Skip to main content
Log in

The soil-borne fungal pathogen Athelia rolfsii: past, present, and future concern in legumes

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Legumes are ubiquitous, low-cost meals that are abundant in protein, vitamins, minerals, and calories. Several biotic constraints are to blame for the global output of legumes not meeting expectations. Fungi, in particular, are substantial restrictions that not only hinder production but also pose a serious health risk to both human and livestock consumption. Athelia rolfsii (Syn. Sclerotium rolfsii) is a dangerous pathogenic fungus that attacks most crops, causing massive yield losses. Legumes are no longer immune to this dreadful fungus, which can potentially result in a 100% yield loss. The initial disease symptoms based on the formation of brown color lesions at the point of infection and further development of mycelia, followed by yellowing and wilting of the whole plant. To tackle such situation, various strategies, i.e., management in cultural practices, disease-free plant growth, genetic changes, crop hybridization and in vitro culture techniques have been undertaken. This present review encapsulates the entire situation, from sclerotial dissemination through infection development and control in legume crops, with the goal of developing a tangible understanding of sustainable legume production improvements. Further study in this area might be led in an integrated manner as a result of this information, which could contribute to a better understanding of the processes of disease incidence, resistance mechanism, and its control, and fostering greater inventiveness in the production of legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Adhikari P, Shrestha SM, Manandhar HK, Marahatta S (2022) Morphology and cross infectivity of Sclerotium rolfsii Sacc. isolated from different host plants in Nepal. The Jour Agric and Environ 23:177–187

    Article  Google Scholar 

  • Ali A, Javaid A, Shoaib A, Khan IH (2020) Effect of soil amendment with Chenopodium album dry biomass and two Trochoderma species on growth of chickpea var. Noor 2009 in Sclerotium rolfsii contaminated soil. Egyprian Jour Biol Pest Con 30:102

  • Ayed F, Jabnoun-Khiareddine H, Aydi Ben Abdallah R, Daami-Remadi M (2018a) Effect of temperatures and culture media on Sclerotium rolfsii mycelial growth, sclerotial formation and germination. Jour Plant Pathol Microbiol 9:446. https://doi.org/10.4172/2157-7471.1000446

    Article  Google Scholar 

  • Ayed F, Jabnoun-Khiareddine H, Aydi-Ben-Abdallah R, Daami-Remadi M (2018b) Effects of pH and aeration on Sclerotium rolfsii mycelial growth, sclerotial production and germination. Int Jour Plant Pathol 7:111–121. https://doi.org/10.33687/phytopath.007.03.2688

    Article  Google Scholar 

  • Bateman DF (1968) The enzymatic maceration of plant tissue. Netherlands Jour Plant Pathol 74:67–80

    Article  CAS  Google Scholar 

  • Bateman DF (1972) The polygalacturonase complex produced by Sclerotium rolfsii. Physiol Plant Pathol 2:175–184

    Article  CAS  Google Scholar 

  • Backman PA, Brenneman TB (1984) Compendium of peanut diseases. Amer Phytopathol Soc, St.Paul, Minnesota

  • Basumatary M, Dutta BK, Singha DM, Das N (2015) Some in vitro observations on the biological control of S. rolfsii, a serious pathogen of various agricultural crop plants. IOSR Jour Agric & Vete Sci 8:87–94

    Google Scholar 

  • Bennett RS (2020) Growth chamber assay for evaluating resistance to Athelia rolfsii. Peanut Sci 47:25–32

    Article  Google Scholar 

  • Bennett RS, Harting AD, Simpson CE, Tallury SP, Pickering AB, Wang N, Dunne JC (2021) A note on a greenhouse evaluation of wild Arachis species for resistance to Athelia rolfsii. Peanut Sci 48:40–48

    Article  Google Scholar 

  • Bera SK, Kasundra SV, Kamdar JH, Lal C, Thirumalasmy PP, Maurya DP, AK, (2014) Variable response of interspecific breeding lines of groundnut to Sclerotium rolfsii infection under field and laboratory conditions. Electron J Plant Breed 5:22–29

    Google Scholar 

  • Bhagat S, Birah A, Kumar R, Yadav MS, Chattopadhyay C (2014) Plant disease management: prospects of pesticides of plant origin. Advances in Plant Biopesticides. Springer, New Delhi, pp 119–129

    Chapter  Google Scholar 

  • Bhamra GK, Borah M (2022) A review on collar rot disease of soybean caused by Sclerotium rolfsii Sacc. Int Jour Econ Plants 9:235–239. https://doi.org/10.23910/2/2022.0470

    Article  Google Scholar 

  • Billah KMM, Hossain MB, Prince MH, Sumon MMP (2017) Pathogenicity of Sclerotium rolfsii on different host, and its over wintering survival; a mini review. Int J Adv Agric Sci Technol 2:1–6

    Google Scholar 

  • Borkar SG, Gawande SP (2021) Concept of formae speciales in Sclerotiun rolfsii, a collar rot pathogen of crop plants and its use in crop diversification system. Biomed Jour Sci Tech Res 38:30349–30355. https://doi.org/10.26717/BJSTR.2021.38.006151

    Article  Google Scholar 

  • Bosamia TC, Dodia SM, Mishra GP, Ahmad S, Joshi B, Thirumalaisamy PP, Kumar N, Rathnakumar AL, Sangh C, Kumar A, Thankappan R (2020) Unraveling the mechanisms of resistance to Sclerotium rolfsii in peanut (Arachis hypogaea L.) using comparative RNA-Seq analysis of resistant and susceptible genotypes. PLoS One 15:e0236823. https://doi.org/10.1371/journal.pone.0236823

  • Cannon SB, May GD, Jackson SA (2009) three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant Physiol 151:970–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalcanti VP, Neilton AF, Schwanestrada KRF, Pasqual M, Dória J (2018) Athelia (Sclerotium) rolfsii in Allium sativum: potential biocontrol agents and their effects on plant metabolites. An Acad Bras Ciênc 90:3949–3962. https://doi.org/10.1590/0001-3765201820180208

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary AK, Singh N, Singh D (2021) Evaluation of the bioformulation of potent native strains of Trichoderma strains of Trichoderma spp. against the fruit rot/gummosis of Kinnow mandarin. Egyptian Jour Biol Pest Control 31:101–109. https://doi.org/10.1186/s41938-021-00446-x

    Article  Google Scholar 

  • Chowdhury AK (2003) Control of sclerotium blight of groundnut by plant growth substances. Crop Res (hisar) 25:355–359

    Google Scholar 

  • Ciccarese F, Frisullo S, Amenduni M, Cirulli M (1992) Use in the open field of Trichoderma harzianum Rifai in the biological control of sugarbeet root rot caused by Sclerotium rolfsii Sacc. Informatore Fitopatologico 42:63–64

    Google Scholar 

  • Cilliers AJ, Herselman L, Pretorius ZA (2000) Genetic variability within and among mycelial compatibility groups of Sclerotium rolfsii in South Africa. Phytopathol 90:1026–1031

    Article  CAS  Google Scholar 

  • Cui R, Clevenger J, Chu Y, Brenneman T, Isleib TG, Holbrook CC, OziasAkins P (2020) Quantitative trait loci sequencing–derived molecular markers for selection of stem rot resistance in peanut. Crop Sci 60:2008–2018

    Article  CAS  Google Scholar 

  • Culbreath AK, Brenneman TB, Kemerait RC, Stevenson KL, Henn A (2020) Effect of DMI and QoI fungicides mixed with the SDHI fungicide penthiopyrad on late leaf spot of peanut. Crop Protec 137:105298

    Article  CAS  Google Scholar 

  • Dania VO, Henry EU (2022) Pathogenicity of Sclerotium rolfsii isolates causing stem and root rot disease of Cowpea (Vigna unguiculata (L.) Walp) and management using Trichoderma Species. AGRIVITA J Agric Sci 44:105–118

    Article  Google Scholar 

  • Deepthi KC, Reddy NE (2013) Stem rot disease of groundnut (Arachis hypogaea L.) induced by Sclerotium rolfsii and its management. Int Jour Life Sci Biotechn Pharma Res 2:26–38

    Google Scholar 

  • Dixit R, Agrawal L, Singh SP, Singh PC, Prasad V, Chauhan PS (2018) Paenibacillus lentimorbus induces autophagy for protecting tomato from Sclerotium rolfsii infection. Microbiol Res 215:164–174

    Article  PubMed  Google Scholar 

  • Dong XI, Gao CY, Li PI, Lian S, Zhou SY, Li BH (2022) Effects of temperature, moisture, substrates and soil coverage on sclerotium germination and hyphal growth of Southern blight of apple in China. Eur Jour Plant Pathol 162:477–487. https://doi.org/10.1007/s10658-021-02418-1

    Article  Google Scholar 

  • Ebrahimi A, Gholami M, Mozafari J, Bihamta MR, Rahaie M (2020) Expression of the defence-related genes in Guilan local bean (Phaseolus vulgaris L.) under the Sclerotium rolfsii fungus infection. Mod Genet J 15(2):149–160

  • Eid K (2014) Biological control of bean damping-off caused by Sclerotium rolfsii. Egyptian Jour Phytopathol 42:179–191

    Article  Google Scholar 

  • El-Ashmony RMS, Zaghloul NSS, Miloševi´c M, Mohany M, Al-Rejaie SS, Abdallah Y, Galal AA, (2022) The biogenically efficient synthesis of silver nanoparticles using the fungus Trichoderma harzianum and their antifungal efficacy against Sclerotinia sclerotiorum and Sclerotium rolfsii. J Fungus 8:597

    Article  CAS  Google Scholar 

  • FAO (2021) world food and agriculture -Statistical year book 2021, pp. 1- 368, Rome, Italy. https://doi.org/10.4060/cb4477en

  • Fery RL, Dukes PD Sr (2002) Southern blight (Sclerotium rolfsiiSacc.) of cowpea: yield-loss estimates and sources of resistance. Crop Protec 21:403–408

    Article  Google Scholar 

  • Flores-Moctezuma HE, Montes-Belmont R, Jiménez-Pérez A, Nava-Juárez R (2006) Pathogenic diversity of Sclerotium rolfsii isolates from Mexico, and potential control of southern blight through solarization and organic amendments. Crop Protec 25:195–201

    Article  CAS  Google Scholar 

  • Garibaldi A, Gilardi G, Ortu G, Gullino ML, Testa M (2013) First report of southern blight caused by Sclerotium rolfsii on common bean (Phaseolus vulgaris) in Italy. Plant Dis 97:1386

    Article  CAS  PubMed  Google Scholar 

  • Gholami M, Ebrahimi A, Mozafari J, Bihamta MR, Rahaie M (2020) Phenotypic and genotypic screening of common bean (Phaseolus vulgaris L.) landraces for resistance to collar rot fungus (Sclerotium rolfsii Sacc.) in North of Iran. J Plant Patho 102:67–78

    Article  Google Scholar 

  • Gopi R, Chandran K, Nisha M, Mahendran B, Viswanathan R, Nithya K, Keerthana K (2023) New record of occurrence of Athelia rolfsii (Syn. Sclerotium rolfsii) in seedlings of sugarcane. Ind Phytopathol 76:339–343

    Article  Google Scholar 

  • Hakim L (2020) Sclerotium rolfsii Sacc control causes of stem rot disease in soybeans with mycorrhizal biological agents. Systematic Rev Pharmacy 11:289–291

    Google Scholar 

  • Harlton CE, Levesque CA, Punja ZK (1995) Genetic diversity in Sclerotium (Athelia) rolfsii and related species. Phytopathol 85:1269–1281

    Article  Google Scholar 

  • Islam MN, Shamsuddula AM, Ahmed HP (2007) Comparative effectiveness of Trichoderma colonized organic wastes in controlling foot and root rot (Sclerotium rolfsii) disease of wheat. In: 8th African Crop Science Society Conference, El-Minia, Egypt, 27–31 October 2007 [ed. by Ahmed, K. Z.]. El-Minia, Egypt: Afr Crop Sci Soc., pp. 2079–2082

  • Iquebal MA, Tomar RS, Parakhia MV, Singla D, Jaiswal S, Rathod VM, Padhiyar SM, Kumar N, Rai A, Kumar D (2017) Draft whole genome sequence of groundnut stem rot fungus Athelia rolfsii revealing genetic architect of its pathogenicity and virulence. Sci Rep 7:5299. https://doi.org/10.1038/s41598-017-05478-8

  • Iqbal J, Yousaf U, Zia S, Asgher A, Afzal R, Ali M, Sheikh AUR, Sher A (2019) Pulses diseases: important limiting factor in yield and their managements. Asian J Crop Sci 3:1–21

    Google Scholar 

  • Javaid A, Afzal R, Shoaib A (2020) Biological management of southern blight of chilli by Penicillium oxalicum and leaves of Eucalyptus citriodpra. Int J Agric Biol 23:93–102. https://doi.org/10.17957/IJAB/15.1263

    Article  CAS  Google Scholar 

  • Javaid A, Ali A, Shoaib A, Khan IH (2021) Alleviating stress of Sclertium rolfsii on growth of chickpea var. Bhakhar-2011 by Trichoderma harzianum and T.viride. J Anim Plant Sci 31:1755–1761

    CAS  Google Scholar 

  • Kator L, Och HZY, OD, (2015) Sclerotium rolfsii: causative organism of southern blight, stem rot, white mold and Sclerotia rot disease. Annal Biol Res 6:78–89

    CAS  Google Scholar 

  • Khan IH, Javaid A, Ahmed A-T, D, (2020) Use of neem leaves as soil amendment for the control of collar rot disease of chickpea. Egypt J Biol Pest Control 30:1–8

    Article  CAS  Google Scholar 

  • Korangi Alleluya V, Argüelles Arias A, Ribeiro B, De Coninck B, Helmus C, Delaplace P, Ongena M (2023) Bacillus lipopeptide-mediated biocontrol of peanut stem rot caused by Athelia rolfsii. Front Plant Sci 14:1069971. https://doi.org/10.3389/fpls.2023.1069971

    Article  PubMed  PubMed Central  Google Scholar 

  • Latunde-Dada AO (1993) Biological control of southern blight disease of tomato caused by Sclerotium rolfsii with simplified mycelial formulations of Trichoderma koningii. Plant Pathol 42:522–529. https://doi.org/10.1111/j.1365-3059.1993.tb01532.x

    Article  Google Scholar 

  • Le CN, Mendes R, Kruijt M, Raaijmakers JM (2012) Genetic and phenotypic diversity of Sclerotium rolfsii in groundnut fields in central Vietnam. Plant Dis 96:389–397. https://doi.org/10.1094/PDIS-06-11-0468

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, W, Wang Z, Dan Z, Zhang L, Li Z, Chai M, Sun J, Li Y, Cong L, Yang G, (2021) Southern blight on Medicago sativa caused by Sclerotium rolfsii in north China. Plant Dis 105:1856

    Article  Google Scholar 

  • Lin MA, Yin F, Zeng W, Huang Y (2009) Biological characteristics of Sclerotium rolfsii Sacc. in Coptis chinensis and screening on its controlling fungicides. J Anhui Agric 34:240–245

    Google Scholar 

  • Mahadevakumarr S, Joy J, Mamatha Bhanu LS, Sharvani KA, Niranjan Raj S, Chandranayaka S (2022) First report of Athelia rolfsii (=Sclerotium rolfsii) associated with southern blight disease of Macrotyloma uniflorum in India. Plant Dis. https://doi.org/10.1094/PDIS-12-21-2835-PDN

  • Mahadevakumar S, Tejaswini GS, Janardhana GR, Yadav V (2015) First report of Sclerotium rolfsii causing southern blight and leaf spot on common bean (Phaseolus vulgaris) in India. Plant Dis 99:1280. https://doi.org/10.1094/PDIS-01-15-0125-PDN

    Article  Google Scholar 

  • Matti D, Sen C (1985) Integrated biocontrol of Sclerotium rolfsii with nitrogenous fertilizers and Trichoderma harzianum. Indian J Agric Sci 55:464–468

    Google Scholar 

  • Mehan VK, Mayee CD, McDonald D (1994) Management of Sclerotium rolfsii caused stem and pod rots of groundnut—A critical review. Int J Pest Manag 40:313–320

    Article  Google Scholar 

  • Mehri Z, Khodaparast SA, Aalami A, Mousanejad S, Masigol H, Grossart HP (2020a) Population genetics and gene sequence analysis of Athelia rolfsii collected from Northern Iran. Mycologia Iranica 7:195–203

    Google Scholar 

  • Mehri Z, Khodaparast SA, Aalami A, Mousanejad S (2020b) Genetic diversity of Athelia rolfsii populations in the north of Iran. Rostaniha 21:14–26

    Google Scholar 

  • Mihail JD, Alcorn SM (1984) Effects of soil solarisation on Macrophomina phaseolina and Sclerotium rolfsii solar pasteurization, charcoal rot control, Euphorbia lathyris as a test plant, Arizona. Plant Dis 68:156–159

    Article  Google Scholar 

  • Mukhopadhyay R, Kumar D (2020) Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt J Biol Pest Control 30:1–8

    Article  Google Scholar 

  • Nagamani P, Bhagat S, Biswas MK, Viswanath K (2017) Effect of volatile and non-volatile compounds of Trichoderma spp. against soil borne diseases of chickpea. Int Jour Current Microbiol Appl Sci 6:1486–1491

    Article  Google Scholar 

  • Ofuya ZM, Akhidue V (2005) The role of pulses in human nutrition: a review. J Appl Sci Environ Manag 9:99–104

    Google Scholar 

  • Okabe I, Matsumoto N (2003) Phylogenetic relationship of Sclerotium rolfsii (teleomorph Athelia rolfsii) and S. dolphinii based on ITS sequences. Mycol Res 107:164–168. https://doi.org/10.1017/s0953756203007160

    Article  CAS  PubMed  Google Scholar 

  • Okabe I, Morikawa C, Matsumoto N, Yokoyama K (1998) Variation in Sclerotium rolfsii isolates in Japan. Mycoscience 39:399–407. https://doi.org/10.1007/BF02460900

    Article  Google Scholar 

  • Pan S, Bhagat S (2008) Characterization of antagonistic potential of Trichoderma spp. against some soil borne plant pathogens. Jour Biol Control 22:43–49

    Google Scholar 

  • Pan S, Mukherji R, Bhagat S (2013) Evaluation of Trichoderma spp. against soil borne plant pathogens. Ann Plant Protec Sci 21:197–198

    Google Scholar 

  • Paintin RD (1928) Notes on the parasitology of Sclerotium rolfsii. Mycologia 20:22–26

    Article  Google Scholar 

  • Paparu P, Acur A, Kato F, Acam C, Nakibuule J, Musoke S et al (2018) Prevalence and incidence of four common bean root rots in Uganda. Exp Agric 54:888–900. https://doi.org/10.1017/S0014479717000461

    Article  Google Scholar 

  • Paparu P, Acur A, Kato F, Acam C, Nakibuule J, Nkuboye A et al (2020) Morphological and pathogenic characterization of Sclerotium rolfsii, the causal agent of southern blight disease on common bean in Uganda. Plant Dis 104:2130–2137. https://doi.org/10.1094/PDIS-10-19-2144-RE

    Article  PubMed  Google Scholar 

  • Parwanayoni NMS, Suprapta DN, Darsini N, Sudirga SK (2021) Isolation and molecular identification of fungi causing stem rot disease in Bali’s local legumes. Biogenesis: J Ilmiah Biol 9:73–80

  • Pattnaik S, Subramanyam VR, Kole C (1996) Antibacterial and antifungal activity of ten essential oils in vitro. Microbios 86:237–246

    CAS  PubMed  Google Scholar 

  • Paul NC, Hwang EJ, Nam SS, Lee HU, Lee JS, Yu GD et al (2017) Phylogenetic placement and morphological characterization of Sclerotium rolfsii (Teleomorph: Athelia rolfsii) associated with blight disease of Ipomoea batatas in Korea. Mycrobiol 45:129–138. https://doi.org/10.5941/MYCO.2017.45.3.129

    Article  Google Scholar 

  • Paul SK, Gupta DR, Mahapatra CK, Rani K, Islam T. (2023) Morpho-molecular, cultural and pathological characterization of Athelia rolfsii causing southern blight disease on common bean. Heliyon 9:e16136 (www.cell.com/heliyon)

  • Punja ZK (1985) The biology, ecology, and control of Sclerotium rolfsii. Ann Rev Phytopathol 23:97–127

    Article  CAS  Google Scholar 

  • Queiroz JVJ, Inokuti EM, Tsuji SS, Camara MPS, Michereff SJ (2017) First report of collar rot on jack bean (Canavalia ensiformis) caused by Sclerotium rolfsii in Brazil. Plant Dis 101:388. https://doi.org/10.1094/PDIS-05-16-0622-PDN

    Article  CAS  Google Scholar 

  • Rao SN, Kulkarni S (2003) Effect of Trichoderma spp. on the growth of Sclerotium rolfsii Sacc. Jour Biol Con 17:181–184

    Google Scholar 

  • Ridge G, Shew B (2014) Sclerotium rolfsii (Southern blight of vegetables and melons). North Carolina State University

  • Rodriguez-Kabana R, Ivey H, Backman PA (1987) Peanut-cotton rotations for the management of Meloidogyne arenaria. J Nematol 19(4):484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Safni I, Antastia W (2018) In vitro antagonism of five rhizobacterial species against Athelia rolfsii collar rot disease in soybean. Open Agric 3:264–272

    Article  Google Scholar 

  • Sajeena A, Nair DS, Peteti TS, John J, Sudha B, Meera AV (2021) First report of basal stem rot and blight of yard long bean (Vigna unguiculata subsp. sesquipedalis) caused by Athelia rolfsii in India. J Plant Pathol 103:337. https://doi.org/10.1007/s42161-020-00663-7

  • Sarker BC, Adhikary SK, Sultana S, Biswas A, Azad SFD (2013) Influence of pH on growth and sclerotia formation of Sclerotium rolfsii causal agent of foot rot disease of betel vine. J Agric Vet Sci 4:67–70

    Google Scholar 

  • Saratha M1, Angappan K, Karthikeyan S, Marimuthu S, Chozhan K (2022) Athelia rolfsii associated with mulberry root rot disease in Tamil Nadu, India. Curr Res Environ & Appl Mycol (J Fungal Biol) 12:56–64. www.creamjournal.org

  • Sarma BK, Singh UP, Singh KP (2002) Variability in Indian isolates of Sclerotium rolfsii. Mycologia 94:1051–1058. https://doi.org/10.1080/15572536.2003.11833160

    Article  CAS  PubMed  Google Scholar 

  • Sharf W, Javaid A, Shoaib A, Khan IH (2021) Induction of resistance in chili against Sclerotium rolfsii by plant-growth promoting rhizobacteria and Anagallis arvensis. Egypt J Biol Pest Con 31:1–11. https://doi.org/10.1186/s41938-021-00364-y

  • Smith VL, Jenkins SF, Punja ZK, Benson DM (1989) Survival of sclerotia of Sclerotium rolfsii: influence of sclerotial treatment and depth of burial, Soil Biol. Biochem 21:627–632. https://doi.org/10.1016/0038-0717(89)90055-2

    Article  Google Scholar 

  • Stoppacher N, Kluger B, Zeilinger S, Schuhmacher KR, R, (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Sun F, Deng D, Zhu Xu, Duan C, Zhu Z (2020) First report of southern blight of mung bean caused by Sclerotium rolfsii in China. Crop Protec 130:1050–1055. https://doi.org/10.1016/j.cropro.2019.105055

    Article  CAS  Google Scholar 

  • Supakitthanakorn S, Ruangwong OU, Sawangrat C, Srisuwan W, Boonyawan D (2023) Potential of non-thermal atmospheric-pressure dielectric barrier discharge plasma for inhibition of Athelia rolfsii causing southern blight disease in lettuce. Agriculture 13:167. https://doi.org/10.3390/agriculture13010167

    Article  CAS  Google Scholar 

  • Tarafdar A, Rani TS, Chandran, US, Ghosh R, Chobe DR. Sharma M (2018) Exploring combined effect of abiotic (soil moisture) and biotic (Sclerotium rolfsii Sacc.) stress on collar rot development in chickpea. Front Plant Sci 9:1154

  • Thomas A, Saravanakumar D (2023) First report of Sclerotium rolfsii (Athelia rolfsii) causing basal rot in lettuce in Trinidad. J Plant Pathol 105:611. https://doi.org/10.1007/s42161-023-01319-y

    Article  Google Scholar 

  • Tomazeli VN, dos Santos I, Morales RGF, Figueiredo AST (2019) Soil solarization in the control of bean diseases caused by Sclerotium rolfsii. Braz J Agric 94:1–9

    Google Scholar 

  • Tsahouridou PC, Thanassoulopoulos CC (2002) Proliferation of Trichoderma koningii in the tomato rhizosphere and the suppression of damping-off by Sclerotium rolfsii. Soil Biol Biochem 34:767–776

    Article  CAS  Google Scholar 

  • Wei X, Langston DB Jr, Mehl HL (2021) Spectral and thermal responses of peanut to infection and colonization with Athelia rolfsii. PhytoFrontiers™ 1(3):173–181

    Article  Google Scholar 

  • Wei X, Langston DB Jr, Mehl HL (2022) Comparison of current peanut fungicides against Athelia rolfsii through a laboratory bioassay of detached plant tissues. Plant Dis 106:2046–2052

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Huang CH, Vallad GE (2014) Mycelial compatibility and pathogenic diversity among Sclerotium rolfsii isolates in the Southern United States. Plant Dis 98:1685–1694. https://doi.org/10.1094/PDIS-08-13-0861-RE

    Article  PubMed  Google Scholar 

  • Xu Z, Harrington TCG, ML, Batzer JC (2010) Phylogenetic placement of plant pathogenic Sclerotium species among teleomorph genera. Mycologia 102:337–346

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Wang Z, Song W, Fan P, Kang Y, Lei Y, Wan L, Huai D, Chen Y, Wang X, Sudini H, Liao B (2021) Genome sequencing and comparative genomic analysis of highly and weakly aggressive strains of Sclerotium rolfsii, the causal agent of peanut stem rot. BMC Genomics 22:276. https://doi.org/10.1186/s12864-021-07534-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanase Y, Yoshikawa Y, Kishi J, Katsuta H (2007) The history of complex II inhibitors and the discovery of penthiopyrad, In. Pesticide Chemistry: Crop Protection, Public Health, Environmental Safety, Ohkawa H, Miyagawa H, Lee PW (Eds.), Wiley-VCH Verlag, Weinheim, Germany, pp. 295–303

  • Zheng B, He D, Liu P, Wang R, Li B, Qinghe Chen Q (2020) Occurrence of collar rot caused by Athelia rolfsii on soybean in China. J Indian Dent Assoc 43:43–47. https://doi.org/10.1080/07060661.2019.1703819

    Article  CAS  Google Scholar 

Download references

Funding

The Department of Science & Technology, Government of Odisha, provided fellowship to GKP for the research.

Author information

Authors and Affiliations

Authors

Contributions

GKP wrote the paper. GCA, AKM, and JKP provided valuable information for preparation of the manuscript. GRR finally edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gyana R. Rout.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, G.K., Acharya, G.K., Panigrahi, J. et al. The soil-borne fungal pathogen Athelia rolfsii: past, present, and future concern in legumes. Folia Microbiol 68, 677–690 (2023). https://doi.org/10.1007/s12223-023-01086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-023-01086-4

Keywords

Navigation