Google Scholar 

  28. • El-Rosasy MA. Congenital pseudarthrosis of the tibia: the outcome of a pathology-oriented classification system and treatment protocol. J Pediatr Orthop B. 2020;29(4):337-47. Presents a treatment based classification system with outcomes of the treatment protocol.

  29. Wang X, Shi L, Zhang R, Wang W, Wang F, Wang M, Xu Z, Zuo R, Xu J, Kang Q. Efficacy of the "Eiffel tower" double titanium elastic nailing in combined management of congenital pseudarthrosis of the tibia: preliminary outcomes of 17 cases with review of literature. BMC Musculoskelet Disord. 2021;22(1):490.

    Article  CAS  Google Scholar 

  30. Shah H, Doddabasappa SN, Joseph B. Congenital pseudarthrosis of the tibia treated with intramedullary rodding and cortical bone grafting: a follow-up study at skeletal maturity. J Pediatr Orthop. 2011;31(1):79–88.

    Article  Google Scholar 

  31. • Deng H, Mei H, Wang E, Li Q, Zhang L, Canavese F, et al. The association between fibular status and frontal plane tibial alignment post-union in congenital pseudarthrosis of the tibia. J Child Orthop. 2021;15(3):261-9. Evaluates the effect of fibular healing on deformity recurrence in CPT.

  32. Khan T, Joseph B. Controversies in the management of congenital pseudarthrosis of the tibia and fibula. Bone Joint J. 2013;95(8):1027–34.

    Article  Google Scholar 

  33. Dobbs MB, Rich MM, Gordon JE, Szymanski DA, Schoenecker PL. Use of an intramedullary rod for treatment of congenital pseudarthrosis of the tibia: a long-term follow-up study. JBJS. 2004;86(6):1186–97.

    Article  Google Scholar 

  34. Kitoh H, Nogami H, Hattori T. Congenital anterolateral bowing of the tibia with ipsilateral polydactyly of the great toe. Am J Med Genet. 1997;73(4):404–7.

    Article  CAS  Google Scholar 

  35. Manner H, Radler C, Ganger R, Grossbötzl G, Petje G, Grill F. Pathomorphology and treatment of congenital anterolateral bowing of the tibia associated with duplication of the hallux. J Bone Joint Surg Br Vol. 2005;87(2):226–30.

    Article  CAS  Google Scholar 

  36. Bressers M, Castelein RM. Anterolateral tibial bowing and duplication of the hallux: a rare but distinct entity with good prognosis. J Pediatr Orthop B. 2001;10(2):153–7.

    CAS  Google Scholar 

  37. •• Shannon CE, Huser AJ, Paley D. Cross-union surgery for congenital pseudarthrosis of the tibia. Children. 2021;8(7):547. Describes a relatively large series using arguably the most successful surgical reconstruction technique to date.

  38. Kesireddy N, Kheireldin RK, Lu A, Cooper J, Liu J, Ebraheim NA. Current treatment of congenital pseudarthrosis of the tibia: a systematic review and meta-analysis. J Pediatr Orthop B. 2018;27(6):541–50.

    Article  Google Scholar 

  39. Murray HH, Lovell WW. Congenital pseudarthrosis of the tibia. A long-term follow-up study. Clin Orthop Relat Res. 1982;166:14–20.

    Article  Google Scholar 

  40. Paley D. Congenital Pseudarthrosis of the Tibia: Combined Pharamcologic and Surgical 1 Treatment Using Biphosphonate Intravenous Infusion and Bone Morphogenic Protein 2 with Periosteal and Cancellous Autogenous Bone Grafting, Tibio-fibular cross union, 3 Intramedullary Rodding and External Fixation. 4. 2012.

  41. Richards BS, Oetgen ME, Johnston CE. The use of rhBMP-2 for the treatment of congenital pseudarthrosis of the tibia: a case series. J Bone Joint Surg Am. 2010;92(1):177–85.

    Article  Google Scholar 

  42. Richards BS, Anderson TD. rhBMP-2 and Intramedullary Fixation in Congenital Pseudarthrosis of the Tibia. J Pediatr Orthop. 2018;38(4):230–8.

    Article  Google Scholar 

  43. Hissnauer TN, Stiel N, Babin K, Rupprecht M, Hoffmann M, Rueger JM, Stuecker R, Spiro AS. Bone morphogenetic protein-2 for the treatment of congenital pseudarthrosis of the tibia or persistent tibial nonunion in children and adolescents: A retrospective study with a minimum 2-year follow-up. J Mater Sci Mater Med. 2017;28(4):60.

    Article  Google Scholar 

  44. Stiel N, Hissnauer TN, Rupprecht M, Babin K, Schlickewei CW, Rueger JM, Stuecker R, Spiro AS. Evaluation of complications associated with off-label use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in pediatric orthopaedics. J Mater Sci Mater Med. 2016;27(12):184.

    Article  Google Scholar 

  45. Memeo A, Verdoni F, Minoli CF, Voto A, D'Amato RD, Formiconi F, et al. Effectiveness of bone marrow aspirate concentrate (BMAC) as adjuvant therapy in the surgical treatment of congenital pseudoarthrosis of the tibia: a retrospective comparative study. J Biol Regul Homeost Agents. 2020;34(4 Suppl. 3):431-40. Congress of the Italian Orthopaedic Research Society.

  46. Charnley J. Congenital pseudarthrosis of the tibia treated by intramedullary nail. J Bone Joint Surg Am. 1956;38-a(2):283-90.

  47. • Singer D, Johnston CE. Congenital Pseudarthrosis of the Tibia: Results, at Skeletal Maturity, of the Charnley-Williams Procedure. JB JS Open Access. 2019;4(2):e0004. Long term study demonstrating the importance of maintaining intramedullary rod fixation to prevent refracture.

  48. McClure PK, Franzone JM, Herzenberg JE. Challenges with Fassier-Duval rod exchanges in congenital pseudarthrosis of the tibia: explant roadblock and solution. J Pediatr Orthop B. 2022;31(1):e95–e100.

    Article  Google Scholar 

  49. Laufer A, Frommer A, Gosheger G, Roedl R, Schiedel F, Broeking JN, et al. Reconstructive Approaches in Surgical Management of Congenital Pseudarthrosis of the Tibia. J Clin Med. 2020;9(12).

  50. Liu Y, Yang G, Zhu G, Tan Q, Wu J, Liu K, Tang J, Mei H. Application of the "telescopic rod" in a combined surgical technique for the treatment of congenital pseudarthrosis of the tibia in children. J Orthop Surg Res. 2021;16(1):532.

    Article  Google Scholar 

  51. Yan A, Mei HB, Liu K, Wu JY, Tang J, Zhu GH, Ye WH. Wrapping grafting for congenital pseudarthrosis of the tibia: A preliminary report. Medicine (Baltimore). 2017;96(48):e8835.

    Article  Google Scholar 

  52. Popkov D, Popkov A, Dučić S, Lazović M, Lascombes P. Combined technique with hydroxyapatite coated intramedullary nails in treatment of anterolateral bowing of congenital pseudarthrosis of tibia. J Orthop. 2020;19:189–93.

    Article  Google Scholar 

  53. Zargarbashi R, Bagherpour A, Keshavarz-Fathi M, Panjavi B, Bagherpour ZM. Prognosis of congenital pseudarthrosis of the tibia: effect of site of tibial pseudarthrososis and fibular involvement. J Pediatr Orthop. 2021.

  54. Shah H, Joseph B, Nair BVS, Kotian DB, Choi IH, Richards BS, Johnston C, Madhuri V, Dobbs MB, Dahl M. What factors influence union and refracture of congenital pseudarthrosis of the tibia? A multicenter long-term study. J Pediatr Orthop. 2018;38(6):e332–e7.

    Article  Google Scholar 

  55. Kocaoğlu M, Eralp L, Bilen FE, Civan M. Congenital pseudarthrosis of the tibia: Results of circular external fixation treatment with intramedullary rodding and periosteal grafting technique. Acta Orthop Traumatol Turc. 2020;54(3):245–54.

    Article  Google Scholar 

  56. Choi IH, Lee SJ, Moon HJ, Cho T-J, Yoo WJ, Chung CY, Park MS. “4-in-1 osteosynthesis” for atrophic-type congenital pseudarthrosis of the tibia. J Pediatr Orthop. 2011;31(6):697–704.

    Article  Google Scholar 

  57. Karol LA, Haideri NF, Halliday SE, Smitherman TB, Johnston CE. 2nd. Gait analysis and muscle strength in children with congenital pseudarthrosis of the tibia: the effect of treatment. J Pediatr Orthop. 1998;18(3):381–6.

    Article  CAS  Google Scholar 

  58. El-Gammal TA, El-Sayed A, Kotb MM, Saleh WR, Ragheb YF, Refai OA, et al. Crawford type IV congenital pseudarthrosis of the tibia: treatment with vascularized fibular grafting and outcome at skeletal maturity. J Pediatr Orthop. 2021;41(3):164–70.

    Article  Google Scholar 

  59. Soldado F, Barrera-Ochoa S, Bergua-Domingo JM, Domenech P, Corona PS, Knorr J. Bone nonunion management in children with a vascularized tibial periosteal graft. Microsurgery. 2020;40(7):760–5.

    Article  Google Scholar 

  60. Van Den Heuvel SCM, Winters HAH, Ultee KH, Zijlstra-Koenrades N, Sakkers RJB. Combined massive allograft and intramedullary vascularized fibula transfer: the Capanna technique for treatment of congenital pseudarthrosis of the tibia. Acta Orthop. 2020;91(5):605–10.

    Article  Google Scholar 

  61. Pollon T, Sales de Gauzy J, Pham T, Thévenin Lemoine C, Accadbled F. Salvage of congenital pseudarthrosis of the tibia by the induced membrane technique followed by a motorised lengthening nail. Orthop Traumatol Surg Res. 2018;104(1):147-153.

  62. Meselhy MA, Elhammady AS, Singer MS. Outcome of induced membrane technique in treatment of failed previously operated congenital pseudarthrosis of the tibia. Orthop Traumatol Surg Res. 2020;106(5):813–8.

    Article  Google Scholar 

  63. Vigouroux F, Mezzadri G, Parot R, Gazarian A, Pannier S, Chotel F. Vascularised fibula or induced membrane to treat congenital pseudarthrosis of the Tibia: a multicentre study of 18 patients with a mean 9.5-year follow-up. Orthop Traumatol Surg Res. 2017;103(5):747–53.

    Article  CAS  Google Scholar 

  64. Kennedy J, O'Toole P, Baker JF, Moore D. Guided growth: a novel treatment for anterolateral bowing of the tibia. J Pediatr Orthop. 2017;37(5):e326–e8.

    Article  Google Scholar 

  65. •• Laine JC, Novotny SA, Weber EW, Georgiadis AG, Dahl MT. Distal Tibial Guided Growth for Anterolateral Bowing of the Tibia: Fracture May Be Prevented. J Bone Joint Surg Am. 2020;102(23):2077-86. Case series of a novel technique for fracture prevention and deformity correction involving minimally invasive guided growth.

  66. Balci H, Bayram S, Pehlivanoglu T, Anarat FB, Eralp L, Şen C, et al. Effect of lengthening speed on the quality of callus and complications in patients with congenital pseudarthrosis of tibia. Int Orthop. 2021;45(6):1517–22.

    Article  Google Scholar 

  67. Jang WY, Choi YH, Park MS, Yoo WJ, Cho TJ, Choi IH. Physeal and subphyseal distraction osteogenesis in atrophic-type congenital pseudarthrosis of the tibia: efficacy and safety. J Pediatr Orthop. 2019;39(8):422–8.

    Article  Google Scholar 

  68. Liu YX, Mei HB, Zhu GH, He RG, Liu K, Tang J, Wu JY, Ye WH, Hu X, Tan Q, Yan A, Huang SX, Tan XQ, Lei T. Relationship between postoperative complications and fibular integrity in congenital pseudarthrosis of the tibia in children. World J Pediatr. 2017;13(3):261–6.

    Article  CAS  Google Scholar 

  69. Westberry DE, Carpenter AM, Tisch J, Wack LI. Amputation outcomes in congenital pseudarthrosis of the tibia. J Pediatr Orthop. 2018;38(8):e475–e81.

    Article  Google Scholar 

  70. Mongon MLD, Ribera FC, de Souza AMA, Sposito AL, Belangero WD, Livani B. Pedicled sensate composite calcaneal flap in children with congenital tibial pseudoarthrosis. J Pediatr Orthop. 2017;37(4):e271–e6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Makarewich.

Ethics declarations

Conflict of Interest

Matthew J. Siebert and Christopher A. Makarewich declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Orthopedics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siebert, M.J., Makarewich, C.A. Anterolateral Tibial Bowing and Congenital Pseudoarthrosis of the Tibia: Current Concept Review and Future Directions. Curr Rev Musculoskelet Med 15, 438–446 (2022). https://doi.org/10.1007/s12178-022-09779-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-022-09779-y

Keywords

Navigation