Skip to main content
Log in

Astragalicola ephedrae sp. nov., isolated from the stem of Ephedra gerardiana in Ladakh, India

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

A Correction to this article was published on 13 March 2023

This article has been updated

Abstract

An endophytic fungus designated as EIT4T (MCC 9756T) was isolated from the asymptomatic stem tissue of Ephedra gerardiana collected from the Kargil district of Ladakh Union territory, India. Phylogenetic analysis based on concatenated nuclear ribosomal ITS (internal transcribed spacer) and LSU (large ribosomal subunit) sequence datasets revealed its placement within the genus Astragalicola. However, it formed a separate clade exhibiting strong bootstrap support value (80%). The highest nrITS sequence similarity between EIT4T and species of Astragalicola was 95.19% (A. vasilyevae) and 94.26% (A. amorpha), while nrLSU sequence similarity was 99.27% (A. amorpha). Morphologically, EIT4T differs from the other species of Astragalicola in having larger sub-globose to pyriform conidiomata, smaller and mostly unbranched conidiophores, and polymorphic translucent conidia with two terminal guttules. Based on combined cultural, micromorphological, molecular, and phylogenetic analyses, EIT4T represents a novel species in the genus Astragalicola proposed here as Astragalicola ephedrae sp. nov. Detailed description and illustrations of the novel species are provided. The type strain is EIT4T (= MCC 9756 T = MN29T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The nrITS and nrLSU sequence data was saved as FASTQ file and deposited in GenBank, National Center for Biotechnology Information (NCBI) under accession number MW205783 and OP476683, respectively. Holotype/ex-type (MCC 9756) culture is deposited in the culture collection of the National Center for Microbial Resource/National Center for Cell Science, Pune (Maharashtra), India.

Code availability

Not Applicable.

Change history

References

  • Adeleke BS, Babalola OO (2021) Pharmacological potential of fungal endophytes associated with medicinal plants: a review. J Fungi 7(2):147. https://doi.org/10.3390/jof7020147

    Article  CAS  Google Scholar 

  • Bacon CW, White Jr JF (2000) Physiological adaptations in the evolution of endophytism in the Clavicipitaceae. In: Microbial endophytes. CRC Press, pp. 251–276

  • Barr ME (1987) Prodromus to class Loculoascomycetes. University of Massachusetts, Amherst, Massachusetts

  • Bilański P, Grad B, Kowalski T (2022) Pyrenochaeta fraxinina as colonizer of ash and sycamore petioles, its morphology, ecology, and phylogenetic connections. Mycol Prog 21(9):1–22. https://doi.org/10.1007/s11557-022-01827-8

    Article  Google Scholar 

  • Burragoni SG, Jeon J (2021) Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. Microbiol Res 245:126691. https://doi.org/10.1016/j.micres.2020.126691

  • de Gruyter J, Aveskamp MM, Woudenberg JH, Verkley GJ, Groenewald JZ, Crous PW (2009) Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycol Res 113(4): 508–519. https://doi.org/10.1016/jmycres200901002

  • de Gruyter J, Woudenberg JH, Aveskamp MM, Verkley GJ, Groenewald JZ, Crous PW (2010) Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102(5):1066–108. https://doi.org/10.3852/09-240

  • Doilom M, Liu JK, Jaklitsch WM, Ariyawansa H, Wijayawardene NN, Chukeatirote E, Zhang M, McKenzie EH, Geml J, Voglmayr H, Hyde KD (2013) An outline of the family Cucurbitariaceae. Sydowia 65(1):167–192

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hereme R, Morales-Navarro S, Ballesteros G, Barrera A, Ramos P, Gundel PE, Molina-Montenegro MA (2020) Fungal endophytes exert positive effects on Colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica. Front Microbiol 11:264. https://doi.org/10.3389/fmicb.2020.00264

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906. https://doi.org/10.3389/fmicb.2016.00906

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaklitsch WM, Checa J, Blanco MN, Olariaga I, Tello S, Voglmayr H (2018) A preliminary account of the Cucurbitariaceae. Stud Mycol 90:71–118. https://doi.org/10.1016/jsimyco201711002

  • Jaklitsch WM, Voglmayr H (2020) Fenestelloid clades of the Cucurbitariaceae. Persoonia 44:1–40. https://doi.org/10.3767/persoonia20204401

  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform (4):1160–1166. https://doi.org/10.1093/bib/bbx108

  • Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9:2732. https://doi.org/10.3389/fmicb.2018.02732

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/BF01731581

  • Mattoo AJ, Nonzom S (2022a) Parathyridaria ephedrae sp. nov. (Thyridariacaeae, Pleosporales), endophytic to Ephedra gerardiana in India. Phytotaxa 556(2):149–159. https://doi.org/10.11646/PHYTOTAXA55624

  • Mattoo AJ, Nonzom S (2022b) Investigating diverse methods for inducing sporulation in endophytic fungi. Studies in Fungi 7(16):1–10. https://doi.org/10.48130/SIF-2022b-0016

  • Nissan S, Boelens J, Lagrou K, Roels D (2022) Pyrenocheata unguis-hominis: a new cause of fungal keratitis in a contact lens wearer. Am J Ophthalmol 28:101731. https://doi.org/10.1016/j.ajoc.2022.101731

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Van den Heuvel J (ed) Fokkema NJ. Microbiology of the Phyllosphere, Cambridge University Press, pp 175–187

    Google Scholar 

  • Sadrati, N (2021) Isolement, identification et culture des champignons endophytes isolés à partir des plantes médicinales algériennes pour la production des métabolites secondaires biologiquement actifs (Doctoral dissertation).

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sharma P, Kumar S (2021) Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. Bioresour Technol 339:125589. https://doi.org/10.1016/j.biortech.2021.125589

  • Su W, Xu R, Bhunjun CS, Tian S, Dai Y, Li Y, Phukhamsakda C (2022) Diversity of Ascomycota in Jilin: Introducing Novel Woody Litter Taxa in Cucurbitariaceae. J Fungi 8(9):905. https://doi.org/10.3390/jof8090905

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–7. https://doi.org/10.1093/molbev/msab120

  • Ustiatik R, Nuraini Y, Suharjono S, Jeyakumar P, Anderson CW, Handayanto E (2021) Mercury resistance and plant growth promoting traits of endophytic bacteria isolated from mercury-contaminated soil. Bioremediat J 26(3):208–227. https://doi.org/10.1080/10889868.2021.1973950

    Article  CAS  Google Scholar 

  • Valenzuela-Lopez N, Cano-Lira JF, Guarro J, Sutton DA, Wiederhold N, Crous PW, Stchigel AM (2018) Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Stud Mycol 90(1):1–69. https://doi.org/10.1016/jsimyco201711003

  • Verkley GJ, Dukik K, Renfurm R, Göker M, Stielow JB (2014) Novel genera and species of coniothyrium-like fungi in Montagnulaceae (Ascomycota). Persoonia 32(1):25–251. https://doi.org/10.3767/003158514X679191

  • Verma H, Kumar D, Kumar V, Kumari M, Singh SK, Sharma VK, Droby S, Santoyo G, White JF, Kumar A (2021) The potential application of endophytes in management of stress from drought and salinity in crop plants. Microorganisms 9(8):1729. https://doi.org/10.3390/microorganisms9081729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol Res 172: 4238–4246. https://doi.org/10.1128/jb17284238-42461990

  • Vu D, Groenewald M, De Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T (2018) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 91(1):23–36. https://doi.org/10.1016/jsimyco201805001

  • Wanasinghe DN, Phookamsak R, Jeewon R, Li WJ, Hyde KD, Jones EB, Camporesi E, Promputtha I (2017) A family level rDNA based phylogeny of Cucurbitariaceae and Fenestellaceae with descriptions of new Fenestella species and Neocucurbitaria gen. nov. Mycosphere 8:397–414. https://doi.org/10.5943/mycosphere/8/4/2

  • Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R, Lee HB, Gareth Jones EB, Tibpromma S, Tennakoon DS, Dissanayake AJ, Jayasiri SC, Gafforov Y (2018) Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Divers 89(1):1–236. https://doi.org/10.1007/s13225-018-0395-7

  • White TJ, Bruns T, Lee SJ, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: MA, Gelfand DH, Sninsky JJ, J. White TJ (eds): PCR protocols: A Guide to Methods and Applications, Academic Press, pp. 315–322.

  • Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, Saxena RK, Erdoðdu M, Selçuk F, Rajeshkumar KC, Aptroot A, Błaszkowski J, Boonyuen N, da Silva GA, de Souza FA, Dong W, Ertz D, Haelewaters D, Jones EBG, Karunarathna SC, Kirk PM, Kukwa M, Kumla J, Leontyev DV, Lumbsch HT, Maharachchikumbura SSN, Marguno F, Martínez-Rodríguez P, Mešić A, Monteiro JS, Oehl F, Pawłowska, J, Pem D, Pfliegler WP, Phillips AJL, Pošta A, He MQ, Li JX, Raza M, Sruthi OP, Suetrong S, Suwannarach N, Tedersoo L, Thiyagaraja V, Tibpromma S, Tkalčec Z, Tokarev YS, Wanasinghe DN, Wijesundara DSA, Wimalaseana SDMK, Madrid H, Zhang GQ, Gao Y, Sánchez-Castro I, Tang LZ, Stadler M, Yurkov A, Thines M (2022) Outline of fungi and fungus-like taxa–2021. Mycosphere 13:53–453. https://doi.org/10.5943/mycosphere/13/1/2

  • Winter HG (1885) Pilze II Abtheilung Ascomyceten: Gymnoasceen und Pyrenomyceten In: Rabenhorst GL (ed) Rabenhorst’s Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz, 2nd ed Kummer, Leipzig, pp. 65–528. https://doi.org/10.5962/bhltitle1356

  • Xia Y, Liu J, Chen C, Mo X, Tan Q, He Y, Wang Z, Yin J, Zhou G (2022) The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms 10(5):1072. https://doi.org/10.3390/microorganisms10051072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao D (2019) Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol 103(8):3327–3340. https://doi.org/10.1007/s00253-019-09713-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Head, Department of Botany and UGC SAP-DRS-II for providing lab facilities and the Council of Scientific and Industrial Research (CSIR) for granting a fellowship to the first author.

Funding

This work was supported by the Council of Scientific and Industrial Research (CSIR), Grant No. 09/100(0241)/2019-EMR-I.

Author information

Authors and Affiliations

Authors

Contributions

Study conception was equally conceived. Aroosa Jan Mattoo carried out data analysis (morphological and phylogenetic analysis) and wrote the manuscript. Skarma Nonzom analyzed the data and critically revised the work. Both the authors reviewed and approved the final version of the paper.

Corresponding author

Correspondence to Skarma Nonzom.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattoo, A.J., Nonzom, S. Astragalicola ephedrae sp. nov., isolated from the stem of Ephedra gerardiana in Ladakh, India. Folia Microbiol 68, 607–615 (2023). https://doi.org/10.1007/s12223-023-01041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-023-01041-3

Keywords

Navigation